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Recap: Search version of NP problems 

 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 

 

• Remark:  Search version of L only makes sense once we 
have a verifier M in mind. 

 



Recap: Decision versus Search 

 Is the search version of an NP problem more difficult 
than the corresponding decision version? 

 

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

w.r.t any verifier M ! 



Recap: Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 

 Sometimes, the decision version of a problem can be 
trivial but the search version is possibly hard. E.g., 
Computing Nash Equilibrium (see class PPAD).  

 
Homework:  Read about total NP functions 



Recap: Two types of poly-time reductions 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Karp or many-one) reducible to a language L2 ⊆ {0,1}* 
if there’s a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if 
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” (oracle) for deciding L2 . 

 
Karp reduction  implies  Cook reduction 



NTM:  An alternate characterization of NP 



Nondeterministic Turing Machines 

 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
special state qaccept in addition to qstart and qhalt. 
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one of two functions δ0 and δ1 arbitrarily. 
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Nondeterministic Turing Machines 

 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
special state qaccept in addition to qstart and qhalt. 

 At every step of computation, the machine applies 
one of two functions δ0 and δ1 arbitrarily. 

 Unlike DTMs,  NTMs are not intended to be 
physically realizable (because of the arbitrary 
nature of application of the transition functions). 



Nondeterministic Turing Machines 

 Definition.  An NTM M accepts a string x∈{0,1}* iff on 
input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
start configuration) that makes M reach qaccept.  

 

 Defintion.  An NTM M decides a language L ⊆ {0,1}* if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt. 
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 Defintion.  An NTM M decides a language L ⊆ {0,1}* if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt. 

remember in this course we’ll always be dealing with TMs 
that halt on every input. 



Nondeterministic Turing Machines 

 Definition.  An NTM M accepts a string x∈{0,1}* iff on 
input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
start configuration) that makes M reach qaccept.  

 

 Defintion.  An NTM M decides L in T(|x|) time if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt 
within T(|x|) steps of computation. 



Class NTIME 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  
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 Theorem.  NP = ∪ NTIME (nc). 
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a poly-time verifier M s.t,   

        x∈L         ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

Think of an NTM M’ that on input x, at first guesses a u ∈{0,1}p(|x|) by applying δ0 and δ1 nondeterministically 
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Alternate characterization of NP 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  

 

 Theorem.  NP = ∪ NTIME (nc). 

   Proof sketch:  Let L be a language in NP.  Then, there’s 
a poly-time verifier M s.t,   

        x∈L         ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

…. and then simulates M on (x, u) to verify M(x,u) = 1. 

c > 0 
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Alternate characterization of NP 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  

 

 Theorem.  NP = ∪ NTIME (nc). 

   Proof sketch:  Let L be in NTIME (nc).  Then, there’s an 
NTM M’ that decides L in p(n) = O(nc) time.    (|x| = n)  

Think of a verifier M that takes x and u ∈{0,1}p(n) as 
input, and simulates M’ on x with u as the sequence of 
choices for applying δ0 and δ1 . 

c > 0 



Class co-NP 

 Definition.   For every L ⊆ {0,1}* let L = {0,1}* \ L.   

   A language L is in co-NP if  L is in NP. 

 

 Example.   SAT  =  {ϕ : ϕ is not satisfiable}. 
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   A language L is in co-NP if  L is in NP. 
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 Note: co-NP is not complement of NP. Every language 
in P is in both NP and co-NP. 
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Class co-NP 

 Definition.   For every L ⊆ {0,1}* let L = {0,1}* \ L.   

   A language L is in co-NP if  L is in NP. 

 

 Example.   SAT  =  {ϕ : ϕ is not satisfiable}. 

 

 Note:  SAT is Cook reducible to SAT. But, there’s a 
fundamental difference between the two problems that 
is captured by the fact that SAT is not known to be 
Karp reducible to SAT. In other words, there’s no known 
poly-time verification process for SAT.   

 

 



Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 
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verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 0 

             

 

 

 



Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 0 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 

 

 

 

M outputs the 
opposite of M 



Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 0 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 

 

 

 

M is a poly-time TM 



Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 
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Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 0 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 Definition.  A language L ⊆ {0,1}* is in co-NP if there’s a 
poly-time TM M such that 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 
for NP this was ∃ 



co-NP-completeness 

 Definition.  A language L’ ⊆ {0,1}* is co-NP-complete if 

 L’ is in co-NP 

 Every language L in co-NP is polynomial-time (Karp) 
reducible to L’. 
 

• Theorem.  SAT is co-NP-complete. 
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co-NP-completeness 

 Definition.  A language L’ ⊆ {0,1}* is co-NP-complete if 

 L’ is in co-NP 

 Every language L in co-NP is polynomial-time (Karp) 
reducible to L’. 
 

• Theorem.  Let  

         TAUTOLOGY = {ϕ :  every assignment satisfies ϕ }. 

   TAUTOLOGY is co-NP-complete.  

   Proof.   Similar (homework) 



co-NP-completeness 

 Definition.  A language L’ ⊆ {0,1}* is co-NP-complete if 

 L’ is in co-NP 

 Every language L in co-NP is polynomial-time (Karp) 
reducible to L’. 
 

• Theorem. If L in NP-complete then L is co-NP-complete  

   Proof.   Similar (homework) 


