Computational Complexity Theory

Lecture 3: Cook-Levin theorem

Department of Computer Science,
Indian Institute of Science

Recap: Complexity Class NP

e Definition. A language L € {0,1}* is in NP if there’s a
polynomial function p: N — N and a polynomial-time
TM M (called the verifier) such that for every x,

x€L &= Ju €{0IPK) st M(xu)=I

2

u is called a certificate or witness
for x (w.r.t Land M),if x € L.

Recap: Polynomial-time reduction

o Definition. We say a language L, € {0, 1 }* is polynomial-
time (Karp) reducible to a language L, < {0, |}* if there’s
a polynomial-time computable function f s.t.

x€EL, e f(x)EL,

-

.

Recap: NP-completeness

e Definition. A language L is NP-hard if for every L in
NF L =, L. Further, L is NP-complete if L' is in NP
and is NP-hard.

o Observe. If L is NP-hard and L' isin P then P = NP, If
L' is NP-complete then L in P if and only if P = NP.

— Hardest problems inside NP in the sense
that if one NPC problem is in P then all
NP problems in NP is in P

(O

Recap: Few words on reductions

* As to how we define a reduction from one language
to the other (or one function to the other) is usually
guided by a guestion on whether two complexity classes
are different or identical.

e For polynomial-time reductions, the question is
whether or not P equals NF.

* Reductions help us define complete problems (the
‘hardest’ problems in a class) which in turn help us
compare the complexity classes under consideration.

Recap: Examples of NPC problems

e Vertex cover (NP-complete)

e 0/l integer programming (NP-complete)
e 3-coloring planar graphs (NP-complete)
e 2-Diophantine solvability (NP-complete)

e Integer factoring (unlikely to be NP-complete)

e Graph isomorphism (Quasi-P) Babai 2015

Recap: How to show existence of an
NPC problem!?

elet U ={ (a,x, I™ 1) : there exists a u € {0,1}" s.t.
M, accepts (X, u) in t steps }

° L is NP-complete.

e The language L involves Turing machine in its definition.
Next, we'll see an example of an NP-complete problem
that is arguably more natural.

A natural NP-complete problem

° A Boolean formula on variables x;, ..., x
consists of AND, OR and NOT operations.

e.g O = (X VX)) A(X3V 71X,)

n

e A Boolean formula ¢ is satisfiable if there’s a
{0, }-assignment to its variables that makes ¢ evaluate
to |.

A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g 9= (X, VX)) A(X3V 7x,)

V4

literals

A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g ¢ = (X VX)) A(X3V 71xy)
| J | J

~

clauses

A natural NP-complete problem

° A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g 9= (X VX)) A(X3V 7x,)

o Let SAT be the language consisting of all
satisfiable CNF formulae.

A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g 9= (X VX)) A(X3V 7x,)

e Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

e [heorem. (Cook 1971, Levin 1973) SAT is NP-complete.

A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g 9= (X VX)) A(X3V 7x,)

e Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

e [heorem. (Cook 1971, Levin 1973) SAT is NP-complete.

Easy to see that SAT is in NP,
Need to show that SAT is NP-hard.

Proof of Cook-Levin Theorem

Cook-Levin theorem: Proof

e Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF
formula.

Cook-Levin theorem: Proof

e Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF

formula.

e Let L € NP. We intend to come up with a polynomial-
time computable function f: x - ¢, s.t,

> x€EL 4 ¢ €SAT

Cook-Levin theorem: Proof

e Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF

formula.

e Let L € NP. We intend to come up with a polynomial-
time computable function f: x - ¢, s.t,

> x€EL 4 ¢ €SAT

Notation: |¢,| := size of ¢,

= number of V or A in ¢,

Cook-Levin theorem: Proof

e Language L has a poly-time verifier M such that
xeL &= Ju €{0,1}P(X) s.t. M(x,u) = |

Cook-Levin theorem: Proof

e Language L has a poly-time verifier M such that
xeL &= Ju €{0,1}P(X) s.t. M(x,u) = |

e ldea: For any fixed x, we can capture the computation

of M(x, ..) by a CNF ¢, such that

Ju €{0,1}P(x) st. M(x,u) =1 4= ¢_is satisfiable

Cook-Levin theorem: Proof

e Language L has a poly-time verifier M such that
xeL &= Ju €{0,1}P(X) s.t. M(x,u) = |

e ldea: For any fixed x, we can capture the computation
of M(x, ..) by a CNF ¢, such that

Ju €{0,1}P(x) st. M(x,u) =1 4= ¢_is satisfiable

e For any fixed x, M(x, ..) is a deterministic TM that
takes u as input and runs in time polynomial in |ul.

Cook-Levin theorem: Proof

e Main Theorem. Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
O/1.Then, (think of N = M(x,..) for a fixed x.)

Cook-Levin theorem: Proof

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF ¢(u, “auxiliary variables™) of size
poly(T(n)) such that for every u, ¢(u, “auxiliary
variables™) is satisfiable as a function of the
“auxiliary variables’ if and only if N(u) =1.

2. ¢ is computable in time poly(T(n)) from N, T & n.

Cook-Levin theorem: Proof

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF ¢(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ¢(u, “auxiliary
variables™) is satisfiable as a function of the
“auxiliary variables’ if and only if N(u) =1.

2. ¢ is computable in time poly(T(n)) from N, T & n.

e O(u, “auxiliary variables™) is satisfiable as a function of all
the variables if and only if Ju s.t N(u) =1I.

Cook-Levin theorem: Proof

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF ¢(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ¢(u, “auxiliary
variables™) is satisfiable as a function of the
“auxiliary variables’ if and only if N(u) =1.

2. ¢ is computable in time poly(T(n)) from N, T & n.

e Cook-Levin theorem follows from above!

Proof of Main Theorem

Main theorem: Proof

o Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/I.
Then,

|. There’s a Boolean circuit Y of size poly(T(n))
such that W(u) = | if and only if N(u) =1.

2. W is computable in time poly(T(n)) from N, T & n.

g “Convert” circuit Y to a CNF ¢ efficiently by
introducing auxiliary variables.

Main theorem: Proof

o Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/I.
Then,

|. There’s a Boolean circuit W of size poly(T(n))
such that [W(u) = | if and only if N(u) =1.

2. W is computable in timelpoly(T(n)) from N, T & n.

The key insight: @ “encodes” N.

g “Convert” circuit Y to a CNF ¢ efficiently by
introducing auxiliary variables.

Main theorem: Step |

e Assume (w.l.o.g) that N has a single tape and it writes
its output on the first cell at the end of computation.

Main theorem: Step |

e Assume (w.l.o.g) that N has a single tape and it writes
its output on the first cell at the end of computation.

* A step of computation of N consists of
» Changing the content of the current cell

» Changing state

» Changing head position

Main theorem: Step |

e Assume

(w.l.o.g) that N has a single tape and it writes

its output on the first cell at the end of computation.

* A step of computation of N consists of

» C
» C
» C

hanging the content of the current cell

nanging state

nanging head position

e Think of a ‘compound’ tape: Every cell stores the
current state, a bit content and head indicator.

Main theorem: Step |

a cell

A compound tape

Main theorem: Step |

h =1 if head points to this cell
=0 otherwise

/

a cell

A compound tape

Main theorem: Step |

0/1 bit content of this cell

A

a cell

A compound tape

Main theorem: Step |

Current state when h = |

AN

N\

Q b h

a cell

A compound tape

Main theorem: Step |

Constant number of bits

a cell

A compound tape

Main theorem: Step |

* Computation of N on inputs of length n can be
completely described by a sequence of T(n)
compound tapes, the i-th of which captures a
‘snapshot’ of N's computation at the i-th step.

a cell

A compound tape

Main theorem: Step |

Qseare | YU; | | a cell
L

7

first input bit A compound tape

Main theorem: Step |

Qstare u 0

Qseare | YU; | | a cell

A compound tape

Main theorem: Step |

T(n)

€ T(n) cells
qaccept O/P
Qstart uj
Qstare U a cell

A compound tape

Main theorem: Step |

* h;; = | iff head points to cell j at i-th step
* b;,; = bit content of cell j at i-th step
° q;; = asequence of log |Q| bits which contains the
current state info if h;; = |; otherwise we don't care
qi bij | hy

cell j

Main theorem: Step |

* Locality of computation: The bits in h.

b,; and q;; depend only on the bits in
> hi-|,j-| ’ bi-l,j-l ’ qi-|,j-| ’
» hiyis by Qs
> hi-l,j+| ’ bi.|,j+| ’ qi-l,j+l

ik

i e qi, b,; | hy;
/ T \
i- | G- 1,-1 bi-l,j-l hi-l,j-l Gi-1, bi-l,] hi-l,j Gi-1,j+1 bi-l,j+| hi-l,j+|
L J L J L J

Y J Y
cell j-1 cell j cell j+1

Main theorem: Step |

* Locality of computation: The bits in h;;
b,; and q;; depend only on the bits in
» hi-l,j-l , bi-l,j-l » it -1
> hiygs by Gy
» hijers b Qe

i qi, I bi,j ‘ hi,]

i- I qi-l,j—llbi-l,j-l‘hi-l,j-l qi-l,]I b,y Ihi-l,j qi-l,j+||bi-l,j+l hi e

Y J Y
cell j-1 cell j cell j+1

Main theorem: Step |

T(n)

Output of Y

Qaccept

o/p

A 4o

PV

a cell

Input u-'variables of W

Circuit |

Main theorem: Step |
Output of Y

T(n) |

o/p

Qaccept

A 4o ' A A

2 qstart u O
A A4 - A
| Qsare | Uy || e a cell

Input u-'variables of W Observe: Y(u) = | iff N(u) = |

Recall Steps | and 2

o Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/I.
Then,

|. There’s a Boolean circuit Y of size poly(T(n))
such that W(u) = | if and only if N(u) =1.

2. W is computable in time poly(T(n)) from N, T & n.

g “Convert” circuit Y to a CNF ¢ efficiently by
introducing auxiliary variables.

