
Computational Complexity Theory

Lecture 6: NTM, Class co-NP and

 co-NP-completeness

Department of Computer Science,

Indian Institute of Science

Recap: Search version of NP problems

 Recall: A language L ⊆ {0,1}* is in NP if

 There’s a poly-time verifier M and poly. function p s.t.

 x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Remark: Search version of L only makes sense once we
have a verifier M in mind.

Recap: Decision versus Search

 Is the search version of an NP problem more difficult
than the corresponding decision version?

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

w.r.t any verifier M !

Recap: Decision versus Search

 Is search equivalent to decision for every NP problem?

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

 Sometimes, the decision version of a problem can be
trivial but the search version is possibly hard. E.g.,
Computing Nash Equilibrium (see class PPAD).

Homework: Read about total NP functions

Recap: Two types of poly-time reductions

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” (oracle) for deciding L2 .

Karp reduction implies Cook reduction

NTM: An alternate characterization of NP

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

also called nondeterministically

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

this is different from randomly

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

 Unlike DTMs, NTMs are not intended to be
physically realizable (because of the arbitrary
nature of application of the transition functions).

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides a language L ⊆ {0,1}* if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt.

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides a language L ⊆ {0,1}* if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt.

remember in this course we’ll always be dealing with TMs
that halt on every input.

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides L in T(|x|) time if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt
within T(|x|) steps of computation.

Class NTIME

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

Think of an NTM M’ that on input x, at first guesses a u ∈{0,1}p(|x|) by applying δ0 and δ1 nondeterministically

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

…. and then simulates M on (x, u) to verify M(x,u) = 1.

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

Think of a verifier M that takes x and u ∈{0,1}p(n) as
input,

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

Think of a verifier M that takes x and u ∈{0,1}p(n) as
input, and simulates M’ on x with u as the sequence of
choices for applying δ0 and δ1 .

c > 0

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

 Note: co-NP is not complement of NP. Every language
in P is in both NP and co-NP.

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

 NP co-NP

P

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

 Note: SAT is Cook reducible to SAT. But, there’s a
fundamental difference between the two problems that
is captured by the fact that SAT is not known to be
Karp reducible to SAT. In other words, there’s no known
poly-time verification process for SAT.

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

M outputs the
opposite of M

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

M is a poly-time TM

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

is in co-NP

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 Definition. A language L ⊆ {0,1}* is in co-NP if there’s a
poly-time TM M such that

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

for NP this was ∃

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

 Proof. Let L ∈ co-NP. Then

 L ∈ NP

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

 Proof. Let L ∈ co-NP. Then

 L ∈ NP

 L ≤p SAT

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

 Proof. Let L ∈ co-NP. Then

 L ∈ NP

 L ≤p SAT

 L ≤p SAT

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. Let

 TAUTOLOGY = {ϕ : every assignment satisfies ϕ }.

 TAUTOLOGY is co-NP-complete.

 Proof. Similar (homework)

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. If L in NP-complete then L is co-NP-complete

 Proof. Similar (homework)

