
Computational Complexity Theory

Lecture 4: Cook-Levin theorem (contd.);

 More NP-complete problems

Department of Computer Science,
Indian Institute of Science

Recap: A natural NP-complete problem

 Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

 Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

 Easy to see that SAT is in NP.

 Need to show that SAT is NP-hard.

Recap: Cook-Levin theorem: Proof

 Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF
formula.

 Let L ∈ NP. We intend to come up with a polynomial-
time computable function f: x ϕx s.t.,

 x ∈ L ϕx ∈ SAT

 Notation: |ϕx| := size of ϕx

 = number of ∨ or ∧ in ϕx

Recap: Cook-Levin theorem: Proof

 Language L has a poly-time verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 Idea: For any fixed x, we can capture the computation
of M(x, ..) by a CNF ϕx such that

 ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1 ϕx is satisfiable

 For any fixed x, M(x, ..) is a deterministic TM that
takes u as input and runs in time polynomial in |u|.

Recap: Cook-Levin theorem: Proof

 Main Theorem. Let N be a deterministic TM that runs
in time T(n) on every input u of length n, and outputs
0/1. Then, (think of N = M(x, ..) for a fixed x.)

1. There’s a CNF ϕ(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ϕ(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ϕ is computable in time poly(T(n)) from N, T & n.

 ϕ(u, “auxiliary variables”) is satisfiable as a function of all
the variables if and only if ∃u s.t N(u) =1.

Recap: Main theorem: Proof

 Step 1. Let N be a deterministic TM that runs in time
T(n) on every input u of length n, and outputs 0/1.
Then,

1. There’s a Boolean circuit ψ of size poly(T(n))
such that ψ(u) = 1 if and only if N(u) =1.

2. ψ is computable in time poly(T(n)) from N, T & n.

 Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by
introducing auxiliary variables.

The key insight: ψ “encodes” N.

Recap: Main theorem: Step 1

 Assume (w.l.o.g) that N has a single tape and it writes
its output on the first cell at the end of computation.

 A step of computation of N consists of

 Changing the content of the current cell

 Changing state

 Changing head position

 Think of a ‘compound’ tape: Every cell stores the
current state, a bit content and head indicator.

Recap: Main theorem: Step 1

…. ….

A compound tape

a cell qstart u1 1 1

…. …. qstart u1 0 2

…. …. T(n) qaccept o/p 1

.

.

.

T(n) cells

Recap: Main theorem: Step 1

….

cell j

qi,j bi,j hi,j i ….

• Locality of computation: The bits in hi,j,
bi,j and qi,j depend only on the bits in
 hi-1,j-1 , bi-1,j-1 , qi-1,j-1 ,
 hi-1,j , bi-1,j , qi-1,j ,
 hi-1,j+1 , bi-1,j+1 , qi-1,j+1

….

cell j

qi-1,j bi-1,j hi-1,j i-1 …. qi-1,j-1 bi-1,j-1 hi-1,j-1 qi-1,j+1 bi-1,j+1 hi-1,j+1

cell j-1 cell j+1

Recap: Main theorem: Step 1

…. qi,j bi,j hi,j i ….

• Locality of computation: The bits in hi,j,
bi,j and qi,j depend only on the bits in
 hi-1,j-1 , bi-1,j-1 , qi-1,j-1 ,
 hi-1,j , bi-1,j , qi-1,j ,
 hi-1,j+1 , bi-1,j+1 , qi-1,j+1

….

cell j

qi-1,j bi-1,j hi-1,j i-1 …. qi-1,j-1 bi-1,j-1 hi-1,j-1 qi-1,j+1 bi-1,j+1 hi-1,j+1

cell j-1 cell j+1

constant size circuit

Recap: Main theorem: Step 1

…. ….

Observe: ψ(u) = 1 iff N(u) = 1

a cell qstart u1 1 1

…. …. qstart u1 0 2

…. …. T(n) qaccept o/p 1

.

.

.

Output of ψ

….

Input u-variables of ψ

Recall Steps 1 and 2

 Step 1. Let N be a deterministic TM that runs in time
T(n) on every input u of length n, and outputs 0/1.
Then,

1. There’s a Boolean circuit ψ of size poly(T(n))
such that ψ(u) = 1 if and only if N(u) =1.

2. ψ is computable in time poly(T(n)) from N, T & n.

 Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by
introducing auxiliary variables.

Main theorem: Step 2

….

cell j

qi,j bi,j hi,j i ….

• Think of hi,j, bi,j and the bits of qi,j as formal
Boolean variables.

auxiliary variables

Main theorem: Step 2

….

cell j

qi,j bi,j hi,j i ….

• Locality of computation: The variables hi,j, bi,j
and qi,j depend only on the variables
 hi-1,j-1 , bi-1,j-1 , qi-1,j-1 ,
 hi-1,j , bi-1,j , qi-1,j , and
 hi-1,j+1 , bi-1,j+1 , qi-1,j+1

….

cell j

qi-1,j bi-1,j hi-1,j i-1 …. qi-1,j-1 bi-1,j-1 hi-1,j-1 qi-1,j+1 bi-1,j+1 hi-1,j+1

cell j-1 cell j+1

Main theorem: Step 2

 Hence,

 bij = Bij(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)

 = a fixed function of the arguments depending only

 on N’s transition function δ.

 The above equality can be captured by a constant size
CNF Ψij . Also, Ψij is easily computable from δ.

Main theorem: Step 2

 Hence,

 bij = Bij(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)

 = a fixed function of the arguments depending only

 on N’s transition function δ.

 The above equality can be captured by a constant size
CNF Ψij . Also, Ψij is easily computable from δ.

x = y iff (x ∧ y) ∨ (¬x ∧ ¬y) = 1.

Main theorem: Step 2

 Similarly,

 hij = Hij(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)

 = a fixed function of the arguments depending only

 on N’s transition function δ.

 The above equality can be captured by a constant size
CNF Φij . Also, Φij is easily computable from δ.

Main theorem: Step 2

 Similarly,

 qijk = Cijk(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)

 = a fixed function of the arguments depending only

 on N’s transition function δ.

 The above equality can be captured by a constant size
CNF θijk . Also, θijk is easily computable from δ.

k-th bit of qij where 1 ≤ k ≤ log |Q|

Main theorem: Step 2

 Let λ be the conjunction of Ψij , Φij and θijk for all i, j,
k.

 i ∈ [1, T(n)] ,

 j ∈ [1, T(n)] , and

 k ∈ [1, log |Q|]

 λ is a CNF in the u-variables and the auxiliary variables
hi,j, bi,j and qi,j,k. for all i,j,k. |λ| is O(T(n)2).

Main theorem: Step 2

 Let λ be the conjunction of Ψij , Φij and θijk for all i, j,
k.

 i ∈ [1, T(n)] ,

 j ∈ [1, T(n)] , and

 k ∈ [1, log |Q|]

 λ is a CNF in the u-variables and the auxiliary variables
hi,j, bi,j and qi,j,k. for all i,j,k. |λ| is O(T(n)2).

 Define ϕ = λ ∧ bT(n),1 .

Main theorem: Step 2

 Observe: An assignment to u and the auxiliary variables
satisfies λ if and only if it “captures” the computation of
N on the assigned input u for T(n) steps.

Main theorem: Step 2

 Observe: An assignment to u and the auxiliary variables
satisfies λ if and only if it “captures” the computation of
N on the assigned input u for T(n) steps.

 Hence, an assignment to u and the auxiliary variables
satisfies ϕ if and only if N(u) = 1, i.e., for every u,

ϕ(u, “auxiliary variables”) ∈ SAT N(u) =1.

Recall the Main Theorem

 Main Theorem. Let N be a deterministic TM that runs
in time T(n) on every input u of length n, and outputs
0/1. Then,

1. There’s a CNF ϕ(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ϕ(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ϕ is computable in time poly(T(n)) from N, T & n.

 ϕ(u, “auxiliary variables”) is satisfiable as a function of all
the variables if and only if ∃u s.t N(u) =1.

Main theorem: Comments

 ϕ is a CNF of size O(T(n)2) and is also computable
from N, T and n in O(T(n)2) time.

 Remark 1. With some more effort, size ϕ can be
brought down to O(T(n). log T(n)).

 Remark 2. The reduction from x to ϕx is not just a
poly-time reduction, it is actually a log-space reduction
(we’ll define this later).

Main theorem: Comments

 ϕ is a function of u and some “auxiliary variables” (the
bij, hij and qijk variables).

 Observe that once u is fixed the values of the “auxiliary
variables” are also determined in any satisfying
assignment for ϕ.

 Each clause of ϕ has only constantly many
literals!

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

 e.g. a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

 e.g. a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

 Theorem. 3-SAT is NP-complete.

 Proof sketch: (x1 ∨ x2 ∨ x3 ∨ ¬x4) is satisfiable iff (x1 ∨
x2 ∨ z) ∧ (x3 ∨ ¬x4 ∨ ¬z) is satisfiable.

 More NP-complete problems

NP complete problems: Examples

 Independent Set

 Clique

 Vertex cover

 0/1 integer programming

 Max-Cut (NP-hard)

 3-coloring planar graphs Stockmeyer 1973

 2-Diophantine solvability Adleman & Manders 1975

Karp 1972

Ref: Garey & Johnson, “Computers and Intractability” 1979

NPC problems from number theory

 SqRootMod: Given natural numbers a, b and c, check
if there exists a natural number x ≤ c such that

 x2 = a (mod b) .

 Theorem: SqRootMod is NP-complete.

 Manders & Adleman 1976

NPC problems from number theory

 Variant_IntFact : Given natural numbers L, U and N,
check if there exists a natural number d ∈ [L, U]
such that d divides N.

 Claim: Variant_IntFact is NP-hard under randomized
poly-time reduction.

 Reference:
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785

A peculiar NP problem

 Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size ≤ s that computes f.

 Easy to see that MCSP is in NP.

 Is MCSP NP-complete? Not known!

Example 1: Independent Set

 INDSET := {(G, k): G has independent set of size k}

 Goal: Design a poly-time reduction f s.t.

 Reduction from 3SAT: Recall, a reduction is just an
efficient algorithm that takes input a 3CNF ϕ and
outputs a (G, k) tuple s.t

x ∈ 3SAT f(x) ∈ INDSET

ϕ ∈ 3SAT (G, k) ∈ INDSET

Example 1: Independent Set

 Reduction: Let ϕ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Example 1: Independent Set

 Reduction: Let ϕ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

For every clause Ci form a complete
graph (cluster) on 7 vertices

A vertex stands for a partial
assignment of the variables in
Ci that satisfies the clause

Example 1: Independent Set

 Reduction: Let ϕ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Ci

C1 Cm

Add an edge between two
vertices in two different clusters if
the partial assignments they stand
for are incompatible.

Example 1: Independent Set

 Reduction: Let ϕ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Ci

C1 Cm

Graph G on 7m vertices

Example 1: Independent Set

 Reduction: Let ϕ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

 Obs: ϕ is satisfiable iff G has an ind. set of size m.

Ci

C1 Cm

Example 2: Clique

 CLIQUE := {(H, k): H has a clique of size k}

 Goal: Design a poly-time reduction f s.t.

 Reduction from INDSET: The reduction algorithm
computes G from G

x ∈ INDSET f(x) ∈ CLIQUE

(G, k) ∈ INDSET (G, k) ∈ CLIQUE

Example 3: Vertex Cover

 VCover := {(H, k): H has a vertex cover of size k}

 Goal: Design a poly-time reduction f s.t.

 Reduction from INDSET: Let n be the number of
vertices in G. The reduction algorithm maps (G, k) to
(G, n-k).

x ∈ INDSET f(x) ∈ VCover

(G, k) ∈ INDSET (G, n-k) ∈ VCover

Example 4: 0/1 Integer Programming

 0/1 IProg := Set of satisfiable 0/1 integer programs

 A 0/1 integer program is a set of linear inequalities
with rational coefficients and the variables are
allowed to take only 0/1 values.

 Reduction from 3SAT: A clause is mapped to a linear
inequality as follows

x1 ∨ x2 ∨ x3 x1 + (1- x2) + x3 ≥ 1

