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Recap:  0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 

 It implies that #PerfectMatchings is #P-complete. 
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Recap:  0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 

 Proof.  We’ll show that #3SAT ∈ FP0/1-Perm. 

 

 In fact, we’ll give a poly-time “Karp-like” reduction from 
#3SAT to 0/1-Perm, i.e., we’ll give a poly-time 
computable function that maps a 3CNF ϕ to a 0/1-
matrix Aϕ s.t. #ϕ is easily computable from Perm(Aϕ). 

 

 This means only one query to the 0/1-Perm oracle is 
required.  



Graph theoretic interpretation of Perm 

 Let A = (aij)i,j∈r  , where aij ∈ . 

 Then,  Perm(A) =  ∑     ∏  ai 𝞂(i) .    

 

 Let G be the weighted digraph on r vertices with 
adjacency matrix A, i.e., the edge (i,j) in G has weight aij.  
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Graph theoretic interpretation of Perm 

 Let A = (aij)i,j∈r  , where aij ∈ . 

 Then,  Perm(A) =  ∑     ∏  ai 𝞂(i) .    

 

 Let G be the weighted digraph on r vertices with 
adjacency matrix A, i.e., the edge (i,j) in G has weight aij.  

 

 Every permutation 𝞂: [r]  [r] can be expressed 
(uniquely) as a product of disjoint cycles.  

𝞂∈Sr i∈[r] 

 𝞂:    1   2   3   4          1 
 
      
       3   1   2   4   2 3        4 



Graph theoretic interpretation of Perm 

 Definition. A cycle cover of a digraph G is a subgraph of 
G having in-degree and out-degree of every vertex 
exactly 1, i.e., the subgraph is a disjoint union of cycles 
covering all the vertices of G. 

 

 Weight of a cycle cover C, denoted wt(C), is defined as 
the product of the weights of the edges in C. 



Graph theoretic interpretation of Perm 

 Definition. A cycle cover of a digraph G is a subgraph of 
G having in-degree and out-degree of every vertex 
exactly 1, i.e., the subgraph is a disjoint union of cycles 
covering all the vertices of G. 

 

 Weight of a cycle cover C, denoted wt(C), is defined as 
the product of the weights of the edges in C. 

 

 Observation.  Perm(A) =  ∑       wt(C) . 
C:  C is cycle 
cover of G  

Every “contributing” permutation 𝞂 corresponds to a cycle cover C and vice versa. 



Graph theoretic interpretation of Perm 

 Definition. A cycle cover of a digraph G is a subgraph of 
G having in-degree and out-degree of every vertex 
exactly 1, i.e., the subgraph is a disjoint union of cycles 
covering all the vertices of G. 

 

 Weight of a cycle cover C, denoted wt(C), is defined as 
the product of the weights of the edges in C. 

 

 Observation.  Perm(A) =  ∑       wt(C) . 
C:  C is cycle 
cover of G  

Every “contributing” permutation 𝞂 corresponds to a cycle cover C and vice versa. 

We can denote A as AG, the adjacency matrix of G  



Graph with parallel edges 

 Note. We can talk about ‘‘adjacency matrix’’ of a graph 
G that has parallel edges by defining a new graph G’: 
 

 

 

 Denote the adjacency matrix of a graph H (without 
parallel edges) by AH. Then,  AG is defined as AG’.  
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Graph with parallel edges 

 Note. We can talk about ‘‘adjacency matrix’’ of a graph 
G that has parallel edges by defining a new graph G’: 
 

 

 

 Denote the adjacency matrix of a graph H (without 
parallel edges) by AH. Then,  AG is defined as AG’.  

 

 Observation.     ∑       wt(C)  =  ∑       wt(C). 

C:  C is cycle 
cover of G  
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C:  C is cycle 
cover of G’  
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0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 Proof.  Let ϕ be a 3CNF that has n variables and m 
clauses.  Assume that every clause has exactly 3 literals. 

 

 Step 1: From ϕ we’ll form a graph H = Hϕ that has edge 
weights in {-1, 0, 1, 2, 3} such that 

    Perm(AH)  =  ∑       wt(C)  =  43m. #ϕ . 
C:  C is cycle 
cover of H  

… Eqn (1) 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 Proof.  Let ϕ be a 3CNF that has n variables and m 
clauses.  Assume that every clause has exactly 3 literals. 

 

 Step 1: From ϕ we’ll form a graph H = Hϕ that has edge 
weights in {-1, 0, 1, 2, 3} such that 

    Perm(AH)  =  ∑       wt(C)  =  43m. #ϕ . 

 

 Note. Eqn (1) doesn’t give a FPRAS for #3SAT as the 
FPRAS for Perm is for matrices with non-negative entries.   

C:  C is cycle 
cover of H  

… Eqn (1) 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 Proof.  Let ϕ be a 3CNF that has n variables and m 
clauses.  Assume that every clause has exactly 3 literals. 

 

 Step 2:  We’ll process H further to get a new graph G = 
Gϕ with edge weights in {0,1} such that #ϕ can be 
efficiently computed from Perm(AG).  

 

 However, unlike Eqn (1), we won’t get an “precise” 
equation relating Perm(AG) and #ϕ.   



Step 1: Construction of H 

 Convention. In the figures, edges without labels have 
weight 1, and missing edges have weight 0. 

 

 H will be constructed using 3 kinds of gadgets (graphs): 

 



Step 1: Construction of H 

 Convention. In the figures, edges without labels have 
weight 1, and missing edges have weight 0. 

 

 H will be constructed using 3 kinds of gadgets (graphs): 

 Variable gadgets (there will be n of them), 

 Clause gadgets (there will be m of them), and 

 XOR gadgets. 

 

 XOR gadgets are cleverly constructed 4-vertex graphs 
which will be used to connect variable gadgets with 
clause gadgets.  



A variable gadget 

 Let x be a variable. C1, …, Cs be the clauses in which x 
appears, and C’1,…,C’t the clauses in which ¬x appears.  

 

 

 

 

 

 

C1 C2 Cs 

C’1 C’2 C’t 

x(1) x(2) 

Variable gadget for x 



A variable gadget 

 Let x be a variable. C1, …, Cs be the clauses in which x 
appears, and C’1,…,C’t the clauses in which ¬x appears.  

 

 

 

 

 

 

 The external edges (i.e., the red edges) will not be 
present in H, they will be used to connect to the Clause 
gadgets via the XOR gadgets. 

C1 C2 Cs 

C’1 C’2 C’t 

x(1) x(2) 

Variable gadget for x 

External 
true-edges 

External 
false-edges 



A variable gadget 

 Let x be a variable. C1, …, Cs be the clauses in which x 
appears, and C’1,…,C’t the clauses in which ¬x appears.  

 

 

 

 

 

 

 Observation 1. A variable gadget has exactly 2 cycle 
covers corresponding to 0/1 assignment to the variable. 

C1 C2 Cs 

C’1 C’2 C’t 

x(1) x(2) 

Variable gadget for x 

External 
true-edges 

External 
false-edges 



A clause gadget 

 Has 4 vertices and 3 external edges (i.e., red edges) 
corresponding to the 3 literals of the clause.  

 

 

 

 

 

 External edges will not be present in H, they will be 
used to connect to the Variable gadgets via the XOR 
gadgets. 
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Clause gadget for a clause Ci 

External edges corresponding to 
the literals of the clause 



A clause gadget 

 Has 4 vertices and 3 external edges (i.e., red edges) 
corresponding to the 3 literals of the clause.  

 

 

 

 

 

 Observation 2a. The only possible cycle covers of a 
clause gadget are those that exclude at least one 
external edge. 
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A clause gadget 

 Has 4 vertices and 3 external edges (i.e., red edges) 
corresponding to the 3 literals of the clause.  

 

 

 

 

 

 Observation 2a. The only possible cycle covers of a 
clause gadget are those that exclude at least one 
external edge. 
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Clause gadget for a clause Ci 

External edges corresponding to 
the literals of the clause 

Excluding an external edge will indicate that 
the corresponding literal is set to 1. 



A clause gadget 

 Has 4 vertices and 3 external edges (i.e., red edges) 
corresponding to the 3 literals of the clause.  

 

 

 

 

 

 Observation 2b. For any given proper subset of the 3 
external edges, there’s a unique cycle cover (of weight 
1) that contains them. 
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Clause gadget for a clause Ci 

External edges corresponding to 
the literals of the clause 



XOR gadget  

 

 

 

 

 We’ll construct an XOR gadget such that the following 
features are satisfied: 
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XOR gadget  

 

 

 

 

 We’ll construct an XOR gadget such that the following 
features are satisfied: 

 Feature 1: Consider cycle covers of H that contain a 
fixed set of edges outside the XOR gadget but 
contain none of (u,1), (1,v’), (v,4), (4,u’). The sum of 
the weights of all such cycle covers is 0.  
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XOR gadget  

 

 

 

 

 We’ll construct an XOR gadget such that the following 
features are satisfied: 

 Feature 2: Consider cycle covers of H that contain a 
fixed set of edges outside the XOR gadget including 
(u,1), (1,v’), (v,4), (4,u’). The sum of the weights of all 
such cycle covers is 0.  
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XOR gadget  

 

 

 

 

 We’ll construct an XOR gadget such that the following 
features are satisfied: 

 Feature 3: Consider cycle covers of H that contain a 
fixed set of edges outside the XOR gadget including 
(u,1), (4,u’) but not (v,4), (1,v’). The sum of the 
weights of all such cycle covers is 4.(product of the 
weights of the fixed set of edges).  
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XOR gadget  

 

 

 

 

 We’ll construct an XOR gadget such that the following 
features are satisfied: 

 Feature 4: Consider cycle covers of H that contain a 
fixed set of edges outside the XOR gadget including 
(v,4), (1,v’) but not (u,1), (4,u’). The sum of the 
weights of all such cycle covers is 4.(product of the 
weights of the fixed set of edges).  
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Construction of H 

 

 

 

 

 

 

 Size(H) = poly(n,m). 

 

 There are 3m XOR gadgets in H. Every cycle cover of H 
“touches” the 3m XOR gadgets. 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External false-edge corresponding to Ci 



XOR gadget  

 

 

 

 

 An XOR gadget can be “touched” in 4 possible ways:  

a. None of (u,1), (1,v’), (v,4), (4,u’),  
b. All of (u,1), (1,v’), (v,4), (4,u’),  
c. Only (u,1), (4,u’), 
d. Only (v,4), (1,v’).  

Call these the “touching patterns” of an XOR gadget. 
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XOR gadget  

 

 

 

 

 

 Every cycle cover of H can be mapped to a specific 
choice of the “touching patterns” of the 3m XOR 
gadgets. 

 

 Now, let us examine the sum of the weights of all the 
cycle covers of H. 
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XOR gadget  

 

 

 

 

 

 Claim 1a. Cycle covers, which map to a specific choice 
of the “touching patterns” of the XOR gadgets s.t. the 
“touching pattern” of at least one of the XOR gates is 
of type a,  do not contribute to the final sum. 

 Proof.  Follows from Feature 1.  (Homework) 
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XOR gadget  

 

 

 

 

 

 Claim 1b. Cycle covers, which map to a specific choice 
of the “touching patterns” of the XOR gadgets s.t. the 
“touching pattern” of at least one of the XOR gates is 
of type b,  do not contribute to the final sum. 

 Proof.  Follows from Feature 2.  (Homework) 
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XOR gadget  

 

 

 

 

 

 Claim 1c. Cycle covers, which map to a specific choice 
of the “touching patterns” of the XOR gadgets s.t. the 
“touching pattern” of every XOR gate is of type c or d, 
together contribute 43m or 0 to the final sum. 

 Proof.  Follows from Feature 3 & 4, and Observations 
2a, 2b & 1.  (Homework) 
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XOR gadget  

 

 

 

 

 

 Claim 1a, 1b and 1c  justify the name of the “XOR” 
gadget. 

 

 The XOR gadget ensures that either the “edge” (u,u’) 
or the “edge” (v,v’) is taken in a potentially contributing 
choice of the “touching patterns” of the XOR gadgets. 
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Construction of H 

 

 

 

 

 

 

 

 Observation 3. Every potentially contributing choice of 
the “touching patterns” of the XOR gadgets can be 
mapped to a unique choice of the cycle covers of the 
variable gadgets.  (Homework) 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 

 Recall (from Observation 1) that a variable gadget has 
exactly 2 cycle covers corresponding to 0/1 assignment 
to the variable. 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 

 Observation 3. (put differently) Every potentially 
contributing choice of the “touching patterns” of the 
XOR gadgets can be mapped to a unique 0/1 
assignment to the variables. 

 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 Which of these 0/1 assignments to the variables 
correspond to actually contributing choice of the 
“touching patterns” of the XOR gadgets? 

 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 Which of these 0/1 assignments to the variables 
correspond to actually contributing choice of the 
“touching patterns” of the XOR gadgets? 

 Answer. Exactly the satisfying assignments of ϕ.   (Why?) 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 Hence, the sum of the weighted cycle covers of H is 43m. 
#ϕ.  

 In other words, Perm(AH) = 43m. #ϕ. This concludes Step 
1 of the proof of the Theorem. 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 Hence, the sum of the weighted cycle covers of H is 43m. 
#ϕ.  

 In other words, Perm(AH) = 43m. #ϕ. The concludes Step 
1 of the proof of the Theorem. (Wait! How do we 
construct the XOR gadget?) 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



XOR gadget  

 

 

 

 

 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 
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XOR gadget  

 

 

 

 

 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 

 

 Condition 1.    Feature 1 implies Perm(X) = 0. 
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XOR gadget  

 

 

 

 

 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 

 

 Condition 2.    Feature 2 implies Perm(X{2,3}) = 0, where 
X{2,3} is the submatrix of X restricted to the rows and 
columns that are indexed by 2 and 3. 
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XOR gadget  

 

 

 

 

 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 

 

 Condition 3.    Feature 3 implies Perm(Y) = 4, where Y is 
the adjacency matrix of the above 5-vertex graph. 
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XOR gadget  

 

 

 

 

 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 

 

 Condition 4.    Feature 4 implies Perm(Z) = 4, where Z 
is the adjacency matrix of the above 5-vertex graph. 
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XOR gadget  

 

 

 

 

 Set X as follows to satisfy Condition 1, 2, 3 and 4. 

 

 

     X =  
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0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 Proof.  Let ϕ be a 3CNF that has n variables and m 
clauses.  Assume that every clause has exactly 3 literals. 

 

 Step 1: From ϕ we’ll form a graph H = Hϕ that has edge 
weights in {-1, 0, 1, 2, 3} such that 

    Perm(AH)  =  ∑       wt(C)  =  43m. #ϕ . 

 

 

 We have completed Step 1. 

C:  C is cycle 
cover of H  



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 Proof.  Let ϕ be a 3CNF that has n variables and m 
clauses.  Assume that every clause has exactly 3 literals. 

 

 Step 2:  We’ll process H further to get a new graph G = 
Gϕ with edge weights in {0,1} such that #ϕ can be 
efficiently computed from Perm(AG).  

 

 Let us now focus on Step 2. 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 Observe that Perm(AH) = Perm(AH’) ∈ [0, p!]. Set r = p2 
and note that 2r + 1 > p!.  

 

 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 Observe that Perm(AH) = Perm(AH’) ∈ [0, p!]. Set r = p2 
and note that 2r + 1 > p!.  

 Hence, Perm(AH’) is the same as Perm(AH’) mod (2r+1). 

 

 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 Observe that Perm(AH) = Perm(AH’) ∈ [0, p!]. Set r = p2 
and note that 2r + 1 > p!.  

 Hence, Perm(AH’) is the same as Perm(AH’) mod (2r+1). 

 As -1 = 2r mod (2r + 1), we can replace the weights of 
the edges in H’ that are labelled by -1 with 2r to form a 
graph G’ and compute Perm(AG’) mod (2r+1). 

 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 Finally, transform G’ to G with 0/1 edge weights by 

 replacing every edge with weight 2r by a sequence 
of r edges each having weight 2, and then 

 replacing every edge with weight 2 by a pair of 
parallel weight 1 edges, and then 

 removing parallel edges like before. 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 In the end, we get Perm(AG) = 4m. #ϕ  mod (2r + 1), 
where G is a graph with 0/1 edge weights. 

 

 It is because of the modulus “mod (2r + 1)” that an 
FPRAS for 0/1-Perm doesn’t imply an FPRAS for #3SAT. 

 

 


