Computational Complexity Theory

Lecture 6: NTM, Class co-NP and co-NP-completeness

Department of Computer Science, Indian Institute of Science

Recap: Search version of NP problems

- Recall: A language L ⊆ {0,1}* is in NP if
 There's a poly-time verifier M and poly. function p s.t.
 x∈L iff there's a u∈{0,1}^{p(|x|)} s.t M(x, u) = 1.
- Search version of L: Given an input x ∈ {0,1}*, <u>find</u> a u ∈{0,1}^{p(|x|)} such that M(x, u) = 1, if such a u exists.
- Remark: Search version of L only makes sense once we have a verifier M in mind.

Recap: Decision versus Search

- Is the search version of an NP problem more difficult than the corresponding decision version?
- Theorem. Let $L \subseteq \{0,1\}^*$ be NP-complete. Then, the <u>search version of L</u> can be solved in poly-time <u>if and</u> <u>only if</u> the decision version can be solved in poly-time.

w.r.t any verifier M !

Recap: Decision versus Search

- Is search equivalent to decision for every NP problem?
- Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then there's a language in NP for which search does not reduce to decision.
- Sometimes, the decision version of a problem can be trivial but the search version is possibly hard. E.g., Computing <u>Nash Equilibrium</u> (see class PPAD).

Homework: Read about total NP functions

Recap: Two types of poly-time reductions

- Definition. A language L₁ ⊆ {0,1}* is <u>polynomial-time</u> (Karp or many-one) reducible to a language L₂ ⊆ {0,1}* if there's a polynomial time computable function f s.t.
 x∈L₁ ⟺ f(x)∈L₂
- Definition. A language $L_1 \subseteq \{0,1\}^*$ is <u>polynomial-time</u> (<u>Cook or Turing</u>) reducible to a language $L_2 \subseteq \{0,1\}^*$ if there's a TM that decides L_1 in poly-time using polymany calls to a "subroutine" (<u>oracle</u>) for deciding L_2 .

Karp reduction implies Cook reduction

NTM: An alternate characterization of NP

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple $(\Gamma, Q, \delta_0, \delta_1)$. It has a special state q_{accept} in addition to q_{start} and q_{halt} .

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple $(\Gamma, Q, \delta_0, \delta_1)$. It has a special state q_{accept} in addition to q_{start} and q_{halt} .
- At every step of computation, the machine applies one of two functions δ_0 and δ_1 *arbitrarily*.

also called *nondeterministically*

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple $(\Gamma, Q, \delta_0, \delta_1)$. It has a special state q_{accept} in addition to q_{start} and q_{halt} .
- At every step of computation, the machine applies one of two functions δ_0 and δ_1 <u>arbitrarily</u>.

this is different from *randomly*

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple $(\Gamma, Q, \delta_0, \delta_1)$. It has a special state q_{accept} in addition to q_{start} and q_{halt} .
- At every step of computation, the machine applies one of two functions δ_0 and δ_1 <u>arbitrarily</u>.
- Unlike DTMs, NTMs are **not intended to be physically realizable** (because of the arbitrary nature of application of the transition functions).

- Definition. An NTM M <u>accepts</u> a string $x \in \{0, I\}^*$ iff on input x there <u>exists</u> a sequence of applications of the transition functions δ_0 and δ_1 (beginning from the start configuration) that makes M reach q_{accept} .
- Definition. An NTM M <u>decides</u> a language L ⊆ {0,1}* if
 M accepts x → x∈L

> On every sequence of applications of the transition functions on input x, M either reaches q_{accept} or q_{halt} .

- Definition. An NTM M accepts a string $x \in \{0, I\}^*$ iff on input x there **exists** a sequence of applications of the transition functions δ_0 and δ_1 (beginning from the start configuration) that makes M reach q_{accept} .
- Definition. An NTM M decides a language L ⊆ {0,1}* if
 M accepts x → x∈L

> On every sequence of applications of the transition functions on input x, M either reaches q_{accept} or q_{halt} .

remember in this course we'll always be dealing with TMs that halt on every input.

- Definition. An NTM M accepts a string $x \in \{0, I\}^*$ iff on input x there **exists** a sequence of applications of the transition functions δ_0 and δ_1 (beginning from the start configuration) that makes M reach q_{accept} .
- Definition. An NTM M decides L in T(|x|) time if
 - > M accepts x \iff x \in L

> On <u>every sequence</u> of applications of the transition functions on input x, M either reaches q_{accept} or q_{halt} within T(|x|) steps of computation.

Class NTIME

 Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.

- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be a language in NP. Then, there's a poly-time verifier M s.t,

 $x \in L \implies \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$

- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be a language in NP. Then, there's a poly-time verifier M s.t,

 $x \in L \implies \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$

Think of an NTM M' that on input x, at first <u>guesses</u> a $\mathbf{U} \in \{0, I\}^{p(|x|)}$ by applying δ_0 and δ_1 nondeterministically

- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be a language in NP. Then, there's a poly-time verifier M s.t,

 $x \in L \implies \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$

.... and then simulates M on (x, u) to verify M(x, u) = 1.

- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be in NTIME (n^c). Then, there's an NTM M' that decides L in $p(n) = O(n^c)$ time. (|x| = n)

- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be in NTIME (n^c). Then, there's an NTM M' that decides L in $p(n) = O(n^c)$ time. (|x| = n) Think of a verifier M that takes x and $u \in \{0, I\}^{p(n)}$ as input,

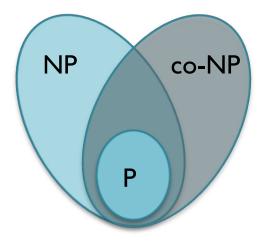
- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP = $\bigcup_{c>0}$ NTIME (n^c).

Proof sketch: Let L be in NTIME (n^c). Then, there's an NTM M' that decides L in p(n) = O(n^c) time. (|x| = n) Think of a verifier M that takes x and $u \in \{0, I\}^{p(n)}$ as input, and simulates M' on x with u as the sequence of choices for applying δ_0 and δ_1 .

- Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.
 A language L is in co-NP if L is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$.

- Definition. For every $L \subseteq \{0, I\}^*$ let $\overline{L} = \{0, I\}^* \setminus L$. A language L is in co-NP if \overline{L} is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$.
- Note: co-NP is <u>not</u> complement of NP. Every language in P is in both NP and co-NP.

- Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.
 A language L is in co-NP if L is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$.



- Definition. For every $L \subseteq \{0, I\}^*$ let $\overline{L} = \{0, I\}^* \setminus L$. A language L is in co-NP if \overline{L} is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$.
- Note: SAT is Cook reducible to SAT. But, there's a fundamental difference between the two problems that is captured by the fact that SAT is <u>not</u> known to be Karp reducible to SAT. In other words, there's no known poly-time verification process for SAT.

Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that

 $x \in L \implies \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$

Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that

Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that

 $\begin{array}{l} x \in L \quad \Longleftrightarrow \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I \\ x \in \overline{L} \quad \overleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = 0 \\ x \in \overline{L} \quad \Longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } \overline{M}(x, u) = I \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that

 $x \in L \quad \Longleftrightarrow \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$ $x \in \overline{L} \quad \longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = 0$ $x \in \overline{L} \quad \longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } \overline{M}(x, u) = I$ $\bigcap \\ \overline{M} \text{ is a poly-time TM}$

Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that

 $x \in L \iff \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$ $x \in \overline{L} \iff \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = 0$ $x \in \overline{L} \iff \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } \overline{M}(x, u) = I$

is in co-NP

- Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that
 - $x \in L \quad \Longleftrightarrow \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$ $x \in \overline{L} \quad \Longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = 0$ $x \in \overline{L} \quad \Longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } \overline{M}(x, u) = I$
- Definition. A language L ⊆ {0,1}* is in co-NP if there's a poly-time TM M such that

xEL
$$\iff \forall u \in \{0, I\}^{p(|x|)}$$
 s.t. $M(x, u) = I$
for NP this was \exists

- Definition. A language L' $\subseteq \{0, I\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. SAT is co-NP-complete.

- Definition. A language L' \subseteq {0,1}* is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. SAT is co-NP-complete. Proof. Let $L \in co-NP$. Then $\overline{L} \in NP$

- Definition. A language L' \subseteq {0,1}* is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. SAT is co-NP-complete. Proof. Let $L \in co-NP$. Then $\overline{L} \in NP$ $\Longrightarrow \overline{L} \leq_p SAT$

- Definition. A language L' \subseteq {0,1}* is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. SAT is co-NP-complete. Proof. Let $L \in co-NP$. Then $\overline{L} \in NP$

 - $\Rightarrow \overline{L} \leq_{p} SAT$ $\Rightarrow L \leq_{p} \overline{SAT}$

- Definition. A language L' \subseteq {0,1}* is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. Let
 - TAUTOLOGY = { ϕ : every assignment satisfies ϕ }. TAUTOLOGY is co-NP-complete.
 - Proof. Similar (homework)

- Definition. A language L' \subseteq {0,1}* is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. If L in NP-complete then L is co-NP-complete
 Proof. Similar (homework)