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Recap:  A natural NP-complete problem 

 Definition. A Boolean formula is in Conjunctive Normal 
Form (CNF) if it is an AND of OR of literals.  

             e.g.  ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 

 Definition. Let SAT be the language consisting of all 
satisfiable CNF formulae.  

 

 Theorem. (Cook 1971, Levin 1973) SAT is NP-complete. 

                               Easy to see that SAT is in NP.   

                                    Need to show that SAT is NP-hard. 

 



Recap: Cook-Levin theorem:  Proof 

 Main idea:  Computation is local; i.e., every step of 
computation looks at and changes only constantly many 
bits;  and this step can be implemented by a small CNF 
formula.   

 

 Let L ∈ NP.  We intend to come up with a polynomial-
time computable function f:  x        ϕx   s.t., 

    x ∈ L          ϕx ∈ SAT   

 

 Notation:   |ϕx| := size of ϕx  

                                            = number of ∨ or ∧ in ϕx            



Recap: Cook-Levin theorem:  Proof 

 Language L has a poly-time verifier M such that 

              x∈L         ∃u ∈{0,1}p(|x|)  s.t.  M(x, u) = 1 

 

 Idea: For any fixed x, we can capture the computation 
of M(x, ..) by a CNF ϕx such that   

  

    ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1               ϕx is satisfiable 

 

 For any fixed x,   M(x, ..) is a deterministic TM that 
takes u as input and runs in time polynomial in |u|. 



Recap: Cook-Levin theorem:  Proof 

 Main Theorem.  Let N be a deterministic TM that runs 
in time T(n) on every input u of length n, and outputs 
0/1. Then,       (think of N = M(x, ..) for a fixed x.) 

1. There’s a CNF ϕ(u, “auxiliary variables”) of size 
poly(T(n)) such that for every u, ϕ(u, “auxiliary 
variables”) is satisfiable as a function of the 
“auxiliary variables”  if and only if N(u) =1. 

2. ϕ is computable in time poly(T(n)) from N, T & n. 

  

 ϕ(u, “auxiliary variables”) is satisfiable as a function of all 
the variables if and only if ∃u s.t N(u) =1. 

 



Recap: Main theorem:  Proof 

 Step 1.  Let N be a deterministic TM that runs in time 
T(n) on every input u of length n, and outputs 0/1. 
Then,     

1. There’s a Boolean circuit ψ of size poly(T(n)) 
such that ψ(u) = 1 if and only if N(u) =1. 

2. ψ is computable in time poly(T(n)) from N, T & n. 

 

 Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by 
introducing auxiliary variables. 

 

The key insight:  ψ  “encodes” N. 



Recap: Main theorem:  Step 1 

 Assume (w.l.o.g) that N has a single tape and it writes 
its output on the first cell at the end of computation. 

 

 A step of computation of N consists of  

 Changing the content of the current cell 

 Changing state 

 Changing head position 

 

 Think of a ‘compound’ tape: Every cell stores the 
current state, a bit content and head indicator. 



Recap: Main theorem:  Step 1 

…. …. 

A compound tape 

a cell qstart     u1    1 1 

…. …. qstart     u1    0 2 

…. …. T(n) qaccept   o/p   1 

. 

. 

. 

T(n)  cells 



Recap: Main theorem:  Step 1 

…. 

cell j 

qi,j       bi,j     hi,j i …. 

• Locality of computation:  The bits in hi,j, 
bi,j and qi,j depend only on the bits in  
 hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , 
 hi-1,j ,  bi-1,j ,  qi-1,j ,      
 hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1 

…. 

cell j 

qi-1,j    bi-1,j    hi-1,j i-1 …. qi-1,j-1 bi-1,j-1  hi-1,j-1 qi-1,j+1 bi-1,j+1   hi-1,j+1 

cell j-1 cell j+1 



Recap: Main theorem:  Step 1 

…. qi,j       bi,j     hi,j i …. 

• Locality of computation:  The bits in hi,j, 
bi,j and qi,j depend only on the bits in  
 hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , 
 hi-1,j ,  bi-1,j ,  qi-1,j , 
 hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1 

…. 

cell j 

qi-1,j    bi-1,j    hi-1,j i-1 …. qi-1,j-1 bi-1,j-1  hi-1,j-1 qi-1,j+1 bi-1,j+1   hi-1,j+1 

cell j-1 cell j+1 

constant size circuit 



Recap: Main theorem:  Step 1 

…. …. 

Observe:  ψ(u) = 1 iff N(u) = 1 

a cell qstart     u1    1 1 

…. …. qstart     u1    0 2 

…. …. T(n) qaccept   o/p   1 

. 

. 

. 

Output of ψ 

…. 

Input u-variables of ψ 



Recall Steps 1 and 2 

 Step 1.  Let N be a deterministic TM that runs in time 
T(n) on every input u of length n, and outputs 0/1. 
Then,     

1. There’s a Boolean circuit ψ of size poly(T(n)) 
such that ψ(u) = 1 if and only if N(u) =1. 

2. ψ is computable in time poly(T(n)) from N, T & n. 

 

 Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by 
introducing auxiliary variables. 

 



Main theorem:  Step 2 

…. 

cell j 

qi,j       bi,j     hi,j i …. 

• Think of hi,j, bi,j and the bits of qi,j as formal 
Boolean variables. 

auxiliary variables 



Main theorem:  Step 2 

…. 

cell j 

qi,j       bi,j     hi,j i …. 

• Locality of computation:  The variables hi,j, bi,j 
and qi,j depend only on the variables  
 hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , 
 hi-1,j ,  bi-1,j ,  qi-1,j , and 
 hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1 

…. 

cell j 

qi-1,j    bi-1,j    hi-1,j i-1 …. qi-1,j-1 bi-1,j-1  hi-1,j-1 qi-1,j+1 bi-1,j+1   hi-1,j+1 

cell j-1 cell j+1 



Main theorem:  Step 2 

 Hence, 

    bij = Bij(hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , hi-1,j ,  bi-1,j ,  qi-1,j , hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1) 

        = a fixed function of the arguments depending only 

           on N’s transition function δ. 

 

 The above equality can be captured by a constant size 
CNF Ψij .  Also, Ψij is easily computable from δ. 

 



Main theorem:  Step 2 

 Hence, 

    bij = Bij(hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , hi-1,j ,  bi-1,j ,  qi-1,j , hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1) 

        = a fixed function of the arguments depending only 

           on N’s transition function δ. 

 

 The above equality can be captured by a constant size 
CNF Ψij .  Also, Ψij is easily computable from δ. 

 
x = y   iff   (x ∧ y) ∨ (¬x ∧ ¬y) = 1. 



Main theorem:  Step 2 

 Similarly, 

    hij = Hij(hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , hi-1,j ,  bi-1,j ,  qi-1,j , hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1) 

        = a fixed function of the arguments depending only 

           on N’s transition function δ. 

 

 The above equality can be captured by a constant size 
CNF Φij .  Also, Φij is easily computable from δ. 

 



Main theorem:  Step 2 

 Similarly, 

  qijk = Cijk(hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , hi-1,j ,  bi-1,j ,  qi-1,j , hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1) 

       = a fixed function of the arguments depending only 

           on N’s transition function δ. 

 

 The above equality can be captured by a constant size 
CNF θijk .  Also, θijk is easily computable from δ. 

 

k-th bit of qij where  1  ≤  k  ≤  log |Q| 



Main theorem:  Step 2 

 Let λ be the conjunction of Ψij , Φij and θijk for all   i, j, 
k.   

 i ∈ [1, T(n)] , 

 j ∈ [1, T(n)] , and 

 k ∈ [1, log |Q|]  

 

 λ is a CNF in the u-variables and the auxiliary variables 
hi,j, bi,j and qi,j,k. for all i,j,k.   |λ| is O(T(n)2).  

 

   



Main theorem:  Step 2 

 Let λ be the conjunction of Ψij , Φij and θijk for all   i, j, 
k.   

 i ∈ [1, T(n)] , 

 j ∈ [1, T(n)] , and 

 k ∈ [1, log |Q|]  

 

 λ is a CNF in the u-variables and the auxiliary variables 
hi,j, bi,j and qi,j,k. for all i,j,k.   |λ| is O(T(n)2).  

 

 Define ϕ = λ ∧ bT(n),1 . 

 

 



Main theorem:  Step 2 

 Observe: An assignment to u and the auxiliary variables 
satisfies λ if and only if it “captures” the computation of 
N on the assigned input u for T(n) steps.  

 

 

 

   



Main theorem:  Step 2 

 Observe: An assignment to u and the auxiliary variables 
satisfies λ if and only if it “captures” the computation of 
N on the assigned input u for T(n) steps.   

 

 Hence, an assignment to u and the auxiliary variables 
satisfies ϕ if and only if N(u) = 1, i.e.,  for every u,  

 

 

   

ϕ(u, “auxiliary variables”) ∈ SAT         N(u) =1. 



Recall the Main Theorem 

 Main Theorem.  Let N be a deterministic TM that runs 
in time T(n) on every input u of length n, and outputs 
0/1. Then,     

1. There’s a CNF ϕ(u, “auxiliary variables”) of size 
poly(T(n)) such that for every u, ϕ(u, “auxiliary 
variables”) is satisfiable as a function of the 
“auxiliary variables”  if and only if N(u) =1. 

2. ϕ is computable in time poly(T(n)) from N, T & n. 

  

 ϕ(u, “auxiliary variables”) is satisfiable as a function of all 
the variables if and only if ∃u s.t N(u) =1. 

 



Main theorem:  Comments 

 ϕ is a CNF of size O(T(n)2) and is also computable 
from N, T and n in O(T(n)2) time. 

 

 Remark 1. With some more effort, size ϕ can be 
brought down to O(T(n). log T(n)). 

 

 Remark 2. The reduction from x to ϕx is not just a 
poly-time reduction, it is actually a log-space reduction 
(we’ll define this later). 

 

 

 



Main theorem:  Comments 

 ϕ is a function of u and some “auxiliary variables”  (the 
bij, hij and qijk variables). 

 

 Observe that once u is fixed the values of the “auxiliary 
variables” are also determined in any satisfying 
assignment for ϕ. 

 

 Each clause of ϕ has only constantly many 
literals! 

 



3SAT is NP-complete 

 Definition. A CNF is a called a k-CNF if every clause 
has at most k literals. 

             e.g.    a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 

 Definition. k-SAT is the language consisting of all 
satisfiable k-CNFs.  

 

 



3SAT is NP-complete 

 Definition. A CNF is a called a k-CNF if every clause 
has at most k literals. 

             e.g.    a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 

 Definition. k-SAT is the language consisting of all 
satisfiable k-CNFs.  

 

 Theorem.  3-SAT is NP-complete.  

 Proof sketch:    (x1 ∨ x2 ∨ x3 ∨ ¬x4 ) is satisfiable iff   (x1 ∨ 
x2 ∨ z) ∧ ( x3 ∨ ¬x4 ∨ ¬z) is satisfiable. 

 

 



      More NP-complete problems 



NP complete problems:  Examples 

 Independent Set 

 Clique 

 Vertex cover   

 0/1 integer programming  

 Max-Cut  (NP-hard) 
 

 

 3-coloring planar graphs    Stockmeyer 1973 

 2-Diophantine solvability   Adleman & Manders 1975 
 

Karp 1972 

Ref:  Garey & Johnson,  “Computers and Intractability”  1979 



NPC problems from number theory 

 SqRootMod: Given natural numbers a, b and c, check 
if there exists a natural number x ≤ c such that  

                       x2  =  a  (mod  b) .   

 

 Theorem:   SqRootMod is NP-complete. 

                              Manders & Adleman 1976 



NPC problems from number theory 

 Variant_IntFact : Given natural numbers L, U and N, 
check if there exists a natural number d ∈ [L, U] 
such that d divides N. 

 

 Claim: Variant_IntFact is NP-hard under randomized 
poly-time reduction. 

 

 Reference: 
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785 



A peculiar NP problem 

 Minimum Circuit Size Problem (MCSP):  Given the 
truth table of a Boolean function f and an integer s, 
check if there is a circuit of size ≤ s that computes f. 

 

 Easy to see that MCSP is in NP. 

 

 Is  MCSP  NP-complete?  Not known!  



Example 1:  Independent Set 

 INDSET := {(G, k): G has independent set of size k} 

 

 Goal:  Design a poly-time reduction f s.t. 

 

 

 Reduction from 3SAT: Recall, a reduction is just an 
efficient algorithm that takes input a 3CNF ϕ and 
outputs a (G, k) tuple s.t  

 

x ∈ 3SAT           f(x) ∈ INDSET 

ϕ ∈ 3SAT           (G, k) ∈ INDSET 



Example 1:  Independent Set 

 Reduction: Let ϕ be a 3CNF with m clauses and n 
variables. Assume, every clause has exactly 3 literals. 



Example 1:  Independent Set 

 Reduction: Let ϕ be a 3CNF with m clauses and n 
variables. Assume, every clause has exactly 3 literals. 

For every clause Ci form a complete 
graph (cluster) on 7 vertices 

A vertex stands for a partial 
assignment of the variables in 
Ci that satisfies the clause 



Example 1:  Independent Set 

 Reduction: Let ϕ be a 3CNF with m clauses and n 
variables. Assume, every clause has exactly 3 literals. 

Ci 

C1 Cm 

Add an edge between two 
vertices in two different clusters if 
the partial assignments they stand 
for are incompatible. 



Example 1:  Independent Set 

 Reduction: Let ϕ be a 3CNF with m clauses and n 
variables. Assume, every clause has exactly 3 literals. 

Ci 

C1 Cm 

Graph G on 7m vertices 



Example 1:  Independent Set 

 Reduction: Let ϕ be a 3CNF with m clauses and n 
variables. Assume, every clause has exactly 3 literals. 

 

 

 

 

 

 

 Obs: ϕ is satisfiable iff G has an ind. set of size m. 

Ci 

C1 Cm 



Example 2:  Clique 

 CLIQUE := {(H, k): H has a clique of size k} 

 

 Goal:  Design a poly-time reduction f s.t. 

 

 

 Reduction from INDSET: The reduction algorithm 
computes G from G 

 

x ∈ INDSET           f(x) ∈ CLIQUE 

(G, k) ∈ INDSET           (G, k) ∈ CLIQUE 



Example 3:  Vertex Cover 

 VCover := {(H, k): H has a vertex cover of size k} 

 

 Goal:  Design a poly-time reduction f s.t. 

 

 

 Reduction from INDSET: Let n be the number of 
vertices in G. The reduction algorithm maps (G, k) to 
(G, n-k). 

 

x ∈ INDSET           f(x) ∈ VCover 

(G, k) ∈ INDSET           (G, n-k) ∈ VCover 



Example 4:  0/1 Integer Programming 

 0/1 IProg := Set of satisfiable 0/1 integer programs  

 A 0/1 integer program is a set of linear inequalities 
with rational coefficients and the variables are 
allowed to take only 0/1 values. 

 

 Reduction from 3SAT: A clause is mapped to a linear 
inequality as follows 

 
x1 ∨ x2 ∨ x3                 x1 + (1- x2) + x3  ≥  1 


