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Recap: Nondeterministic Turing Machines 

 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
special state qaccept in addition to qstart and qhalt. 

 At every step of computation, the machine applies 
one of two functions δ0 and δ1 arbitrarily. 

 Unlike DTMs,  NTMs are not intended to be 
physically realizable (because of the arbitrary 
nature of application of the transition functions). 



Recap: Nondeterministic Turing Machines 

 Definition.  An NTM M accepts a string x∈{0,1}* iff on 
input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
start configuration) that makes M reach qaccept.  

 

 Defintion.  An NTM M decides L in T(|x|) time if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt 
within T(|x|) steps of computation. 



Recap: Alternate characterization of NP 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  

 

 Theorem.  NP = ∪ NTIME (nc). 

   Proof sketch:  Let L be a language in NP.  Then, there’s 
a poly-time verifier M s.t,   

        x∈L         ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

c > 0 



Recap: Class co-NP 

 Definition.   For every L ⊆ {0,1}* let L = {0,1}* \ L.   

   A language L is in co-NP if  L is in NP. 

 

 Example.   SAT  =  {ϕ : ϕ is not satisfiable}. 

 

 

 NP co-NP 

P 



Recap: Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly 
function p and a poly-time verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 0 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 Definition.  A language L ⊆ {0,1}* is in co-NP if there’s a 
poly function p and a poly-time TM M such that 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 
for NP this was ∃ 



Recap: co-NP-completeness 

 Definition.  A language L’ ⊆ {0,1}* is co-NP-complete if 

 L’ is in co-NP 

 Every language L in co-NP is polynomial-time (Karp) 
reducible to L’. 
 

• Theorem.  SAT and TAUTOLOGY are co-NP-complete. 

 

• Theorem. If L in NP-complete then L is co-NP-complete  

 



The diagram again 

NP co-NP 

P 

NPC co-NPC 

If a co-NP complete language 
belongs to NP then 
 
        co-NP  ⊆ NP  
        co-NP   = NP 
 
              

Let C1 and C2 be two 
complexity classes. 
 
If C1 ⊆ C2 , then  
co-C1 ⊆ co-C2. 
 
Obs. co-(co-C) = C . 



The diagram again 

NP co-NP 

P 

NPC co-NPC 

If a co-NP-complete language 
belongs to NP then 
 
        co-NP  ⊆ NP  
        co-NP   = NP 
 
              

Let C1 and C2 be two 
complexity classes. 
 
If C1 ⊆ C2 , then  
co-C1 ⊆ co-C2. 
 
Obs. co-(co-C) = C . 

?? 



The diagram again 

NP co-NP 

P 

NPC co-NPC 

If an NP-complete language 
belongs to co-NP then 
 
 NP  ⊆ co-NP  
             NP   = co-NP 
 
              

Let C1 and C2 be two 
complexity classes. 
 
If C1 ⊆ C2 , then  
co-C1 ⊆ co-C2. 
 
Obs. co-(co-C) = C . 

?? 



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 

 So, FACT is NP-complete implies NP = co-NP. 



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 Proof. FACT ∈ NP :  Give p as a certificate. The 
verifier checks if p is prime (AKS test), 1 ≤ p ≤ U and 
p divides N.   



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 Proof. FACT ∈ NP : Give the complete prime 
factorization of N as a certificate. The verifier checks 
the correctness of the factorization, and then checks if 
none of the prime factors is in [U].   



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 Proof. FACT ∈ NP : Give the complete prime 
factorization of N as a certificate. The verifier checks 
the correctness of the factorization, and then checks if 
none of the prime factors is in [U].   
 

 Homework: If FACT ∈ P, then there’s a algorithm to find the 
prime factorization a given n-bit integers in poly(n) time. 



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Factoring algorithm. Dixon’s randomized algorithm 
factors an n-bit number in exp(O(√n log n)) time. 



Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  
c 

c ≥ 1 



Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

c 

c ≥ 1 

NP co-NP 

P 

EXP 



Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

 

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) 
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0 
is some fixed constant and n is the no. of variables.  

c 

c ≥ 1 

In other words, δ cannot be made arbitrarily close to 0. 



Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

 

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) 
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0 
is some fixed constant and n is the no. of variables.  

c 

c ≥ 1 

ETH          P ≠ NP 



Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

 

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) 
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0 
is some fixed constant and n is the no. of variables.  

c 

c ≥ 1 

Homework:  Read about Strong Exponential Time Hypothesis (SETH).           
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Diagonalization 

 Diagonalization refers to a class of techniques used in 
complexity theory to separate complexity classes. 

 These techniques are characterized by two main 
features: 

1. There’s a universal TM U that when given 
strings α and x, simulates Mα on x with only a 
small overhead. 

If Mα takes T time on x then U takes 
O(T log T) time to simulate Mα on x.  



Diagonalization 

 Diagonalization refers to a class of techniques used in 
complexity theory to separate complexity classes. 

 These techniques are characterized by two main 
features: 

1. There’s a universal TM U that when given 
strings α and x, simulates Mα on x with only a 
small overhead. 

 

2. Every string represents some TM,  and every 
TM can be represented by infinitely many 
strings. 



Time Hierarchy Theorem 

- An application of Diagonalization 



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 

e.g.  f(n) = n,  g(n) = n2 
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Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

      Task:  Show that there’s a language L decided by a  

              TM D with time complexity O(n2) s.t., any TM  

              M with runtime O(n) cannot decide L.  



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

      TM D : 

          1.  On input x, compute |x|2. 
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      TM D : 

          1.  On input x, compute |x|2. 

          2.  Simulate Mx on x for |x|2 steps. 

D’s time steps not Mx’s 
time steps. 
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                a.  If Mx stops and outputs b then output 1-b.  



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

      TM D : 

          1.  On input x, compute |x|2. 

          2.  Simulate Mx on x for |x|2 steps. 

                a.  If Mx stops and outputs b then output 1-b.  

                b.  Otherwise, output 1. 



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

      TM D : 

          1.  On input x, compute |x|2. 

          2.  Simulate Mx on x for |x|2 steps. 

                a.  If Mx stops and outputs b then output 1-b.  

                b.  Otherwise, output 1. 

D outputs the opposite of what Mx outputs. 



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

         D runs in O(n2) time as n2 is time-constructible. 

           



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

     Claim.  There’s no TM M with running time O(n) that 

                decides L (the language accepted by D). 
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 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

 For contradiction, suppose M decides L and runs for at most 
c.n steps on inputs of length n.  (i.e., M(x) = D(x) for all x) 



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

 For contradiction, suppose M decides L and runs for at most 
c.n steps on inputs of length n.  (i.e., M(x) = D(x) for all x)  

c is a constant 
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Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

 For contradiction, suppose M decides L and runs for at most 
c.n steps on inputs of length n.  (i.e., M(x) = D(x) for all x) 

 Think of a sufficiently large x such that M = Mx . 
 Suppose M(x) = Mx(x) = b. 

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops 
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log 
|x| steps.   (as c’.c. |x|. log |x|  <  |x|2 for sufficiently large x) 



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

 For contradiction, suppose M decides L and runs for at most 
c.n steps on inputs of length n.  (i.e., M(x) = D(x) for all x) 

 Think of a sufficiently large x such that M = Mx . 
 Suppose M(x) = Mx(x) = b. 

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops 
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log 
|x| steps.   And D outputs the opposite of what Mx outputs!  



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  
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   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

 For contradiction, suppose M decides L and runs for at most 
c.n steps on inputs of length n.  (i.e., M(x) = D(x) for all x) 

 Think of a sufficiently large x such that M = Mx . 
 Suppose M(x) = Mx(x) = b. 

 Hence, D(x) = 1-b. 
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 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

 For contradiction, suppose M decides L and runs for at most 
c.n steps on inputs of length n.  (i.e., M(x) = D(x) for all x) 

 Think of a sufficiently large x such that M = Mx . 
 Suppose M(x) = Mx(x) = b. 

 Hence, D(x) = 1-b. 

 

          Contradiction!   M does not decide L. 



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

 

 Theorem.  P  ⊊  EXP  

   Proof.  Similar  (homework)  
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Time Hierarchy Theorem  

 Is there a natural problem that takes close to n2 time?  

 

 3SUM:  Given a list of n numbers, check if there exists 
3 numbers in the list that sum to zero.  

 Conjecture. No algorithm solves 3SUM in O(n2-ε) 
time for some constant ε> 0.    

 

 However, there’s a ~O(n2 / (log n)2) time algorithm for 
3SUM.  (“~” suppressing a poly(log log n) factor.)  
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 Is there a natural problem that takes close to n2 time?  

 

 3SUM:  Given a list of n numbers, check if there exists 
3 numbers in the list that sum to zero.  

 Conjecture. No algorithm solves 3SUM in O(n2-ε) 
time for some constant ε> 0.    

 kSUM:  Given a list of n numbers, check if there exists 
k numbers in the list that sum to zero.  

 



Time Hierarchy Theorem  

 Is there a natural problem that takes close to n2 time?  

 

 3SUM:  Given a list of n numbers, check if there exists 
3 numbers in the list that sum to zero.  

 Conjecture. No algorithm solves 3SUM in O(n2-ε) 
time for some constant ε> 0.    

 kSUM:  Given a list of n numbers, check if there exists 
k numbers in the list that sum to zero.  

 Theorem (Patrascu & Williams 2010). ETH implies 
kSUM requires nΩ(k) time. 

 


