
Computational Complexity Theory

Lecture 7: Class EXP;

 Time Hierarchy Theorem

Department of Computer Science,
Indian Institute of Science

Recap: Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

 Unlike DTMs, NTMs are not intended to be
physically realizable (because of the arbitrary
nature of application of the transition functions).

Recap: Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides L in T(|x|) time if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt
within T(|x|) steps of computation.

Recap: Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

c > 0

Recap: Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

 NP co-NP

P

Recap: Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly
function p and a poly-time verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 Definition. A language L ⊆ {0,1}* is in co-NP if there’s a
poly function p and a poly-time TM M such that

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

for NP this was ∃

Recap: co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT and TAUTOLOGY are co-NP-complete.

• Theorem. If L in NP-complete then L is co-NP-complete

The diagram again

NP co-NP

P

NPC co-NPC

If a co-NP complete language
belongs to NP then

 co-NP ⊆ NP
 co-NP = NP

Let C1 and C2 be two
complexity classes.

If C1 ⊆ C2 , then
co-C1 ⊆ co-C2.

Obs. co-(co-C) = C .

The diagram again

NP co-NP

P

NPC co-NPC

If a co-NP-complete language
belongs to NP then

 co-NP ⊆ NP
 co-NP = NP

Let C1 and C2 be two
complexity classes.

If C1 ⊆ C2 , then
co-C1 ⊆ co-C2.

Obs. co-(co-C) = C .

??

The diagram again

NP co-NP

P

NPC co-NPC

If an NP-complete language
belongs to co-NP then

 NP ⊆ co-NP
 NP = co-NP

Let C1 and C2 be two
complexity classes.

If C1 ⊆ C2 , then
co-C1 ⊆ co-C2.

Obs. co-(co-C) = C .

??

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 So, FACT is NP-complete implies NP = co-NP.

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 Proof. FACT ∈ NP : Give p as a certificate. The
verifier checks if p is prime (AKS test), 1 ≤ p ≤ U and
p divides N.

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 Proof. FACT ∈ NP : Give the complete prime
factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 Proof. FACT ∈ NP : Give the complete prime
factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].

 Homework: If FACT ∈ P, then there’s a algorithm to find the
prime factorization a given n-bit integers in poly(n) time.

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Factoring algorithm. Dixon’s randomized algorithm
factors an n-bit number in exp(O(√n log n)) time.

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)
c

c ≥ 1

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

c

c ≥ 1

NP co-NP

P

EXP

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

In other words, δ cannot be made arbitrarily close to 0.

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

ETH P ≠ NP

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

Homework: Read about Strong Exponential Time Hypothesis (SETH).

Diagonalization

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

If Mα takes T time on x then U takes
O(T log T) time to simulate Mα on x.

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

2. Every string represents some TM, and every
TM can be represented by infinitely many
strings.

Time Hierarchy Theorem

- An application of Diagonalization

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

e.g. f(n) = n, g(n) = n2

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 Task: Show that there’s a language L decided by a

 TM D with time complexity O(n2) s.t., any TM

 M with runtime O(n) cannot decide L.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

D’s time steps not Mx’s
time steps.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

 a. If Mx stops and outputs b then output 1-b.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

 a. If Mx stops and outputs b then output 1-b.

 b. Otherwise, output 1.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

 a. If Mx stops and outputs b then output 1-b.

 b. Otherwise, output 1.

D outputs the opposite of what Mx outputs.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 D runs in O(n2) time as n2 is time-constructible.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 Claim. There’s no TM M with running time O(n) that

 decides L (the language accepted by D).

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

c is a constant

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log
|x| steps.

c’ is a constant

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log
|x| steps. (as c’.c. |x|. log |x| < |x|2 for sufficiently large x)

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log
|x| steps. And D outputs the opposite of what Mx outputs!

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 Hence, D(x) = 1-b.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 Hence, D(x) = 1-b.

 Contradiction! M does not decide L.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Theorem. P ⊊ EXP

 Proof. Similar (homework)

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

 Conjecture. No algorithm solves 3SUM in O(n2-ε)
time for some constant ε> 0.

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

 Conjecture. No algorithm solves 3SUM in O(n2-ε)
time for some constant ε> 0.

 However, there’s a ~O(n2 / (log n)2) time algorithm for
3SUM. (“~” suppressing a poly(log log n) factor.)

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

 Conjecture. No algorithm solves 3SUM in O(n2-ε)
time for some constant ε> 0.

 kSUM: Given a list of n numbers, check if there exists
k numbers in the list that sum to zero.

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

 Conjecture. No algorithm solves 3SUM in O(n2-ε)
time for some constant ε> 0.

 kSUM: Given a list of n numbers, check if there exists
k numbers in the list that sum to zero.

 Theorem (Patrascu & Williams 2010). ETH implies
kSUM requires nΩ(k) time.

