Computational Complexity Theory

Lecture 18: Parity not in AC? (contd.)

Department of Computer Science,
Indian Institute of Science

Recap: Depth d circuit for Parity

o Obs. There’s a exp(n'/¢!) size depth d circuit for
PARITY, where exp(x) = 2%,

e Proof sketch. “Divide & conquer” for d-l levels.
Alternate between CNFs and DNFs. “Attach” the

CNFs and the DNFs appropriately, and then “merge”
the intermediate layers to bring the depth down to d.

o Is the exp(n'/(4-1)) upper bound on the size of depth d
circuits computing PARITY tight! “Yes”

Recap: Lower bound for depth d circuits

e Theorem.
Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Gives a super-polynomial lower bound for depth d
circuits for d up to O(log n/log log n).

* A lower bound for circuits of depth d = O(log n)
implies a Boolean formula lower bound!

Recap: Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

 Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).

e We'll prove this fact using Hastad’'s Switching
lemma. But first let us discuss some/ structural
simplifications of depth d circuits.

Will be proved in today’s
lecture

Recap: Random restrictions

* A restriction o is a partial assighment to a subset of the
n variables.

e A random restriction o that leaves m variables
alive/unset is obtained by picking a random subset S C
[n] of size n-m and setting every variable in S to 0/|
uniformly and independently.

e Let f, denote the function obtained by applying the
restriction o on f.

Recap: The Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

* We can interchange “CNF”’ and “DNF” in the above
statement by applying the lemma on —f.

* We used the lemma in the last lecture to prove lower
bound for depth d circuits.

Recap: Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. W.lo.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

o Step 0: Pick every variable independently with prob. '/,
and then set it to 0/| uniformly. C, be the resulting ckt.

* Let t be a parameter that we’ll fix later in the analysis.
f a V gate in the last layer has fan-in > t, then the
brobability it doesn’t evaluate to | is = (3/4)" So,

Pr[a fan-in > t last layer V gate survives] <|s(3/4)".

Recap: Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. W.lo.g C is in the simplified form and the
bottom/last layer consists of V gates. Size(C) = s.

o Step 0: Pick every variable independently with prob. ',
and then set it to 0/| uniformly. C, be the resulting ckt.

* With probability = | - s(3/4)%, every A gate of the
second-last layer of C, computes a t-CNF.

* Let n, be the no. of unset variables after Step 0. By
Chernoff bound|n, = n/4|with probability | - 2-¢")]

Recap: Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (A gates of the second-last layer of C)) < s.

o Step I: Apply a random restriction o, on the n,

variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

e By the Switching lemma, probability that any of the t-
CNFs computed at the second-last layer of C, cannot
be expressed as a t-DNF is <|s.(|6pt)".

Recap: Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.
e Proof. # (A gates of the second-last layer of C)) < s.

o Step I: Apply a random restriction o, on the n,
variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

* Replace the t-CNFs by the corresponding t-DNFs.

* Merge the Vv gates of the second-last layer with the Vv
gates of the layer above. C, be the resulting ckt.

Recap: Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (A gates of the second-last layer of C)) < s.

o Step I: Apply a random restriction o, on the n,
variables that leaves n, = pn, variables alive, where p <
/> will be fixed later.

» Merging reduces the depth to d-|.

o All the gates of the second-last layer of C, compute t-
DNFs with probability = | - s.(16pt)-.

Recap: Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (V gates of the second-last layer of C)) < s.

o Step 2: Apply a random restriction o, on the n,

variables that leaves n; = pn, variables alive, where p
is same as before.

e By the Switching lemma, probability that any of the t-
DNFs computed at the second-last layer of C, cannot
be expressed as a t-CNF is = |s.(|6pt)-.

Recap: Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.
e Proof. # (V gates of the second-last layer of C)) < s.

o Step 2: Apply a random restriction o, on the n,
variables that leaves n; = pn, variables alive, where p
is same as before.

* Replace the t-DNFs by the corresponding t-CNFs.

* Merge the A gates of the second-last layer with the A
gates of the layer above. C, be the resulting ckt.

Recap: Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (V gates of the second-last layer of C)) < s.

o Step 2: Apply a random restriction o, on the n,
variables that leaves n; = pn, variables alive, where p
is same as before.

» Merging reduces the depth to d-2.

* All the gates of the second-last layer of C; compute t-
CNFs with probability = | - s.(16pt)-.

Recap: Lower bound for depth d circuits

Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Proof. # (A gates of the second-last layer of C;) = s.

o Step 3: Apply a random restriction o; on the n;
variables that leaves n, = pn; variables alive, where p
is same as before. Continue as before..

Recap: Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =

| -s.(d-2)(16pt)t - 2-%M - 5(3/4)t,
» The number of variables alive is p9-?n, = (p9-?n)/4.
* Hence,
either | - s.(d-2)(16pt)t - 2-4M -5(3/4)t < 0,

or p¥2n, < t.

Recap: Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =
| -s.(d-2)(16pt)t - 2-%M - 5(3/4)t,
» The number of variables alive is p9-?n, = (p9-?n)/4.
* By choosing t = O(n"¢-") and p = 1/(160 t), we can
make sure that \
pd2n, > t. <

Recap: Lower bound for depth d circuits

e Theorem.
Any depth d circuit C computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof. After Step d-2, we are left with a depth 2
circuit, i.e.,a t-CNF or a t-DNF with probability =

| - s.(d-2)(16pt)t - 2-4M - 5(3/4)t.
» The number of variables alive is p9?n, = (p9?n)/4.
» Therefore, for t = O(n'/(4-N)and p = 1/(160 t),
| - 5.(d-2)(16pt): - 2-20) - 5(3/4): < O,
- 5= exp(@(n'))

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

* Proof. We'll present a proof due to Razborov.

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

e Proof. Let A, be the set of restrictions that keeps ¥
variables alive. Then, |A,| = (}).2".

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

e Proof. Let A, be the set of restrictions that keeps ¥
variables alive. Then, |A,| = (,).2"*. Let B, S A, be

m,k —

the set of “bad” restrictions,i.e,a 0 € A_isin B iff
f_can’t be represented as a k-DNF.

* We need to upper bound |B

m,I<|°

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

e Proof. Let A, be the set of restrictions that keeps ¥
variables alive. Then, |A,| = (,).2"*. Let B, S A, be

m,k —

the set of “bad” restrictions,i.e,a 0 € A_isin B iff
f_can’t be represented as a k-DNF.

* We need to upper bound |B

m,I<|°
* This is done by giving an injective map from B, to
A x U ,where U = {0,[}logt*2)JU| = (4¢)k,

Proof of the Switching Lemma

e Switching lemma. Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.
* Proof. Then, |B_ | = ()2 (4t) and so

1B J/|A| = [(m! .(n-nr:)!) [((m-k)! . (n-m+k)!)].2k.(4t)*

m,k

Proof of the Switching Lemma

e Switching lemma. Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.
* Proof. Then, |B_ | = ()2 (4t) and so
B [/JA | < [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)].2% (4t)
< (m/(n-m))k . 2k . (4t)k
= (p/(1-p))* . 2¢ . (4t) (as m = pn)
< pk.2k .2k (4e)k (asp < '2)
= (l16pt)~.

m,k

Proof of the Switching Lemma

e Switching lemma. Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

 Proof. Next, we show an injection from B, to A x
U, where U = {0, | }(logt*2),

A definition and a notation

° A min-term of a function g is a restriction 7
such that g_ = |, but no proper sub-restriction of 7
makes g evaluate to |.

° If ¢ can’t be expressed as a k-DNF, then g has a
min-term 77 of width > k (i.e., 7 assigns O/l values to
more than k variables). ()

A definition and a notation

° A min-term of a function g is a restriction 7
such that g_ = |, but no proper sub-restriction of 7

makes g evaluate to |.

° If ¢ can’t be expressed as a k-DNF, then g has a
min-term 77 of width > k (i.e., 7t assigns 0/] values to

more than k variables).

()

° If o is a restriction that assigns 0/ values to
variables in S, € [n] and 7 is a restriction that assigns
O/l values to variables in S, € [n]\S|, then|oom
“composed” restriction that assigns 0/| values to S,

1JS, consistent with ¢ and .

|1r| := width of ni

is the

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
e Obs.If 0 € B then f, has a min-term of width > k.

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o €B

e Amap y fromB_, toA_, xU: (Overview)

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. We’ll carefully define a sub-
restriction 77’ of 7 of width k.

then f_ has a min-term of width > k.

m, k

Injection from B_, to A, x U

m, Kk

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
° If o €B

e Amap y fromB_

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. We’ll carefully define a sub-
restriction 77’ of 7 of width k.

then f_ has a min-term of width > k.
toA . xU: (Overview)

m, k

> Step 2: Using ', we'll carefully define a restriction p that
assigns 0/1 values to the same set of variables as 77'.

Injection from B_, to A, x U

m, Kk

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.

* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o € B, then f, has a min-term of width > k.

e Amap y fromB_, toA_, xU: (Overview)

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. We’ll carefully define a sub-
restriction 77’ of 7 of width k.

> Step 2: Using ', we'll carefully define a restriction p that
assigns 0/1 values to the same set of variables as 77'.

> Step 3: Using 7’, define a u € U. Finally, y(o) := (o°p , u).

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o € B, then f_, has a min-term of width > k.

e Amap y fromB_ toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. Order the clauses of f,and order
the =< t variables appearing within such a clause.

m, k

m-k

Injection from B_, to A, x U

m, Kk

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)
e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.

o If o € B, then f_, has a min-term of width > k.

e Amap y fromB_ toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. Order the clauses of f,and order
the = t variables appearing within such a clause. C, be the
first surviving clause in f, and 7(l) the assignment to its
surviving variables made by 7.

m, k

m-k

Injection from B_, to A, x U

m, Kk

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)
e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.

o If o € B, then f_, has a min-term of width > k.

e Amap y fromB_ toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. Order the clauses of f,and order
the = t variables appearing within such a clause. C, be the
first surviving clause in f, and 7(l) the assignment to its
surviving variables made by 7. C, be the first surviving clause

in f,..) and 1(2) the assignment to its surviving variables

made by 7.

m, k

m-k

Injection from B_, to A, x U

m, Kk

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)
e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.

o If o € B, then f_, has a min-term of width > k.

e Amap y fromB_ toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. Order the clauses of f,and order
the = t variables appearing within such a clause. C, be the
first surviving clause in f, and 7(l) the assignment to its
surviving variables made by 7. C, be the first surviving clause
in f and 7(2) the assighment to its surviving variables

gor(l)

made by 7. Continue like this.. Stop if |7z(1)o...om(r)| 2 k.

m, k

m-k

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
e Obs.If o0 € B, then f, has a min-term of width > k.

e Amap y fromB_ toA , xU:

> Step l:If |(l)o...om(r)| > k, then “prune” 7(r) by restricting
it to the set of “smallest” variables in C_so that |m(l)o...om
(r)| = k. Define " := 1(l)o...0om(r); |7’| = k.

m, k

m-k

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.

* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o €B

e Amap y fromB_ toA , xU:

> Step 2:For i€[r], let S, be the set of variables in the clause C,
that are assigned 0/| values by 7z(i). |S.| = |7(i)|. Let p(i) be the
unigue assignment to the variables in S. that makes the
corresponding literals in C. zero. Define p := p(l)o...op(r).

then f_ has a min-term of width > k.

m, k

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o € B, then f_, has a min-term of width > k.

e Amap y fromB_ toA , xU:

> Step 2:For i€[r], let S, be the set of variables in the clause C,
that are assigned 0/| values by 7z(i). |S.| = |7(i)|. Let p(i) be the
unigue assignment to the variables in S. that makes the
corresponding literals in C. zero. Define p := p(l)o...op(r).

m, k

m-k

> 7(i) and p(i) are assignments to the same set of
variables S. C. remains unsatisfied under p(i).

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
e Obs.lf 6 €B

e Amap y fromB_ toA , xU:

> Step 3:For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C)) of the variables assigned by p(i)

along with the values assigned to them by 7z(i).
cell «

then f_ has a min-term of width > k.

m, k

u(i)

¥

log t bit index of a variable in C. that is assigned by p(i)

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
e Obs.If o0 € B, then f, has a min-term of width > k.

e Amap y fromB_ toA , xU:

> Step 3:For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C)) of the variables assigned by p(i)
along with the values assigned to them by 7z(i).

m, k

u(i)

¥

0/l value of the variable assigned by (i)

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
e Obs.If o0 € B, then f, has a min-term of width > k.

e Amap y fromB_ toA , xU:

> Step 3:For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C)) of the variables assigned by p(i)
along with the values assigned to them by 7z(i).

m, k

u(i)

¥

Delimiter bit = | for the first cell; 0 otherwise.

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o € B, then f, has a min-term of width > k.

e Amap y fromB_ toA , xU:

> Step 3:For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C)) of the variables assigned by p(i)
along with the values assigned to them by 7(i). Define u by
concatenating u(l), ..., u(r) in order. Observe that |u| = k(log
t + 2). Finally, y(o) = (o°p , u). (The delimiter bits
make it possible to extract u(i) from u.)

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.
o For every i € [r], the first “unsatisfied” clause in

facn(l)c...cn(i-I)op(i)O...op(r) is C;.

* Proof. Fix an i € [r]. By construction, C. is the first

surviving clause in f . . ori)

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

o Obs™ For every i € [r], the first “unsatisfied” clause in

facn(l)c...cn(i-I)op(i)O...op(r) is C;.

* Proof. Fix an i € [r]. By construction, C. is the first
surviving clause in f . . .z C remains unsatisfied
under p(i) (Remark®). Further, p(i+l),..., p(r) do not
touch any variable of C. Hence, C is the first

unsatisfied clause in f . . orii)ep()e.. op(r):

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

o Obs™ For every i € [r], the first “unsatisfied” clause in
f) is G,

oott(l)o...om(i-1)op(i)o...op(r
e Recovering o from (o°p ,u) :

> Pick the first unsatisfied clause in f;, ;). ., This
clause is C, (Obs™). Now by looking at u(l), we can
derive 17(1).

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

o Obs™ For every i € [r], the first “unsatisfied” clause in

facn(l)c...on(i-I)op(i)O...op(r) is C,.

e Recovering o from (o°p ,u) :

> Pick the first unsatisfied clause in f;,, . ., This
clause is C, (Obs™). Now by looking at u(l), we can

derive 17(1). Construct gom(l)op(2)e...op(r) from oo
p(l)o...op(r) and m(l).

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

o Obs™ For every i € [r], the first “unsatisfied” clause in

facn(l)c...on(i-I)op(i)O...op(r) is C,.

e Recovering o from (o°p ,u) :

> Pick the first unsatisfied clause in f;.;1y.,2)0. . op(r)- This
clause is C, (Obs™). Now by looking at u(2), we can
derive m(2). Construct oom(l)om(2)op(3)o...op(r)
from ogom(1)op(2)o...op(r) and 1(2).

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

o Obs™ For every i € [r], the first “unsatisfied” clause in
f is C..
) i

oott(l)o...om(i-1)op(i)o...op(r
e Recovering o from (o°p ,u) :

> Continuing like this we can construct gom(l)o...om
(r) and also find 7(l), ..., 7(r) in the process. From
here, recovering o is straightforward.

https://sites.math.rutgers.edu/~sk1233/courses/topics-
S|3/lec3.pdf

