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Natural counting problems  

 What is the complexity of the following problems?  

 

 #SAT: Count the number of satisfying assignments of a 
given Boolean circuit/CNF. 

 

 #HAMCYCLE: Count the number of Hamiltonian 
cycles in an undirected graph. 

 

 Observation. The above problems are NP-hard.           



Natural counting problems  

 What is the complexity of the following problems?  

 

 #PerfectMatching: Count the number of perfect 
matchings in a bipartite graph. 

 

 #CYCLE: Count the number of simple cycles in a 
directed graph. 

 

 Observation. The corresponding decision problems 
are in P.           



Natural counting problems  

 What is the complexity of the following problems?  

 

 #PATH: Count the number of simple paths between 
two vertices in a connected graph. 

 

 #SPANTREE: Count the number of spanning trees in a 
connected graph. 

 

 Observation. The corresponding decision problems 
are trivial.           



An easy counting problem 

 Theorem. (Kirchhoff 1847)  #SPANTREE is in FP. 

 



An easy counting problem 

 Theorem. (Kirchhoff 1847)  #SPANTREE is in FP. 

 

 Proof sketch. Let G be an n-vertex connected graph 
without self loops. Label the vertices by {1,…, n}. 

 

 Definition. The Laplacian matrix of G is an n x n matrix 
LG defined as 

     LG(i,j) = deg(i)   if i = j, 

   = -1        if there’s an edge (i,j) in G, 

   = 0      otherwise. 



An easy counting problem 

 Theorem. (Kirchhoff 1847)  #SPANTREE is in FP. 

 

 Proof sketch. Let G be an n-vertex connected graph 
without self loops. Label the vertices by {1,…, n}. 

 

 Definition. The Laplacian matrix of G is an n x n matrix 
LG defined as LG = DG – AG, where DG is the degree 
matrix and AG the adjacency matrix of G. 

 

 Observation. It is easy to compute LG from AG. 



An easy counting problem 

 Theorem. (Kirchhoff 1847)  #SPANTREE is in FP. 

 

 Proof sketch. Let G be an n-vertex connected graph 
without self loops. Label the vertices by {1,…, n}. 

 

 Kirchhoff ’s matrix-tree theorem states that 

   no. of spanning trees of G  =  any cofactor of LG. 

 

 (i,j) cofactor of L = (-1)i+j . det(submatrix of L obtained 
by deleting the i-th row and the j-th column from L).  

 



An easy counting problem 

 Theorem. (Kirchhoff 1847)  #SPANTREE is in FP. 

 

 Proof sketch. Let G be an n-vertex connected graph 
without self loops. Label the vertices by {1,…, n}. 

 

 Kirchhoff ’s matrix-tree theorem states that 

   no. of spanning trees of G  =  any cofactor of LG. 

 

 Corollary. As determinant computation is in 
(functional) NC,   #SPANTREES is in (functional) NC. 

 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Lesson. A counting problem can be hard even if the 
corresponding decision problem is in P.  

 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Proof. We will give a poly-time reduction from the 
Hamiltonian cycle problem to the #CYCLE problem. 

 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Proof. Let G be an n-vertex digraph. We’ll efficiently 
construct a new graph G’ from G s.t. the presence of 
a Hamiltonian cycle in G can be readily derived from 
the number of cycles in G’. Construction of G’ : 

i               j 

An edge in G 

replace 
 

   with 

… i j 

m layers G G’ 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn. 

i               j 

An edge in G 

replace 
 

   with 

… i j 

m layers G G’ 

#cycle      no. of cycles 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn. 

 Case2:  If G has no HC, then #cycle(G) ≤ nn-1  

                                             #cycle(G’) ≤ nn-1.2m(n-1) . 

 

i               j 

An edge in G 

replace 
 

   with 

… i j 

m layers G G’ 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn. 

 Case2:  If G has no HC, then #cycle(G) ≤ nn-1  

                                             #cycle(G’) ≤ nn-1.2m(n-1) . 

 

 If we choose m such that nn-1.2m(n-1) < 2mn , then we 
can find out if G has a HC from #cycle(G’). 

 Set m = n2. 



Class #P 

 Definition. We say a function f: {0,1}*     is in #P if 
there’s a poly-time TM M and a polynomial function p: 

such that for every x ∈ {0,1}*,  

          f(x) = |{u∈{0,1}p(|x|) :  M(x, u) = 1}| . 
 



Class #P 

 Definition. We say a function f: {0,1}*     is in #P if 
there’s a poly-time TM M and a polynomial function p: 

such that for every x ∈ {0,1}*,  

          f(x) = |{u∈{0,1}p(|x|) :  M(x, u) = 1}| . 
 

 Observation. Problems #SAT, #HAMCYCLE, 
#PerfectMatching, #CYCLE, #PATH and #SPANTREE 
are in #P.  

 In fact, with every language in NP we can associate a 
counting problem that is in #P. 

 

 



#P-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is #P = FP ?  



#P-completeness 

 Definition.  A function f: {0,1}*     is in #P-complete 
if f is in #P and for every g ∈ #P, we have g ∈ FPf i.e., g 
is poly-time Cook/Turing reducible to f.  

 

 In other words, for every x ∈ {0,1}*, we can compute 
g(x) in polynomial time using oracle access to f.  



#P-completeness 

 Definition.  A function f: {0,1}*     is in #P-complete 
if f is in #P and for every g ∈ #P, we have g ∈ FPf i.e., g 
is poly-time Cook/Turing reducible to f.  

 

 In other words, for every x ∈ {0,1}*, we can compute 
g(x) in polynomial time using oracle access to f.  

 

 Observation. If a #P-complete language is in FP then 
#P = FP. 



Natural #P-complete problems 

 Theorem.  #SAT is #P-complete.  

 

 Proof.  #SAT is in #P. Let g ∈ #P.  We intend to show 
that g ∈ FP#SAT.  



Natural #P-complete problems 

 Theorem.  #SAT is #P-complete.  

 

 Proof.  #SAT is in #P. Let g ∈ #P.  We intend to show 
that g ∈ FP#SAT. There’s a poly-time TM M and a poly. 
function p: such that for every x ∈ {0,1}*,  

          g(x) = |{u∈{0,1}p(|x|) :  M(x, u) = 1}| . 
 

 Algorithm: On input x, convert M(x, ..) to a 3CNF ϕx 
using Cook-Levin theorem. Give ϕx as input to the 
#SAT oracle. Output whatever the oracle outputs.   

 



Natural #P-complete problems 

 Theorem.  #SAT is #P-complete.  

 

 Proof.  #SAT is in #P. Let g ∈ #P.  We intend to show 
that g ∈ FP#SAT. There’s a poly-time TM M and a poly. 
function p: such that for every x ∈ {0,1}*,  

          g(x) = |{u∈{0,1}p(|x|) :  M(x, u) = 1}| . 
 

 Algorithm: On input x, convert M(x, ..) to a 3CNF ϕx 
using Cook-Levin theorem. Give ϕx as input to the 
#SAT oracle. Output whatever the oracle outputs.   

 Note:  Only one query to the oracle.  Resembles a poly-time Karp reduction. 



Natural #P-complete problems 

 Theorem.  #SAT is #P-complete.  

 

 Proof.  #SAT is in #P. Let g ∈ #P.  We intend to show 
that g ∈ FP#SAT. There’s a poly-time TM M and a poly. 
function p: such that for every x ∈ {0,1}*,  

          g(x) = |{u∈{0,1}p(|x|) :  M(x, u) = 1}| . 
 

 Correctness: Follows from the fact that the Cook-
Levin reduction is parsimonious, i.e.,   

          |{u∈{0,1}p(|x|) :  M(x, u) = 1}| = #ϕx . 

The no. of satisfying 
assignments of ϕx. 



Natural #P-complete problems 

 Theorem.  #HAMCYCLE is #P-complete.  

 

 Most (all?) NP-complete problems known till date 
have defining verifiers such that the corresponding 
counting problems are #P-complete. 

 

 Open. Does every NP-complete problem have a 
defining verifier such that the corresponding counting 
problem is #P-complete ? 

Issue:  The reduction that shows 
NP-completeness of a problem 
needn’t have to be parsimonious. 



Natural #P-complete problems 

 Theorem. (Valiant 1979) #PATH is #P-complete.  

 

 In fact, #PATH is #P-complete for both directed and 
undirected graphs.  

 



Natural #P-complete problems 

 Theorem. (Valiant 1979) #PATH is #P-complete.  

 

 In fact, #PATH is #P-complete for both directed and 
undirected graphs.  

 

 Theorem. (Valiant 1979) #PerfectMatching is #P-
complete.  

 Proof.  We’ll see a proof later. 

 



Relation between #P and other classes 

 Observation.  #P ⊆ PSPACE.  

 

 Also, PH ⊆ PSPACE.   How does #P relate to PH ? 

 

 



Relation between #P and other classes 

 Observation.  #P ⊆ PSPACE.  

 

 Also, PH ⊆ PSPACE.   How does #P relate to PH ? 

 

 Theorem. (Toda 1991)  PH ⊆ P#SAT. 

 Proof.  We’ll see a proof later. 



Relation between #P and other classes 

 Observation.  #P ⊆ PSPACE.  

 

 Also, PH ⊆ PSPACE.   How does #P relate to PH ? 

 

 Theorem. (Toda 1991)  PH ⊆ P#SAT. 

 

 Hence,  #P is harder than PH. 



Approximations of #P functions 

 Observation. If #P = FP, then P = NP. 

 Open. Does P = NP imply #P = FP ?  

 

 But, we do know that P = NP implies every #P 
problem has a randomized polynomial-time 
approximation algorithm.  



Approximations of #P functions 

 Observation. If #P = FP, then P = NP. 

 Open. Does P = NP imply #P = FP ?  

 

 But, we do know that P = NP implies every #P 
problem has a randomized polynomial-time 
approximation algorithm.  

Can be derandomized! 



Approximations of #P functions 

 Definition. A function f: {0,1}*    has a Fully 
Polynomial-time Randomized Approximation Scheme 
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such 
that for every x ∈ {0,1}*, 

 (1-𝛆).f(x) ≤  M(x)  ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 , 

 M runs in poly(|x|, 𝛆-1, log  𝛅-1) time.  

 



Approximations of #P functions 

 Definition. A function f: {0,1}*    has a Fully 
Polynomial-time Randomized Approximation Scheme 
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such 
that for every x ∈ {0,1}*, 

 (1-𝛆).f(x) ≤  M(x)  ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 , 

 M runs in poly(|x|, 𝛆-1, log  𝛅-1) time.  

 

 Theorem. If P = NP then every #P function has a 
FPRAS. 

 Proof.  We’ll see a proof later.  



Approximations of #P functions 

 Definition. A function f: {0,1}*    has a Fully 
Polynomial-time Randomized Approximation Scheme 
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such 
that for every x ∈ {0,1}*, 

 (1-𝛆).f(x) ≤  M(x)  ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 , 

 M runs in poly(|x|, 𝛆-1, log  𝛅-1) time.  

 

 Theorem. If P = NP then every #P function has a 
FPRAS. 

 Remark. In fact the above FPRAS can be replaced by a 
FPTAS (Fully Poly-Time Approximation Scheme). 



Approximations of #P functions 

 Some #P-complete problems do admit FPRAS 
unconditionally! 

 

 Theorem. (Jerrum, Sinclair, Vigoda 2001) #PerfectMatching 
has a FPRAS. 

 

 Remark. No derandomization of this algorithm is 
known! 



Approximations of #P functions 

 Some #P-complete problems do admit FPRAS 
unconditionally! 

 

 Theorem. (Jerrum, Sinclair, Vigoda 2001) Permanent of a 
square matrix with non-negative entries has a FPRAS. 

 

 If X = (xij)i,j∈n  then  Perm(X) =  ∑     ∏  xi 𝞂(i) .    

 
𝞂∈Sn i∈[n] 



Approximations of #P functions 

 Some #P-complete problems do admit FPRAS 
unconditionally! 

 

 Theorem. (Jerrum, Sinclair, Vigoda 2001) Permanent of a 
square matrix with non-negative entries has a FPRAS. 

 

 If X = (xij)i,j∈n  then  Perm(X) =  ∑     ∏  xi 𝞂(i) .    

 

 Note. If BG is the biadjacency matrix of a bipartite 
graph G, then Perm(BG) = #PerfectMatchings(G). 

 

𝞂∈Sn i∈[n] 

0/1 matrix 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 

 It implies that #PerfectMatchings is #P-complete. 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 

 Proof. 0/1-Perm is in #P.  (Why?) 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 

 Proof.  We’ll show that #3SAT ∈ FP0/1-Perm. 

 

 In fact, we’ll give a poly-time “Karp-like” reduction from 
#3SAT to 0/1-Perm, i.e., we’ll give a poly-time 
computable function that maps a 3CNF ϕ to a 0/1-
matrix Aϕ s.t. #ϕ is efficiently computable from Aϕ. 

 

 This means only one query to the 0/1-Perm oracle is 
required.  

…the proof will be given in the next lecture 



Graph theoretic interpretation of Perm 

 Let A = (aij)i,j∈r  , where aij ∈ . 

 Then,  Perm(A) =  ∑     ∏  ai 𝞂(i) .    

 

 Let G be the weighted digraph on r vertices with 
adjacency matrix A, i.e., the edge (i, j) in G has weight aij.  

 

𝞂∈Sr i∈[r] 



Graph theoretic interpretation of Perm 

 Let A = (aij)i,j∈r  , where aij ∈ . 

 Then,  Perm(A) =  ∑     ∏  ai 𝞂(i) .    

 

 Let G be the weighted digraph on r vertices with 
adjacency matrix A, i.e., the edge (i, j) in G has weight aij.  

 

 Every permutation 𝞂: [r]  [r] can be expressed 
(uniquely) as a product of disjoint cycles.  

𝞂∈Sr i∈[r] 

 𝞂:    1   2   3   4          1 
 
      
       3   1   2   4   2 3        4 



Graph theoretic interpretation of Perm 

 Definition. A cycle cover of a digraph G is a subgraph of 
G having in-degree and out-degree of every vertex 
exactly 1, i.e., the subgraph is a disjoint union of cycles 
covering all the vertices of G. 

 

 Weight of a cycle cover C, denoted wt(C), is defined as 
the product of the weights of the edges in C. 



Graph theoretic interpretation of Perm 

 Definition. A cycle cover of a digraph G is a subgraph of 
G having in-degree and out-degree of every vertex 
exactly 1, i.e., the subgraph is a disjoint union of cycles 
covering all the vertices of G. 

 

 Weight of a cycle cover C, denoted wt(C), is defined as 
the product of the weights of the edges in C. 

 

 Observation.  Perm(A) =  ∑       wt(C) . 
C:  C is Cycle 
cover of G  


