{ Computational Complexity Theory

Lecture 21: Perfect matching in RNGC;
Class BPL; Randomized reductions

Department of Computer Science,
Indian Institute of Science

Recap: Class BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, | }*,

Pr [M(x,r) = L(x)] 2 2/3.

r €, {0, 1}l

e Sipser-Gacs-Lautemann. BPP 5 , .

* How large is BPP? Is NP < BPP? i.e., is SAT € BPP?
e Theorem. (Adleman 1978) BPP < P/poly.
* So,if NP € BPP then PH =) ,.

Recap: Derandomization of BPP ?

e Can the Sipser-Gacs-Lautemann theorem be
strengthened? How low in the PH does BPP lie ?

If there’s a L € DTIME(2°™) and a constant ¢ > 0
such that any circuit C_ that decides L(1{0,|}" requires
size 2¢", then BPP = P .

e Lower bounds = Derandomization !

e Caution: Shouldn’t interpret this result as
“randomness is useless’’.

Recap: Class RP

e Class RP is the one-sided error version of BPP.

e Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

x€ L == Pr[M(x)=1]22/3
x¢ L == Pr[M(x)=0]=1.
e Definition. RP = LgORTIME (n°).

e Clearly, RP € BPP. Obs.RP € NP.

Recap: Class co-RP

o Definition. co-RP={L: L € RP}.

e Obs. A language L is in co-RP if there’s a PTM M that
decides L in poly-time such that

xe L == PriMx)=1]=1
x¢& L == Pr[M(x)=0]=2/3.
e Obs. co-RP € BPP.

e Is RPMNco-RP in P ? Not known!

Recap: Class ZPP

e Definition. A language L is in ZTIME(T(n)) if there’s a
PTM M s.t. on every input x, M(x) = L(x) whenever M
halts, and M has expected running time O(T(n)).

e Definition. ZPP = U ZTIME (n°).
e Problems in ZPP are said to have poly-time Las Vegas

algorithms, whereas those in BPP are said to have poly-
time Monte-Carlo algorithms.

e Theorem. ZPP = RPMNco-RP < BPP.

e Note.lf P = BPP then P = ZPP = BPP,

Randomness brings in simplicity

e The use of randomness helps in designing simple and
efficient algorithms for many problems.

* We’'ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

Class RNC

e The use of randomness helps in designing simple and
efficient algorithms for many problems.

* We’'ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

g A language L is in RNC' if there’s a
randomized O((log n)')-time parallel algorithm M that
uses n°(!) parallel processors s.t. for every x € {0, 1},

x €L == Pr[M(x)=1]=22/3,
x &L == Pr[M(x)=0]=1.
Here, n is the input length.

Class RNC

e The use of randomness helps in designing simple and
efficient algorithms for many problems.

* We’'ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

° RNC = U RNC'.

i>0

e RNC stands for Randomized NC. We can
alternatively define RNC using (uniform) circuits.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNC2.

e The input G = (LUR, E) is given as a n x n
biadjacency matrix A = (a;); ¢, , where n = |L| = [R[.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNC2.

e The input G = (LUR, E) is given as a n x n
biadjacency matrix A = (a;); ¢, , where n = |L| = [R[.

N

a; = | if there’s an edge from
the i-th vertex in L to the j-th
vertex in R, otherwise a; = 0.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNC?,

e The input G = (LUR, E) is given as a n x n
biadjacency matrix A = (a;); ¢, , where n = |L| = [R[.

e Algorithm.

. Construct B = (b)), ¢, as follows: If a,=0, then b,=0.
Else, pick b; independently and uniformly at random
from [2n].

2. Compute det(B).

3. If det(B) # 0 output “yes”, else output “no”.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNC2.

e The input G = (LUR, E) is given as a n x n
biadjacency matrix A = (a;); ¢, , where n = |L| = [R[.

o Algorithm. (RNC? algorithm)

. Construct B = (b)), ¢, as follows: If a,=0, then b,=0.
Else, pick b; independently and uniformly at random
from [2n]. (This can be done using n? processors.)

2. Compute det(B). (determinant is in NC?,)

3. If det(B) # 0 output “yes”, else output “no”.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNC2.

e Correctness of the Algorithm.

. Define X = (x;);;c, as follows:If a,=0, then x;=0. Else, x,

is a formal variable.
2. det(X) = > (-1)78") [X -

OES, i€[n]

j

o S, is the set of all permutations on [n].

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNC2.

e Correctness of the Algorithm.

. Define X = (x;), e, as follows:If 2,=0, then x;=0. Else, x;

is a formal variable.
2. det(X) = > (-1)78") [X -

OES, i€[n]

o Obs. det(X) # 0 4= G has a perfect matching.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNC2.

e Correctness of the Algorithm.

. Define X = (x;);;c, as follows:If a,=0, then x;=0. Else, x,

is a formal variable.
2. det(X) = > (-1)78") [X -

OES, i€[n]

j

o Obs. det(X) #0 4= G has a perfect matching.

1

Polynomial in the x; variables.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNC2.

e Correctness of the Algorithm.

. Define X = (x;);;c, as follows:If a,=0, then x;=0. Else, x,

is a formal variable.
2. det(X) = > (-1)78") [X -

OES, i€[n]

j

o Obs. det(X) #0 4= G has a perfect matching.

* In the algorithm, we set x; = b;, where b; is picked

randomly from [2n] if x; # O, otherwise b;; = 0.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNC2.

e Correctness of the Algorithm.

. Define X = (x;);;c, as follows:If a,=0, then x;=0. Else, x,

is a formal variable.
2. det(X) = > (-1)78") [X -

OES, i€[n]

j

o Obs. det(X) #0 4= G has a perfect matching.

o If det(X) = 0 then det(B) = 0. (So, the algorithm has
one-sided error.)

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNC2.

e Correctness of the Algorithm.

. Define X = (x;), e, as follows:If 2,=0, then x;=0. Else, x;

is a formal variable.
2. det(X) = > (-1)78") [X -

OES, i€[n]

o Obs. det(X) #0 4= G has a perfect matching.
o If det(X) # 0, what is the probability that det(B) # 0 ?

The answer is given by the Schwartz-Zippel lemma

Schwartz-Zippel lemma

° Let f(x,, ..., %)
0 be a multivariate polynomial of (total) degree at
most d over a field k. Let S € F be finite, and (a, ...,
a,) € S" such that each a is chosen independently
and uniformly at random from S.Then,

Pr [f(a,...,a,) =0] = d/|S].

(@p-...,a,) €. S"

e Proof idea. Roots are far fewer than non-roots. Use
induction on the number of variables.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

e Theorem. PerfectMatching € RNC2.

e Correctness of the Algorithm.

. Define X = (x;), e, as follows:If 2,=0, then x;=0. Else, x;

is a formal variable.
2. det(X) = > (-1)78") [X -
OES, i€[n]
o Obs. det(X) #0 4= G has a perfect matching.

o If det(X) # 0, then Pr[det(B) # 0] = "4 as degree of
det(X) = n (by the Schwartz-Zippel lemma). .

Perfect matching in RNC

e Theorem. Finding a
maximum matching in a general graph is in RNC?,

¢ Is finding maximum matching in NC ? Open!

Perfect matching in RNC

e Theorem. Finding a
maximum matching in a general graph is in RNC?,

¢ Is finding maximum matching in NC ? Open!

e Theorem.
Finding a maximum matching in a
general graph is in quasi-NC.

In O((log n)3) time using exp(O((log n)?)) processors,

Randomized space bounded
computation

Space bounded PTMs

* We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

o Definition. A language L is in BPL if there’s a PTM M
such that M uses O(log n)-space and for every x €
{0,1}*, Pr[M(x) = L(x)] = 2/3.

Space bounded PTMs

* We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

o A language L is in BPL if there’s a PTM M
such that M uses O(log n)-space and for every x €
{0,1}*, Pr[M(x) = L(x)] = 2/3.

* The success probability can be amplied as before as
the BPP error reduction trick can be implemented
using log-space.

Space bounded PTMs

* We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

e Definition. A language L is in RL if there’s a PTM M
s.t. M uses O(log n)-space and for every x € {0, 1}

x€L == Pr[M(x)=1]=22/3
x¢ZL == Pr[M(x)=0]=1I.

e Clearly, RL € NL € P and BPL < BPF.

Space bounded PTMs

* We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

° BPLC P.

 Proof idea. Think of the adjancency matrix A of the
configuration graph of the Of(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A. (Assignment problem)

Space bounded PTMs

* We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

° BPLC P.

 Proof idea. Think of the adjancency matrix A of the
configuration graph of the Of(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A. (Assignment problem)

e Is BPL = L ? Many believe that the answer is !

Space bounded PTMs

e Theorem. If L € BPL then there’s a
poly-time, O((log n)?)-space TM that decides L.

e Theorem. If L € BPL then there’s a
nO0leg n)_time, O((log n)'-*)-space TM that decides L.

e Theorem. If L € BPL then there’s a O((log
n)!S(Vloglog n)-')-space TM that decides L.

e The last two results extend Nisan’s techniques.

Randomized reductions

Randomized reduction

° We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, =_L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr[L,(x) = L,(M(x))] = 2/3. < >Success

probability

e For arbitrary L, and L,, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive.

Randomized reduction

o Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, =_L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr [L,(x) = L,(M(x))] = 2/3.

e For arbitrary L, and L,, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive. However,

e Obs. IfL, = L, and L, € BPF then L, € BPF.
(Easy homework)

Randomized reduction

o Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, =_L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr [L,(x) = L,(M(x))] = 2/3.

o Obs. If L, = SAI, then we can boost the success
probability from 4 + |x|< to | — exp(-|x|9).
* Proof idea. BPP error reduction trick + Cook-Levin.
(homework)

Randomized reduction

o Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, =_L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr [L,(x) = L,(M(x))] = 2/3.

o Obs. If L, = SAI, then we can boost the success
probability from 4 + |x|< to | — exp(-|x|9).

* Recall, NP = {L : L = SAT}. It makes sense to define a
similar class using randomized poly-time reduction.

Class BPNP

o Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, =_L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr [L,(x) = L,(M(x))] = 2/3.

o Obs. If L, = SAI, then we can boost the success
probability from 4 + |x|< to | — exp(-|x|9).
e Definition. BENP = {L : L <_SAT}.

e Class BPNP is also known as AM (Arthur-Merlin
protocol) in the literature.

Class BPNP

e Definition. BPNP = {L:L <_SAT}.

» Observe that NP € BPNP and BPP € BPNP. Is BPNP
= NP ?

Class BPNP

e Definition. BPNP = {L:L <_SAT}.

* Observe that NP € BPNP and BPP € BPNP.Is BPNP
= NP ? Many believe that the answer is “yes".

e [heorem. If certain reasonable circuit lower bounds
hold, then BPNP = NP.

e Proof idea. Similar to Nisan & Wigderson’s conditional
BPP = P result.

Class BPNP

e Definition. BPNP = {L:L <_SAT}.

* Observe that NP € BPNP and BPP € BPNP.Is BPNP
= NP ? Many believe that the answer is “yes".

* We may further ask:
. Is BENP in PH? Recall, BPP is in PH.

Class BPNP

e Definition. BPNP = {L:L <_SAT}.

* Observe that NP € BPNP and BPP € BPNP.Is BPNP
= NP ? Many believe that the answer is “yes".

* We may further ask:
. Is BENP in PH? Recall, BPP is in PH.

2. Is SAT € BPNP? Recall, if SAT € BPP then PH
collapses. (SAT € BPNP as NP € BPNP .)

Class BPNP

e Definition. BPNP = {L:L <_SAT}.

e Theorem. BPNP isin) ;. (In fact, BPNP is in [],.)

e Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

Class BPNP

e Definition. BPNP = {L:L <_SAT}.

e Theorem. BPNP isin) ;. (In fact, BENP isin [],.)

e Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

* Wondering if BPNP < [], implies BENP < >, ? Is
BPNP = co-BPNP ? (Recall, BPP = co-BPP).

o If BENP = co-BP.NP then co-NP © BPNP. The next
theorem shows that this would lead to PH collapse.

Class BPNP

e Definition. BPNP = {L:L <_SAT}.

e Theorem. If SAT € BPNP then PH = ¥, (in fact, PH =
22)-

e Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem. (Assignment problem)

Class BPNP

e Definition. BPNP = {L : L <_SAT}.
e Theorem. If SAT € BPNP then PH = ¥,.

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Thus, even without designing an efficient algorithm
for Gl, we know Gl is unlikely to be NP-complete!

Class BPNP

e Definition. BPNP = {L : L <_SAT}.
e Theorem. If SAT € BPNP then PH = ¥,.

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Theorem.
GNI € BPNP.

 Proof. We'll prove it in the next lecture.

Class BPNP

e Definition. BPNP = {L : L <_SAT}.
e Theorem. If SAT € BPNP then PH = ¥,.

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Theorem.
GNI € BPNP.

o If Gl is NP-complete then GNI is co-NP-complete. If
so, then the above two theorems imply PH =) ..

Graph Isomorphism in Quasi-P

e Theorem. There’s a deterministic
exp(O((log n)?)) time algorithm to solve the graph
isomorphism problem.

