
Computational Complexity Theory

Lecture 23: Complexity of Counting

Department of Computer Science,

Indian Institute of Science

Natural counting problems

 What is the complexity of the following problems?

 #SAT: Count the number of satisfying assignments of a
given Boolean circuit/CNF.

 #HAMCYCLE: Count the number of Hamiltonian
cycles in an undirected graph.

 Observation. The above problems are NP-hard.

Natural counting problems

 What is the complexity of the following problems?

 #PerfectMatching: Count the number of perfect
matchings in a bipartite graph.

 #CYCLE: Count the number of simple cycles in a
directed graph.

 Observation. The corresponding decision problems
are in P.

Natural counting problems

 What is the complexity of the following problems?

 #PATH: Count the number of simple paths between
two vertices in a connected graph.

 #SPANTREE: Count the number of spanning trees in a
connected graph.

 Observation. The corresponding decision problems
are trivial.

An easy counting problem

 Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

An easy counting problem

 Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

 Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {1,…, n}.

 Definition. The Laplacian matrix of G is an n x n matrix
LG defined as

 LG(i,j) = deg(i) if i = j,

 = -1 if there’s an edge (i,j) in G,

 = 0 otherwise.

An easy counting problem

 Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

 Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {1,…, n}.

 Definition. The Laplacian matrix of G is an n x n matrix
LG defined as LG = DG – AG, where DG is the degree
matrix and AG the adjacency matrix of G.

 Observation. It is easy to compute LG from AG.

An easy counting problem

 Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

 Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {1,…, n}.

 Kirchhoff ’s matrix-tree theorem states that

 no. of spanning trees of G = any cofactor of LG.

 (i,j) cofactor of L = (-1)i+j . det(submatrix of L obtained
by deleting the i-th row and the j-th column from L).

An easy counting problem

 Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

 Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {1,…, n}.

 Kirchhoff ’s matrix-tree theorem states that

 no. of spanning trees of G = any cofactor of LG.

 Corollary. As determinant computation is in
(functional) NC, #SPANTREES is in (functional) NC.

A hard counting problem

 Theorem. #CYCLE is in NP-hard.

 Lesson. A counting problem can be hard even if the
corresponding decision problem is in P.

A hard counting problem

 Theorem. #CYCLE is in NP-hard.

 Proof. We will give a poly-time reduction from the
Hamiltonian cycle problem to the #CYCLE problem.

A hard counting problem

 Theorem. #CYCLE is in NP-hard.

 Proof. Let G be an n-vertex digraph. We’ll efficiently
construct a new graph G’ from G s.t. the presence of
a Hamiltonian cycle in G can be readily derived from
the number of cycles in G’. Construction of G’ :

i j

An edge in G

replace

 with

… i j

m layers G G’

A hard counting problem

 Theorem. #CYCLE is in NP-hard.

 Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn.

i j

An edge in G

replace

 with

… i j

m layers G G’

#cycle no. of cycles

A hard counting problem

 Theorem. #CYCLE is in NP-hard.

 Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn.

 Case2: If G has no HC, then #cycle(G) ≤ nn-1

 #cycle(G’) ≤ nn-1.2m(n-1) .

i j

An edge in G

replace

 with

… i j

m layers G G’

A hard counting problem

 Theorem. #CYCLE is in NP-hard.

 Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn.

 Case2: If G has no HC, then #cycle(G) ≤ nn-1

 #cycle(G’) ≤ nn-1.2m(n-1) .

 If we choose m such that nn-1.2m(n-1) < 2mn , then we
can find out if G has a HC from #cycle(G’).

 Set m = n2.

Class #P

 Definition. We say a function f: {0,1}* is in #P if
there’s a poly-time TM M and a polynomial function p:

such that for every x ∈ {0,1}*,

 f(x) = |{u∈{0,1}p(|x|) : M(x, u) = 1}| .

Class #P

 Definition. We say a function f: {0,1}* is in #P if
there’s a poly-time TM M and a polynomial function p:

such that for every x ∈ {0,1}*,

 f(x) = |{u∈{0,1}p(|x|) : M(x, u) = 1}| .

 Observation. Problems #SAT, #HAMCYCLE,
#PerfectMatching, #CYCLE, #PATH and #SPANTREE
are in #P.

 In fact, with every language in NP we can associate a
counting problem that is in #P.

#P-completeness

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is #P = FP ?

#P-completeness

 Definition. A function f: {0,1}* is in #P-complete
if f is in #P and for every g ∈ #P, we have g ∈ FPf i.e., g
is poly-time Cook/Turing reducible to f.

 In other words, for every x ∈ {0,1}*, we can compute
g(x) in polynomial time using oracle access to f.

#P-completeness

 Definition. A function f: {0,1}* is in #P-complete
if f is in #P and for every g ∈ #P, we have g ∈ FPf i.e., g
is poly-time Cook/Turing reducible to f.

 In other words, for every x ∈ {0,1}*, we can compute
g(x) in polynomial time using oracle access to f.

 Observation. If a #P-complete language is in FP then
#P = FP.

Natural #P-complete problems

 Theorem. #SAT is #P-complete.

 Proof. #SAT is in #P. Let g ∈ #P. We intend to show
that g ∈ FP#SAT.

Natural #P-complete problems

 Theorem. #SAT is #P-complete.

 Proof. #SAT is in #P. Let g ∈ #P. We intend to show
that g ∈ FP#SAT. There’s a poly-time TM M and a poly.
function p: such that for every x ∈ {0,1}*,

 g(x) = |{u∈{0,1}p(|x|) : M(x, u) = 1}| .

 Algorithm: On input x, convert M(x, ..) to a 3CNF ϕx
using Cook-Levin theorem. Give ϕx as input to the
#SAT oracle. Output whatever the oracle outputs.

Natural #P-complete problems

 Theorem. #SAT is #P-complete.

 Proof. #SAT is in #P. Let g ∈ #P. We intend to show
that g ∈ FP#SAT. There’s a poly-time TM M and a poly.
function p: such that for every x ∈ {0,1}*,

 g(x) = |{u∈{0,1}p(|x|) : M(x, u) = 1}| .

 Algorithm: On input x, convert M(x, ..) to a 3CNF ϕx
using Cook-Levin theorem. Give ϕx as input to the
#SAT oracle. Output whatever the oracle outputs.

 Note: Only one query to the oracle. Resembles a poly-time Karp reduction.

Natural #P-complete problems

 Theorem. #SAT is #P-complete.

 Proof. #SAT is in #P. Let g ∈ #P. We intend to show
that g ∈ FP#SAT. There’s a poly-time TM M and a poly.
function p: such that for every x ∈ {0,1}*,

 g(x) = |{u∈{0,1}p(|x|) : M(x, u) = 1}| .

 Correctness: Follows from the fact that the Cook-
Levin reduction is parsimonious, i.e.,

 |{u∈{0,1}p(|x|) : M(x, u) = 1}| = #ϕx .

The no. of satisfying
assignments of ϕx.

Natural #P-complete problems

 Theorem. #HAMCYCLE is #P-complete.

 Most (all?) NP-complete problems known till date
have defining verifiers such that the corresponding
counting problems are #P-complete.

 Open. Does every NP-complete problem have a
defining verifier such that the corresponding counting
problem is #P-complete ?

Issue: The reduction that shows
NP-completeness of a problem
needn’t have to be parsimonious.

Natural #P-complete problems

 Theorem. (Valiant 1979) #PATH is #P-complete.

 In fact, #PATH is #P-complete for both directed and
undirected graphs.

Natural #P-complete problems

 Theorem. (Valiant 1979) #PATH is #P-complete.

 In fact, #PATH is #P-complete for both directed and
undirected graphs.

 Theorem. (Valiant 1979) #PerfectMatching is #P-
complete.

 Proof. We’ll see a proof later.

Relation between #P and other classes

 Observation. #P ⊆ PSPACE.

 Also, PH ⊆ PSPACE. How does #P relate to PH ?

Relation between #P and other classes

 Observation. #P ⊆ PSPACE.

 Also, PH ⊆ PSPACE. How does #P relate to PH ?

 Theorem. (Toda 1991) PH ⊆ P#SAT.

 Proof. We’ll see a proof later.

Relation between #P and other classes

 Observation. #P ⊆ PSPACE.

 Also, PH ⊆ PSPACE. How does #P relate to PH ?

 Theorem. (Toda 1991) PH ⊆ P#SAT.

 Hence, #P is harder than PH.

Approximations of #P functions

 Observation. If #P = FP, then P = NP.

 Open. Does P = NP imply #P = FP ?

 But, we do know that P = NP implies every #P
problem has a randomized polynomial-time
approximation algorithm.

Approximations of #P functions

 Observation. If #P = FP, then P = NP.

 Open. Does P = NP imply #P = FP ?

 But, we do know that P = NP implies every #P
problem has a randomized polynomial-time
approximation algorithm.

Can be derandomized!

Approximations of #P functions

 Definition. A function f: {0,1}* has a Fully
Polynomial-time Randomized Approximation Scheme
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such
that for every x ∈ {0,1}*,

 (1-𝛆).f(x) ≤ M(x) ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 ,

 M runs in poly(|x|, 𝛆-1, log 𝛅-1) time.

Approximations of #P functions

 Definition. A function f: {0,1}* has a Fully
Polynomial-time Randomized Approximation Scheme
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such
that for every x ∈ {0,1}*,

 (1-𝛆).f(x) ≤ M(x) ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 ,

 M runs in poly(|x|, 𝛆-1, log 𝛅-1) time.

 Theorem. If P = NP then every #P function has a
FPRAS.

 Proof. We’ll see a proof later.

Approximations of #P functions

 Definition. A function f: {0,1}* has a Fully
Polynomial-time Randomized Approximation Scheme
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such
that for every x ∈ {0,1}*,

 (1-𝛆).f(x) ≤ M(x) ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 ,

 M runs in poly(|x|, 𝛆-1, log 𝛅-1) time.

 Theorem. If P = NP then every #P function has a
FPRAS.

 Remark. In fact the above FPRAS can be replaced by a
FPTAS (Fully Poly-Time Approximation Scheme).

Approximations of #P functions

 Some #P-complete problems do admit FPRAS
unconditionally!

 Theorem. (Jerrum, Sinclair, Vigoda 2001) #PerfectMatching
has a FPRAS.

 Remark. No derandomization of this algorithm is
known!

Approximations of #P functions

 Some #P-complete problems do admit FPRAS
unconditionally!

 Theorem. (Jerrum, Sinclair, Vigoda 2001) Permanent of a
square matrix with non-negative entries has a FPRAS.

 If X = (xij)i,j∈n then Perm(X) = ∑ ∏ xi 𝞂(i) .

𝞂∈Sn i∈[n]

Approximations of #P functions

 Some #P-complete problems do admit FPRAS
unconditionally!

 Theorem. (Jerrum, Sinclair, Vigoda 2001) Permanent of a
square matrix with non-negative entries has a FPRAS.

 If X = (xij)i,j∈n then Perm(X) = ∑ ∏ xi 𝞂(i) .

 Note. If BG is the biadjacency matrix of a bipartite
graph G, then Perm(BG) = #PerfectMatchings(G).

𝞂∈Sn i∈[n]

0/1 matrix

0/1-Permanent is #P-complete

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.

 It implies that #PerfectMatchings is #P-complete.

0/1-Permanent is #P-complete

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.

 Proof. 0/1-Perm is in #P. (Why?)

0/1-Permanent is #P-complete

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.

 Proof. We’ll show that #3SAT ∈ FP0/1-Perm.

 In fact, we’ll give a poly-time “Karp-like” reduction from
#3SAT to 0/1-Perm, i.e., we’ll give a poly-time
computable function that maps a 3CNF ϕ to a 0/1-
matrix Aϕ s.t. #ϕ is efficiently computable from Aϕ.

 This means only one query to the 0/1-Perm oracle is
required.

…the proof will be given in the next lecture

Graph theoretic interpretation of Perm

 Let A = (aij)i,j∈r , where aij ∈ .

 Then, Perm(A) = ∑ ∏ ai 𝞂(i) .

 Let G be the weighted digraph on r vertices with
adjacency matrix A, i.e., the edge (i, j) in G has weight aij.

𝞂∈Sr i∈[r]

Graph theoretic interpretation of Perm

 Let A = (aij)i,j∈r , where aij ∈ .

 Then, Perm(A) = ∑ ∏ ai 𝞂(i) .

 Let G be the weighted digraph on r vertices with
adjacency matrix A, i.e., the edge (i, j) in G has weight aij.

 Every permutation 𝞂: [r] [r] can be expressed
(uniquely) as a product of disjoint cycles.

𝞂∈Sr i∈[r]

 𝞂: 1 2 3 4 1

 3 1 2 4 2 3 4

Graph theoretic interpretation of Perm

 Definition. A cycle cover of a digraph G is a subgraph of
G having in-degree and out-degree of every vertex
exactly 1, i.e., the subgraph is a disjoint union of cycles
covering all the vertices of G.

 Weight of a cycle cover C, denoted wt(C), is defined as
the product of the weights of the edges in C.

Graph theoretic interpretation of Perm

 Definition. A cycle cover of a digraph G is a subgraph of
G having in-degree and out-degree of every vertex
exactly 1, i.e., the subgraph is a disjoint union of cycles
covering all the vertices of G.

 Weight of a cycle cover C, denoted wt(C), is defined as
the product of the weights of the edges in C.

 Observation. Perm(A) = ∑ wt(C) .
C: C is Cycle
cover of G

