Computational Complexity Theory

Lecture 7: Class EXP;
Time Hierarchy Theorem

Department of Computer Science,
Indian Institute of Science




Recap: Nondeterministic Turing Machines

* A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

e |t is formally defined by a tuple (I', Q, 0,, 0)). It has a
special state q,..,, in addition to q, and qj,.

* At every step of computation, the machine applies
one of two functions 0,and O, arbitrarily.

e Unlike DTMs, NTMs are not intended to be
physically realizable (because of the arbitrary
nature of application of the transition functions).




Recap: Nondeterministic Turing Machines

° An NTM M accepts a string x€{0, | }* iff on
input x there exists a sequence of applications of the
transition functions 0, and 0, (beginning from the
start configuration) that makes M reach q, .,

° . An NTM M decides L in T(|x|) time if
» M accepts x = xEL

» On every sequence of applications of the transition
functions on input x, M either reaches q, ... Or G,
within T(|x|) steps of computation.




Recap: Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = UONTIME (n°).

Proof sketch: Let L be a language in NF. Then, there’s
a poly-time verifier M s.t,

x€L e 3Ju €{0,1}Px) s.t. M(x,u) = |



Recap: Class co-NP

o Definition. For every L € {0,1}* let L = {0, 1}*\ L.
A language L is in co-NP if Lis in NP,

e Example. SAT = {® : ¢ is not satisfiable}.




Recap: Class co-NP : Alternate definition

* Recall, a language L < {0,I}* is in NP if there’s a poly
function p and a poly-time verifier M such that

x€L e=»3u €{0,1}P) s t. M(x,u) = |
x€EL vy €{0,1}P) st. M(x,u) =0
x€EL e»Vvu €{0,1}P(x) st. M(x,u) = |

o Definition. A language L € {0,1}* is in co-NP if there’s a
poly function p and a poly-time TM M such that

xeL e vu €{0,1}PX) s.t. M(x,u) = |

for NP this was 3



Recap: co-NP-completeness

o Definition. A language L' < {0,1}* is co-NP-complete if
» Lisin co-NP
» Every language L in co-NP is polynomial-time (Karp)
reducible to L.

« Theorem. SAT and TAUTOLOGY are co-NP-complete.

« Theorem.If L in NP-complete then L is co-NP-complete



The diagram again

If a co-NP complete language
belongs to NP then

co-NP S NP
=) co-NP =NP

1

Let C, and C, be two
complexity classes.

If C, € C,,then
co-C, € co-C,.

Obs. co-(co-C) = C.




The diagram again

If a co-NP-complete language
belongs to NP then

co-NP S NP
=) co-NP =NP

1

Let C, and C, be two
complexity classes.

If C, € C,,then
co-C, € co-C,.

Obs. co-(co-C) = C.




The diagram again

If an NP-complete language
belongs to co-NP then

NP < co-NP
= NP =coNP

1

Let C, and C, be two
complexity classes.

If C, € C,,then
co-C, € co-C,.

Obs. co-(co-C) = C.




Integer factoring in NP (1 co-NP

e Integer factoring.
FACT = {(N, U): there’s a prime in [U] dividing N}

e Claim. FACT € NP N co-NP

e So, FACT is NP-complete implies NP = co-NP.



Integer factoring in NP (1 co-NP

e Integer factoring.
FACT = {(N, U): there’s a prime in [U] dividing N}

e Claim. FACT € NP N co-NP

e Proof. FACT € NP : Give p as a certificate. The
verifier checks if p is prime (AKS test), | < p = U and
p divides N.



Integer factoring in NP (1 co-NP

FACT = {(N, U): there’s a prime in [U] dividing N}

° FACT € NP (1 co-NP

* Proof. FACT € NP : Give the complete prime
factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].



Integer factoring in NP (1 co-NP

FACT = {(N, U): there’s a prime in [U] dividing N}

° FACT € NP (1 co-NP

* Proof. FACT € NP : Give the complete prime
factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].

° If FACT € P, then there’s a algorithm to find the
prime factorization a given n-bit integers in poly(n) time.



Integer factoring in NP (1 co-NP

e Integer factoring.
FACT = {(N, U): there’s a prime in [U] dividing N}

e Factoring algorithm. Dixon’s randomized algorithm
factors an n-bit number in exp(O(Vn log n)) time.



Class EXP

e Definition.  Class EXP is the exponential time
analogue of class F.

EXP = U DTIME (2" )

c=|



Class EXP

e Definition.  Class EXP is the exponential time
analogue of class P.

EXP = UDTIME (2 )

c= |

e Observation. P C I}\lP c EXP




Class EXP

e Definition.  Class EXP is the exponential time
analogue of class F.

EXP = U DTIME (2" )

c=|

e Observation. P € NP € EXP

e Exponential Time Hypothesis.
Any algorithm for 3-SAT takes = 2°" time, where 6> 0
is some fixed constant and n is the no. of variables.

\

In other words, d cannot be made arbitrarily close to 0.




Class EXP

e Definition.  Class EXP is the exponential time
analogue of class F.

EXP = U DTIME (2" )

c=|

e Observation. P € NP € EXP

e Exponential Time Hypothesis.
Any algorithm for 3-SAT takes = 2°" time, where 6> 0
is some fixed constant and n is the no. of variables.

ETH = P#NP



Class EXP

e Definition.  Class EXP is the exponential time
analogue of class F.

EXP = U DTIME (2" )

c=|

e Observation. P € NP € EXP

e Exponential Time Hypothesis.
Any algorithm for 3-SAT takes = 2°" time, where 6> 0
is some fixed constant and n is the no. of variables.

Read about Strong Exponential Time Hypothesis (SETH).



Diagonalization



Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.



Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

e These techniques are characterized by two main
features:



Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

e These techniques are characterized by two main
features:

|. There’s a universal TM U that when given
strings O and X, simulates M, on x with only a
small overhead.



Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

e These techniques are characterized by two main
features:

|. There’s a universal TM U that when given
strings O and X, simulates M, on x with only a
small overhead.

" If M, takes T time on x then U takes

O(T log T) time to simulate M, on x.



Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

e These techniques are characterized by two main
features:

|. There’s a universal TM U that when given
strings O and X, simulates M, on x with only a
small overhead.

2. Every string represents some TM, and every
TM can be represented by infinitely many
strings.




Time Hierarchy Theorem

- An application of Diagonalization



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) .log f(n) = o(g(n)). eg. f(n) =n, g(n) =n2




Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with|f(n) = nand g(n) = n?.




Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) .log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
Show that there’s a language L decided by a
TM D with time complexity O(n?) s.t.,any TM

M with runtime O(n) cannot decide L.



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n))-
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
TMD:

|. On input x, compute |x|2.



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”

TMD:

|. On input x, compute |x|2.

D’s time steps not M, ’s
time steps.

2. Simulate|M, on x

for |x|? steps.




Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
TMD:
|. On input x, compute |x|2.
2. Simulate M, on x for |x|? steps.

a. If M, stops and outputs b then output |-b.



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) .log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
T™MD:
|. On input x, compute |x|2.
2. Simulate M, on x for |x|? steps.
a. If M, stops and outputs b then output |-b.
b. Otherwise, output |.



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
TMD:
|. On input x, compute |x|2.
2. Simulate M, on x for |x|? steps.

a. If M, stops and outputs b then output |-b.

b. Otherwise, output |. /

D outputs the opposite of what M, outputs.



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n))-
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”

D runs in O(n?) time as n? is time-constructible.




Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) .log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
Claim. There’s no TM M with running time O(n) that
decides L (the language accepted by D).



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”

» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n))-
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”

» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

C is a constant



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”

» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

» Think of a sufficiently large x such that M = M, .




Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.




Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.

» D on input x, simulates M_ on x for |x|* steps.




Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» D on input x, simulates M_ on x for |x|? steps. Since M_ stops

within c.[x| steps, D’s simulation also stops within c’.c. |x|. log
x| steps.

c’ is a constant



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» D on input x, simulates M_ on x for |x|? steps. Since M_ stops

within c.[x| steps, D’s simulation also stops within c’.c. |x|. log
IX| steps. (as c’.c.|x|.log |x| < [x|?* for sufficiently large x)




Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» D on input x, simulates M_ on x for |x|? steps. Since M_ stops

within c.[x| steps, D’s simulation also stops within c’.c. |x|. log
x| steps. And D outputs the opposite of what M outputs!




Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» Hence, D(x) = |-b.




Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.|(i.e., M(x) = D(x) for all x)
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» Hence, D(x) = |-b.

Contradiction! ™M does not decide L.



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).

e Theorem. DTIME(f(n)) & DTIME(g(n))

e [heorem. P & EXP

Proof. Similar



Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?




Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.



Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

° No algorithm solves 3SUM in O(n?*¥)
time for some constant £€> 0.



Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

° No algorithm solves 3SUM in O(n?*¥)
time for some constant £€> 0.

» However, there’s a ~O(n?/ (log n)?) time algorithm for
3SUM. (“~” suppressing a poly(log log n) factor.)



Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

° No algorithm solves 3SUM in O(n?*¥)
time for some constant £€> 0.

e KSUM: Given a list of n numbers, check if there exists
Ik numbers in the list that sum to zero.



Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

° No algorithm solves 3SUM in O(n?*¥)
time for some constant £€> 0.

o KSUM: Given a list of n numbers, check if there exists
k. numbers in the list that sum to zero.

o ETH implies
kSUM requires n“® time.



