Computational Complexity Theory

Lecture 23: Complexity of Counting

Department of Computer Science,
Indian Institute of Science

Natural counting problems

* What is the complexity of the following problems?

o #SAT: Count the number of satisfying assignments of a
given Boolean circuit/CNF.

o #FHAMCYCLE: Count the number of Hamiltonian
cycles in an undirected graph.

° The above problems are NP-hard.

Natural counting problems

* What is the complexity of the following problems?

o #PerfectMatching: Count the number of perfect
matchings in a bipartite graph.

o #CYCLE: Count the number of simple cycles in a
directed graph.

° The corresponding decision problems
are in P.

Natural counting problems

* What is the complexity of the following problems?

o #PATH: Count the number of simple paths between
two vertices in a connected graph.

o #SPANTREE: Count the number of spanning trees in a
connected graph.

° The corresponding decision problems
are trivial.

An easy counting problem

e Theorem. H#SPANTREE is in FP.

An easy counting problem

e Theorem. H#SPANTREE is in FP.

e Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {I,..., n}.

e Definition. The Laplacian matrix of G is an n x n matrix
L defined as

Lo(ii) = deg() ifi =
= | if there’s an edge (i,j) in G,

=0 otherwise.

An easy counting problem

e Theorem. H#SPANTREE is in FP.

e Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {I,..., n}.

e Definition. The Laplacian matrix of G is an n x n matrix
L defined as L; = D — A, where D¢, is the degree
matrix and A the adjacency matrix of G.

o Observation. It is easy to compute L from A..

An easy counting problem

° #SPANTREE is in FP.

e Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {I,..., n}.

o Kirchhoff’s matrix-tree theorem states that

no. of spanning trees of G = any cofactor of L.

e (i,j) cofactor of L = (-1)"*1. det(submatrix of L obtained
by deleting the i-th row and the j-th column from L).

An easy counting problem

° #SPANTREE is in FP.

e Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {I,..., n}.

o Kirchhoff’s matrix-tree theorem states that

no. of spanning trees of G = any cofactor of L.
O

° As determinant computation is in
(functional) NC, #SPANTREES is in (functional) NC.

A hard counting problem

e [heorem.#CYCLE is in NP-hard.

e Lesson. A counting problem can be hard even if the
corresponding decision problem is in P.

A hard counting problem

e [heorem.#CYCLE is in NP-hard.

* Proof. We will give a poly-time reduction from the
Hamiltonian cycle problem to the #CYCLE problem.

A hard counting problem

e [heorem.#CYCLE is in NP-hard.

e Proof. Let G be an n-vertex digraph. We'll efficiently
construct a new graph G’ from G s.t. the presence of
a Hamiltonian cycle in G can be readily derived from
the number of cycles in G’. Construction of G’ :

replace
| — |
W|th

An edge in G

G m Iayers G’

A hard counting problem

e [heorem.#CYCLE is in NP-hard.

e Proof. Casel: If G has a HC, then #cycle(G’) = 2™,

#cycle —» no. of cycles

replace
| —
W|th

An edge in G

G m Iayers G’

A hard counting problem

e [heorem.#CYCLE is in NP-hard.

e Proof. Casel: If G has a HC, then #cycle(G’) = 2™,
o Case2: If G has no HC, then #cycle(G) < n™!
#Hcycle(G’) < n!.2m(-1)

replace
| —
W|th

An edge in G

G m Iayers G’

A hard counting problem

e [heorem.#CYCLE is in NP-hard.

e Proof. Casel: If G has a HC, then #cycle(G’) = 2™,
o Case2: If G has no HC, then #cycle(G) < n™!
#Hcycle(G’) < n!.2m(-1)

e If we choose m such that n™!.2m0-I) < 2mn "then we
can find out if G has a HC from #cycle(G’).

e Set m = n%.

Class #P

e Definition. We say a function f: {0, }*— N is in #P if
there’s a poly-time TM M and a polynomial function p:
N — N such that for every x € {0, }*,

f(x) = [{ue{0,1}P0D : M(x,u) = I}] .

Class #P

e Definition. We say a function f: {0, }*— N is in #P if
there’s a poly-time TM M and a polynomial function p:
N — N such that for every x € {0, }*,

f(x) = [{ue{0,1}P0D : M(x,u) = I}] .

e Observation. Problems H#SAT, HHAMCYCLE,
#PerfectMatching, #CYCLE, #PATH and #SPANTREE
are in #P.

* In fact, with every language in NP we can associate a
counting problem that is in #P.

#P-completeness

e Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

o Is #P = FP 1

#P-completeness

0 A function f: {0,1}* — N is in #P-complete
if f is in #P and for every g € #P, we have g € FP'i.e, g
is poly-time Cook/Turing reducible to f.

* In other words, for every x € {0,1}*, we can compute
g(x) in polynomial time using oracle access to f.

#P-completeness

0 A function f: {0,1}* — N is in #P-complete
if f is in #P and for every g € #P, we have g € FP'i.e, g
is poly-time Cook/Turing reducible to f.

* In other words, for every x € {0,1}*, we can compute
g(x) in polynomial time using oracle access to f.

° If a #P-complete language is in FP then
#P = FP.

Natural #P-complete problems

e [heorem. #SAT is #P-complete.

e Proof. #SAT is in #P. Let g € #P. We intend to show
that g € FP#AT,

Natural #P-complete problems

e [heorem. #SAT is #P-complete.

e Proof. #SAT is in #P. Let g € #P. We intend to show
that ¢ € FP™AT, There’s a poly-time TM M and a poly.
function p: N — N such that for every x € {0, 1},

g(x) = [{u€{0, 13D : M(x,u) = 1}] .

o Algorithm: On input x, convert M(x, ..) to a 3CNF ¢,
using Cook-Levin theorem. Give ¢ as input to the
#SAT oracle. Output whatever the oracle outputs.

Natural #P-complete problems

e [heorem. #SAT is #P-complete.

e Proof. #SAT is in #P. Let g € #P. We intend to show
that ¢ € FP™AT, There’s a poly-time TM M and a poly.
function p: N — N such that for every x € {0, 1},

g(x) = [{u€{0, 13D : M(x,u) = 1}] .

o Algorithm: On input x, convert M(x, ..) to a 3CNF ¢,
using Cook-Levin theorem. Give ¢ as input to the
#SAT oracle. Output whatever the oracle outputs.

Note: Only one query to the oracle. Resembles a poly-time Karp reduction.

Natural #P-complete problems

e [heorem. #SAT is #P-complete.

e Proof. #SAT is in #P. Let g € #P. We intend to show
that ¢ € FP™AT, There’s a poly-time TM M and a poly.
function p: N — N such that for every x € {0, 1},

g(x) = [{u€{0, 13D : M(x,u) = 1}] .

e Correctness: Follows from the fact that the Cook-
Levin reduction is parsimonious, i.e., The no. of satisfying

assignments of ..
[{u€{0, 1}P1xD) : M(x,u) = I}| = #¢, "

Natural #P-complete problems

° #HAMCYCLE is #P-complete.

* Most (all?) NP-complete problems known till date
have defining verifiers such that the corresponding
counting problems are #P-complete.

e Open. Does every NP-complete problem have a
defining verifier such that the corresponding counting
problem is #P-complete !

Issue: The reduction that shows
NP-completeness of a problem
needn’t have to be parsimonious.

Natural #P-complete problems

e Theorem. #PATH is #P-complete.

e In fact, #PATH is #P-complete for both directed and
undirected graphs.

Natural #P-complete problems

e Theorem. #PATH is #P-complete.

e In fact, #PATH is #P-complete for both directed and
undirected graphs.

e Theorem. #PerfectMatching is #P-
complete.

e Proof. We'll see a proof later.

Relation between #P and other classes

e Observation. #P € PSPACE.

e Also, PH € PSPACE. How does #P relate to PH ?

Relation between #P and other classes

e Observation. #P € PSPACE.
e Also, PH € PSPACE. How does #P relate to PH ?

e Theorem. PH < P#AT,

e Proof. We'll see a proof later.

Relation between #P and other classes

e Observation. #P € PSPACE.
e Also, PH € PSPACE. How does #P relate to PH ?
e Theorem. PH < P#AT,

e Hence, #P is harder than PH.

Approximations of #P functions

° If #P = FP, then P = NP,
* Open.Does P = NP imply #P = FP ?

e But, we do know that P = NP implies every #P
problem has a randomized polynomial-time
approximation algorithm.

Approximations of #P functions

° If #P = FP, then P = NP,
* Open.Does P = NP imply #P = FP ?

e But, we do know that P = NP implies every #P
problem has a randomized polynomial-time

approximation algorithm. \

Can be derandomized!

Approximations of #P functions

o Definition. A function f: {0,I}* — N has a Fully
Polynomial-time Randomized Approximation Scheme

(FPRAYS) if for every g, 6 > 0, there’s a PTM M such
that for every x € {0, |},

> (I-g).f(x) = M(x) = (I+¢g).f(x) with prob.= |- &,
> M runs in poly(|x|, €', log &) time.

Approximations of #P functions

o Definition. A function f: {0,I}* — N has a Fully
Polynomial-time Randomized Approximation Scheme
(FPRAS) if for every €, 6 > 0, there’s a PTM M such

that for every x € {0, | }*,
> (I-g).f(x) = M(x) = (I+¢g).f(x) with prob.= |- &,
> M runs in poly(|x|, €', log &) time.

e Theorem. If P = NP then every #P function has a

FPRAS.
e Proof. We’'ll see a proof later.

Approximations of #P functions

o Definition. A function f: {0,I}* — N has a Fully
Polynomial-time Randomized Approximation Scheme

(FPRAYS) if for every g, 6 > 0, there’s a PTM M such
that for every x € {0, |},

> (I-g).f(x) = M(x) = (I+¢g).f(x) with prob.= |- &,
> M runs in poly(|x|, €', log &) time.

e Theorem. If P = NP then every #P function has a
FPRAS.

e Remark. In fact the above FPRAS can be replaced by a
FPTAS (Fully Poly-Time Approximation Scheme).

Approximations of #P functions

e Some #P-complete problems do admit FPRAS
unconditionally!

e Theorem. #PerfectMatching
has a FPRAS.

e Remark. No derandomization of this algorithm is
known!

Approximations of #P functions

e Some #P-complete problems do admit FPRAS
unconditionally!

e Theorem. Permanent of a
square matrix with non-negative entries has a FPRAS.

o If X = (;);jen then Perm(X) = > [x4 -

J
o€S, i€[n]

Approximations of #P functions

e Some #P-complete problems do admit FPRAS
unconditionally!

e Theorem. Permanent of a
square matrix with non-negative entries has a FPRAS.

o If X = (;);jen then Perm(X) = > [x4 -
o€S, i€[n]

e Note. If B; is the biadjacency matrix of a bipartite
graph G, then Perm(I%G) = #PerfectMatchings(G).

0/ matrix

0/1-Permanent is #P-complete

e Theorem. 0/1-Perm is #P-complete.

e |t implies that #PerfectMatchings is #P-complete.

0/1-Permanent is #P-complete

e Theorem. 0/1-Perm is #P-complete.

e Proof.0/1-Perm is in #P. (Why?)

0/1-Permanent is #P-complete

° 0/1-Perm is #P-complete.
» Proof. We’ll show that #3SAT € FpY/!-Perm,

* In fact, we'll give a poly-time “Karp-like” reduction from
#3SAT to O/I-Perm, i.e., we’ll give a poly-time
computable function that maps a 3CNF ¢ to a 0/I-
matrix A, s.t. #¢ is efficiently computable from A¢.

e This means only one query to the 0/|-Perm oracle is
required.

...the proof will be given in the next lecture

Graph theoretic interpretation of Perm

* LetA = (3;);e, ,Where a; € R.
* Then, Perm(A) = > [] a4 -

o€S. i€]r]

* Let G be the weighted digraph on r vertices with
adjacency matrix A, i.e., the edge (i,]) in G has weight a;.

Graph theoretic interpretation of Perm

* LetA = (3;);e, ,Where a; € R.
* Then, Perm(A) = > [] a4 -

o€S. i€]r]

* Let G be the weighted digraph on r vertices with
adjacency matrix A, i.e., the edge (i,]) in G has weight a;.

e Every permutation o: [r]— [r] can be expressed
(uniguely) as a product of disjoint cycles.

- A

Q€3

o:

Graph theoretic interpretation of Perm

° A cycle cover of a digraph G is a subgraph of
G having in-degree and out-degree of every vertex
exactly |, i.e., the subgraph is a disjoint union of cycles
covering all the vertices of G.

» Weight of a cycle cover C, denoted wt(C), is defined as
the product of the weights of the edges in C.

Graph theoretic interpretation of Perm

° A cycle cover of a digraph G is a subgraph of
G having in-degree and out-degree of every vertex
exactly |, i.e., the subgraph is a disjoint union of cycles
covering all the vertices of G.

» Weight of a cycle cover C, denoted wt(C), is defined as
the product of the weights of the edges in C.

g Perm(A) = > wt(C) .
C: Cis Cycle
cover of G

