Computational Complexity Theory

Lecture 4: Cook-Levin theorem (contd.); More NP-complete problems

Department of Computer Science, Indian Institute of Science

Recap: A natural NP-complete problem

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> <u>Form</u> (CNF) if it is an AND of OR of literals.

e.g. $\phi = (\mathbf{x}_1 \lor \mathbf{x}_2) \land (\mathbf{x}_3 \lor \neg \mathbf{x}_2)$

- Definition. Let SAT be the language consisting of all satisfiable CNF formulae.
- Theorem. (Cook 1971, Levin 1973) SAT is NP-complete. Easy to see that SAT is in NP. Need to show that SAT is NP-hard.

Recap: Cook-Levin theorem: Proof

- Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.
- Let $L \in NP$. We intend to come up with a polynomialtime computable function f: $x \mapsto \phi_x$ s.t.,

 \succ x \in L \iff $\phi_x \in$ SAT

• <u>Notation</u>: $|\phi_{x}| :=$ size of ϕ_{x}

= number of V or \wedge in ϕ_x

Recap: Cook-Levin theorem: Proof

• Language L has a poly-time verifier M such that $x \in L \iff \exists u \in \{0, I\}^{p(|x|)}$ s.t. M(x, u) = I

• Idea: For any fixed x, we can <u>capture the computation</u> of M(x, ..) by a CNF ϕ_x such that

 $\exists u \in \{0, I\}^{p(|x|)}$ s.t. $M(x, u) = I \qquad \Longleftrightarrow \phi_x$ is satisfiable

 For any fixed x, M(x, ..) is a deterministic TM that takes u as input and runs in time polynomial in u.

Recap: Cook-Levin theorem: Proof

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1.Then, (think of N = M(x, ..) for a fixed x.)
 - I. There's a CNF \$\overline{(u, "auxiliary variables")}\$ of size poly(T(n)) such that for every u, \$\overline{(u, "auxiliary variables")}\$ is satisfiable as a function of the "auxiliary variables" if and only if N(u) = 1.
 - 2. ϕ is computable in time poly(T(n)) from N,T & n.
- $\phi(u, "auxiliary variables")$ is satisfiable <u>as a function of all</u> <u>the variables</u> if and only if $\exists u$ s.t N(u) = I.

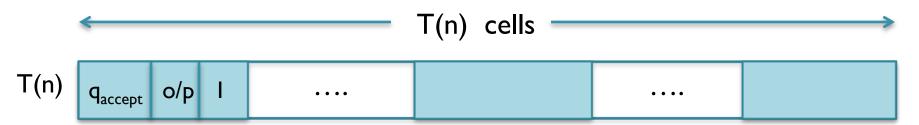
Recap: Main theorem: Proof

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a Boolean circuit ψ of size poly(T(n))such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.

The key insight: ψ "encodes" N.

 Step 2. "Convert" circuit ψ to a CNF φ efficiently by introducing <u>auxiliary variables</u>.

- Assume (w.l.o.g) that N has a single tape and it writes its output on the first cell at the end of computation.
- A step of computation of N consists of
 - Changing the content of the current cell
 - Changing state
 - Changing head position
- Think of a '<u>compound</u>' tape: Every cell stores the current state, a bit content and head indicator.



•

•

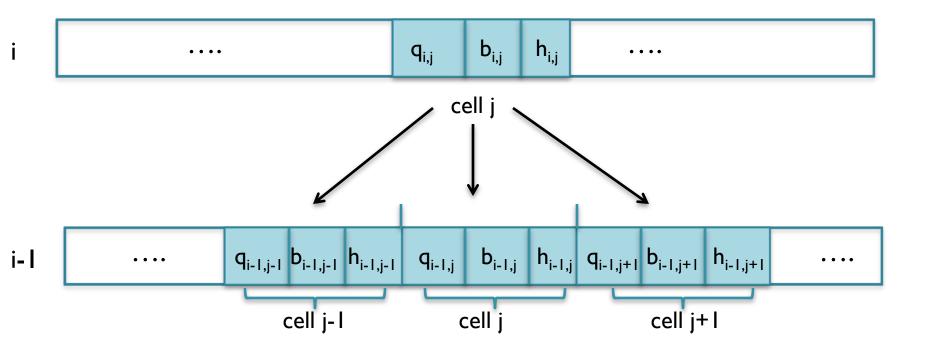
.

2	q _{start}	u	0				
---	---------------------------	---	---	--	--	--	--

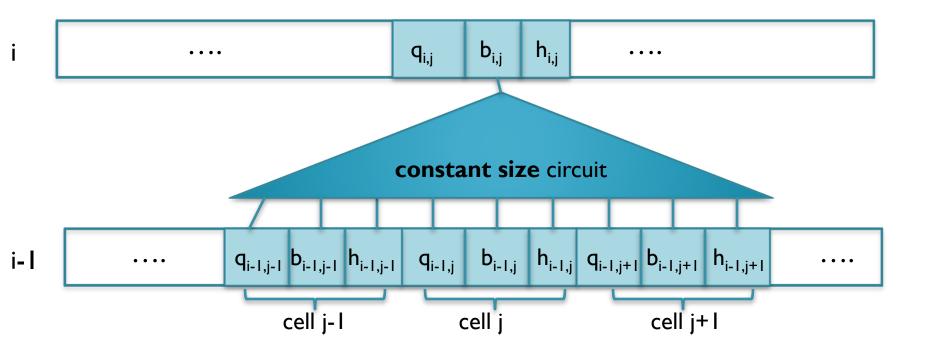
q _{start} u _l I	a cell		
-------------------------------------	--------	--	--

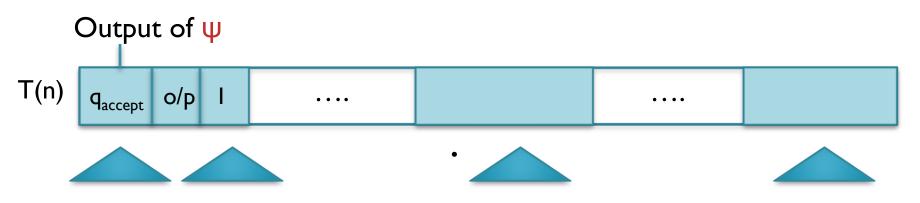
A compound tape

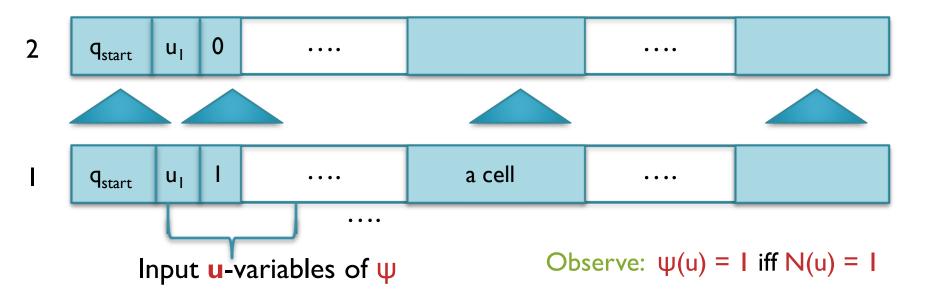
Locality of computation: The bits in h_{i,j},
 b_{i,j} and q_{i,j} depend <u>only on</u> the bits in
 > h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},
 > h_{i-1,j}, b_{i-1,j}, q_{i-1,j},
 > h_{i-1,i+1}, b_{i-1,i+1}, q_{i-1,i+1}



Locality of computation: The bits in h_{i,j},
 b_{i,j} and q_{i,j} depend <u>only on</u> the bits in
 > h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},
 > h_{i-1,j}, b_{i-1,j}, q_{i-1,j},
 > h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}





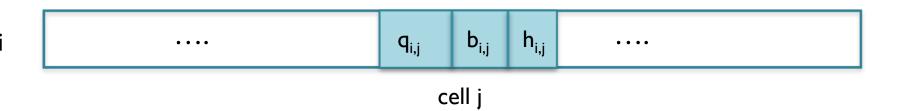


Recall Steps I and 2

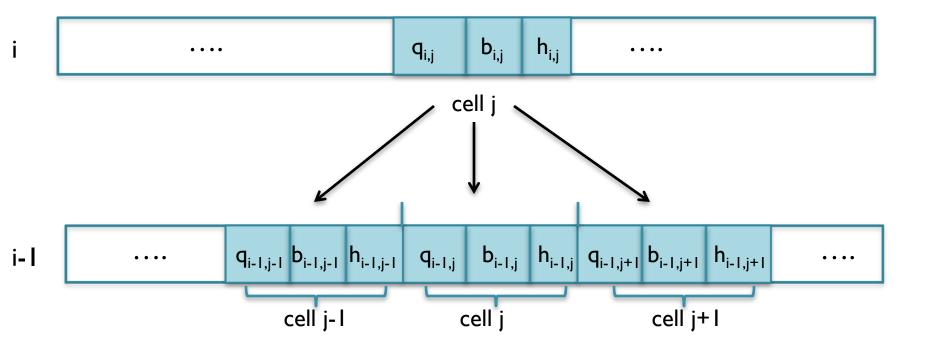
- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a Boolean circuit ψ of size poly(T(n))such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.
- <u>Step 2.</u> "Convert" circuit ψ to a CNF φ efficiently by introducing <u>auxiliary variables</u>.

• Think of $h_{i,j}$, $b_{i,j}$ and the bits of $q_{i,j}$ as <u>formal</u> <u>Boolean variables</u>.

auxiliary variables



Locality of computation: The variables h_{i,j}, b_{i,j} and q_{i,j} depend only on the variables
> h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},
> h_{i-1,j}, b_{i-1,j}, q_{i-1,j}, and
> h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}



- Hence,
 - $$\begin{split} \mathbf{b}_{ij} &= \mathbf{B}_{ij}(\mathbf{h}_{i-1,j-1}, \mathbf{b}_{i-1,j-1}, \mathbf{q}_{i-1,j}, \mathbf{b}_{i-1,j}, \mathbf{q}_{i-1,j}, \mathbf{h}_{i-1,j}, \mathbf{b}_{i-1,j+1}, \mathbf{b}_{i-1,j+1}, \mathbf{q}_{i-1,j+1}) \\ &= \text{a fixed function of the arguments depending only} \\ &\text{on N's transition function } \boldsymbol{\delta}. \end{split}$$
- The above equality can be captured by a <u>constant size</u> CNF Ψ_{ij} . Also, Ψ_{ij} is easily computable from δ .

- Hence,
 - $$\begin{split} \mathbf{b}_{ij} &= \mathbf{B}_{ij}(\mathbf{h}_{i-1,j-1}, \mathbf{b}_{i-1,j-1}, \mathbf{q}_{i-1,j}, \mathbf{b}_{i-1,j}, \mathbf{q}_{i-1,j}, \mathbf{h}_{i-1,j+1}, \mathbf{b}_{i-1,j+1}, \mathbf{q}_{i-1,j+1}) \\ &= \text{a fixed function of the arguments depending only} \\ &\text{on N's transition function } \boldsymbol{\delta}. \end{split}$$
- The above equality can be captured by a constant size CNF Ψ_{ij} . Also, Ψ_{ij} is easily computable from δ .

x = y iff $(x \land y) \lor (\neg x \land \neg y) = 1$.

- Similarly,
 - $$\begin{split} h_{ij} &= H_{ij}(h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j}, b_{i-1,j}, q_{i-1,j}, h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}) \\ &= a \text{ fixed function of the arguments depending only} \\ &\text{ on N's transition function } \delta. \end{split}$$
- The above equality can be captured by a <u>constant size</u> CNF Φ_{ij} . Also, Φ_{ij} is easily computable from δ .

• Similarly, $\begin{aligned} & \text{Similarly,} \quad \text{k-th bit of q_{ij} where $1 \le k \le \log |Q|$} \\ & \textbf{q}_{ijk} = C_{ijk}(h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1}, h_{i-1,j}, b_{i-1,j}, q_{i-1,j}, h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}) \\ & = a \text{ fixed function of the arguments depending only} \\ & \text{ on N's transition function } \delta. \end{aligned}$

• The above equality can be captured by a <u>constant size</u> CNF θ_{ijk} . Also, θ_{ijk} is easily computable from δ .

• Let λ be the conjunction of Ψ_{ij} , Φ_{ij} and θ_{ijk} for all i,j,k.

i ∈ [1,T(n)],
j ∈ [1,T(n)], and
k ∈ [1, log |Q|]

• λ is a CNF in the u-variables and the <u>auxiliary variables</u> $h_{i,j}$, $b_{i,j}$ and $q_{i,j,k}$. for all i,j,k. $|\lambda|$ is $O(T(n)^2)$.

• Let λ be the conjunction of Ψ_{ij} , Φ_{ij} and θ_{ijk} for all i,j,k.

i ∈ [1,T(n)],
j ∈ [1,T(n)], and
k ∈ [1, log |Q|]

- λ is a CNF in the u-variables and the <u>auxiliary variables</u> $h_{i,j}$, $b_{i,j}$ and $q_{i,j,k}$. for all i,j,k. $|\lambda|$ is $O(T(n)^2)$.
- Define $\phi = \lambda \wedge b_{T(n),I}$.

Observe: An assignment to u and the auxiliary variables satisfies λ if and only if it "captures" the computation of N on the assigned input u for T(n) steps.

- Observe: An assignment to u and the auxiliary variables satisfies λ if and only if it "captures" the computation of N on the assigned input u for T(n) steps.
- Hence, an assignment to u and the auxiliary variables satisfies \$\ophi\$ if and only if N(u) = 1, i.e., for every u,

 $\phi(u, \text{``auxiliary variables''}) \in SAT \iff N(u) = I.$

Recall the Main Theorem

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1.Then,
 - I. There's a CNF $\phi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \phi(u, "auxiliary variables")$ is satisfiable <u>as a function of the</u> <u>"auxiliary variables"</u> if and only if N(u) = I.
 - 2. ϕ is computable in time poly(T(n)) from N,T & n.
- $\phi(u, "auxiliary variables")$ is satisfiable <u>as a function of all</u> <u>the variables</u> if and only if $\exists u$ s.t N(u) = I.

Main theorem: Comments

- ϕ is a CNF of size O(T(n)²) and is also computable from N,T and n in O(T(n)²) time.
- Remark I. With some more effort, size \$\oplus can be brought down to O(T(n). log T(n)).
- Remark 2. The reduction from x to ϕ_x is not just a poly-time reduction, it is actually a <u>log-space reduction</u> (we'll define this later).

Main theorem: Comments

- φ is a function of u and some "auxiliary variables" (the b_{ij}, h_{ij} and q_{ijk} variables).
- Observe that once **u** is fixed <u>the values of the "auxiliary</u> <u>variables" are also determined</u> in any satisfying assignment for ϕ .

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause has at most k literals.

e.g. a 2-CNF $\phi = (\mathbf{x}_1 \lor \mathbf{x}_2) \land (\mathbf{x}_3 \lor \neg \mathbf{x}_2)$

• Definition. k-SAT is the language consisting of all satisfiable k-CNFs.

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause has at most k literals.

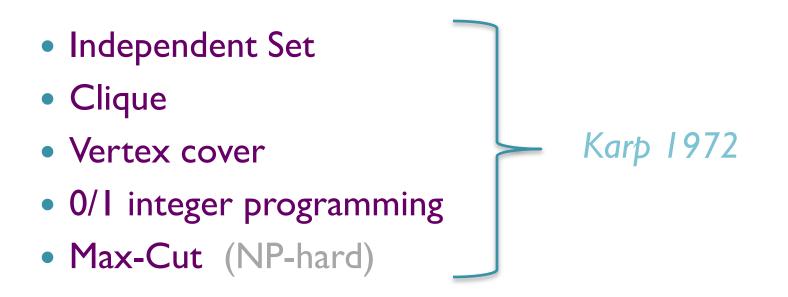
e.g. a 2-CNF $\phi = (\mathbf{x}_1 \lor \mathbf{x}_2) \land (\mathbf{x}_3 \lor \neg \mathbf{x}_2)$

- Definition. k-SAT is the language consisting of all satisfiable k-CNFs.
- Theorem. **3-SAT** is NP-complete.

Proof sketch: $(x_1 \lor x_2 \lor x_3 \lor \neg x_4)$ is satisfiable iff $(x_1 \lor x_2 \lor z) \land (x_3 \lor \neg x_4 \lor \neg z)$ is satisfiable.

More NP-complete problems

NP complete problems: Examples



- 3-coloring planar graphs Stockmeyer 1973
- 2-Diophantine solvability Adleman & Manders 1975

Ref: Garey & Johnson, "Computers and Intractability" 1979

NPC problems from number theory

 SqRootMod: Given natural numbers a, b and c, check if there exists a natural number x ≤ c such that

 $x^2 = a \pmod{b}$.

• Theorem: SqRootMod is NP-complete. Manders & Adleman 1976

NPC problems from number theory

- Variant_IntFact : Given natural numbers L, U and N, check if there exists a natural number d ∈ [L, U] such that d divides N.
- Claim: Variant_IntFact is NP-hard under <u>randomized</u> <u>poly-time reduction</u>.
- Reference:

https://cstheory.stackexchange.com/questions/4769/annp-complete-variant-of-factoring/4785

A peculiar NP problem

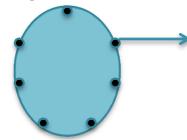
- Minimum Circuit Size Problem (MCSP): Given the <u>truth table</u> of a Boolean function f and an integer s, check if there is a circuit of size ≤ s that computes f.
- Easy to see that MCSP is in NP.
- Is MCSP NP-complete? Not known!

• INDSET := {(G, k): G has independent set of size k}

Goal: Design a poly-time reduction f s.t.
 x ∈ 3SAT ← f(x) ∈ INDSET

- Reduction from 3SAT: Recall, a reduction is just an efficient algorithm that takes input a 3CNF \$\overline{\phi}\$ and outputs a (G, k) tuple s.t
 - $\phi \in 3SAT \iff (G, k) \in INDSET$

• Reduction: Let ϕ be a 3CNF with m clauses and n variables. Assume, every clause has exactly 3 literals.



A vertex stands for a partial assignment of the variables in C_i that satisfies the clause

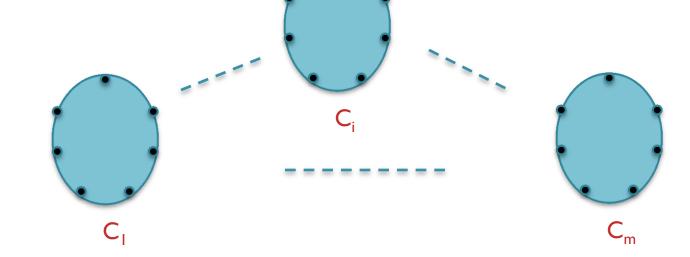
For every clause C_i form a complete graph (cluster) on 7 vertices

• Reduction: Let ϕ be a 3CNF with m clauses and n variables. Assume, every clause has exactly 3 literals.

C_I

Add an edge between two vertices in two different clusters if the partial assignments they stand for are <u>incompatible</u>.

 C_1



• Obs: ϕ is satisfiable iff G has an ind. set of size m.

Example 2: Clique

CLIQUE := {(H, k): H has a clique of size k}

• Goal: Design a poly-time reduction f s.t. $x \in INDSET \iff f(x) \in CLIQUE$

Reduction from INDSET: The reduction algorithm computes G from G

 $(G, k) \in INDSET \iff (\overline{G, k}) \in CLIQUE$

Example 3: Vertex Cover

VCover := {(H, k): H has a vertex cover of size k}

Goal: Design a poly-time reduction f s.t.
 x ∈ INDSET ← f(x) ∈ VCover

- Reduction from INDSET: Let n be the number of vertices in G. The reduction algorithm maps (G, k) to (G, n-k).
 - $(G, k) \in INDSET \iff (G, n-k) \in VCover$

Example 4: 0/1 Integer Programming

- 0/1 IProg := Set of satisfiable 0/1 integer programs
- A <u>0/1 integer program</u> is a set of linear inequalities with rational coefficients and the variables are allowed to take only 0/1 values.
- Reduction from 3SAT: A clause is mapped to a linear inequality as follows

 $x_1 \vee \overline{x}_2 \vee x_3 \implies x_1 + (1 - x_2) + x_3 \ge 1$