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Recap: Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

c 
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Recap: Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

 

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) 
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0 
is some fixed constant and n is the no. of variables.  

c 

c ≥ 1 

In other words, δ cannot be made arbitrarily close to 0. 



Recap: Class co-NP and NP∩co-NP 
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Edmonds (1966) 

…conjectured P  =  NP ∩ co-NP 



Recap: Class co-NP and NP∩co-NP 

NP co-NP 

P 

NPC co-NPC 

Conjecture:  NP ≠ co-NP 
       
                       P ≠ NP 
 
General belief: P  ≠  NP ∩ co-NP 
 
Check:  
https://cstheory.stackexchange.com/questions/20
021/reasons-to-believe-p-ne-np-cap-conp-or-not 

• Integer factoring (FACT)   
• Approximate shortest vector in a lattice   
       Ref:  “Lattice problems in NP∩co-NP”  by Aharonov & Regev (2005) 
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NP-intermediate problems 

NP co-NP 

P 

NPC co-NPC 

Conjecture:  NP ≠ co-NP 
       
                       P ≠ NP 
 
General belief: P  ≠  NP ∩ co-NP 
 
Obs: If NP ≠ co-NP and FACT ∉ P 
then FACT is NP-intermediate. 
 
Ladner’s theorem: P ≠ NP implies 
existence of a NP-intermediate 
language. 
    (proved using diagonalization) • Integer factoring (FACT)   

• Approximate shortest vector in a lattice   
       Ref:  “Lattice problems in NP∩co-NP”  by Aharonov & Regev (2005) 
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Recap: Diagonalization 

 Diagonalization refers to a class of techniques used in 
complexity theory to separate complexity classes. 

 These techniques are characterized by two main 
features: 

1. There’s a universal TM U that when given 
strings α and x, simulates Mα on x with only a 
small overhead. 

 

2. Every string represents some TM,  and every 
TM can be represented by infinitely many 
strings. 



Recap:  Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 

 Theorem. (Hartmanis & Stearns 1965)  

           DTIME(f(n))  ⊊  DTIME(g(n))  

 

 Theorem.  P  ⊊  EXP  

 

 This type of results are called lower bounds. 

       



Ladner’s Theorem 

- Another application of Diagonalization 



NP-intermediate problems 

 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  

 

P 

NPC 

NP NP-intermediate 



NP-intermediate problems 

 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language. 

 



NP-intermediate problems 

 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.  

   Proof.   A delicate argument using diagonalization. 

 

 



NP-intermediate problems 

 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language. 

   Proof.   Let H:    be a function.  
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 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
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NP-intermediate problems 

 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language. 

   Proof.   Let H:    be a function.  

          

    Let    SATH = {Ψ0 1      :  Ψ ∈ SAT and |Ψ| = m}    

 

m 
H(m) 

H would be defined in such a way that SATH is NP-intermediate 
                             (assuming P ≠ NP ) 
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 Theorem.  There’s a function H:   such that 
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Ladner’s theorem:  Constructing  H 

 Theorem.  There’s a function H:   such that 

 

1. H(m) is computable from m in O(m3) time. 

 

2. If  SATH ∈ P   then  H(m)  ≤  C  (a constant). 

 

3. If  SATH  ∉  P   then  H(m)            with m. 

 

   Proof:   Later (uses diagonalization). 

∞ 

Let’s see the proof of Ladner’s theorem 
assuming the existence of such a “special” H. 
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Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH ∈ P.   Then H(m)  ≤  C. 

 This implies a poly-time algorithm for SAT as follows: 

 On input ϕ , find m = |ϕ|. 

 

 Compute H(m), and construct the string  ϕ 0 1 

 

 Check if   ϕ 0 1         belongs to SATH . 
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length at most  m + 1 + mC 



Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH ∈ P.   Then H(m)  ≤  C. 

 This implies a poly-time algorithm for SAT as follows: 

 On input ϕ , find m = |ϕ|. 

 

 Compute H(m), and construct the string  ϕ 0 1 

 

 Check if   ϕ 0 1         belongs to SATH . 

 

 As P  ≠ NP, it must be that SATH  ∉  P . 

m 
H(m) 

m 
H(m) 



Ladner’s theorem:  Proof 
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s.t. H(m0) ≤ 2c. 
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 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 
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Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m).  (Homework:  Verify that 
this can be done in poly(n) time.) 
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s.t. H(m0) ≤ 2c. 
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 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 

Either m ≤ m0 (in which case the task reduces to 
checking if a constant-size Ψ is satisfiable),  

Let m0 be the largest 

s.t. H(m0) ≤ 2c. 



Ladner’s theorem:  Proof 
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 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 
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SAT  ≤p SATH 
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f 

or H(m) > 2c (as H(m) tends to infinity with m). 

Let m0 be the largest 

s.t. H(m0) ≤ 2c. 



Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence, w.l.o.g.               |f(ϕ)|  ≥  k >  m2c 
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Ladner’s theorem:  Proof 
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 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence,      √n  ≥  m.   Also  ϕ ∈ SAT   iff   Ψ ∈ SAT 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 
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Thus, checking if an n-size formula ϕ 
is satisfiable reduces to checking if a 
√n-size formula Ψ is satisfiable. 
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 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence,      √n  ≥  m.   Also  ϕ ∈ SAT   iff   Ψ ∈ SAT 
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Do this recursively!   Only O(log log n) recursive steps required. 



Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence,      √n  ≥  m.   Also  ϕ ∈ SAT   iff   Ψ ∈ SAT 

 

 Hence SATH is not NP-complete, as P  ≠ NP. 

∞ 
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Ladner’s theorem:  Properties of  H 

 Theorem.  There’s a function H:   such that 

 

1. H(m) is computable from m in O(m3) time. 

 

2. If  SATH ∈ P   then  H(m)  ≤  C  (a constant). 

 

3. If  SATH  ∉  P   then  H(m)            with m. 

 

 

 SATH = {Ψ0 1      :  Ψ ∈ SAT and |Ψ| = m}  

∞ 
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Construction of  H 

 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).   
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 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).  

 

 Think of computing H(m) sequentially: Compute H(1), 
H(2),…,H(m-1). Just before computing H(m), find 
SATH ∩ {0,1}log m. 



Construction of  H 

 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).   

 

 Construction.  H(m) is the smallest k < log log m s.t. 

1. Mk decides membership of all length up to   
log m strings x in SATH within k.|x|k time.   

2. If no such k exists then H(m) = log log m. 

 



Construction of  H 

 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).   

 

 Homework.  Prove that H(m) is computable from m 
in O(m3) time. 



Construction of  H 

 Claim.  If  SATH ∈ P then H(m)  ≤  C  (a constant). 

 Proof.  There is a poly-time M that decides 
membership of every x in SATH within c.|x|c time.  



Construction of  H 

 Claim.  If  SATH ∈ P then H(m)  ≤  C  (a constant). 

 Proof.  There is a poly-time M that decides 
membership of every x in SATH within c.|x|c time.  

 

 As M can be represented by infinitely many strings, 
there’s anα ≥ c s.t. M = Mα decides membership of 
every x in SATH within α.|x|α time.  

 

 So, for every m satisfying α < log log m,  H(m) ≤ α.  



Construction of  H 

 Claim.  If H(m)  ≤  C (a constant) for infinitely many 
m, then SATH ∈ P. 

 Proof.  There’s a k ≤ C s.t. H(m) = k for infinitely many 
m.  
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 Claim.  If H(m)  ≤  C (a constant) for infinitely many 
m, then SATH ∈ P. 

 Proof.  There’s a k ≤ C s.t. H(m) = k for infinitely many 
m.  

 

 Pick any x ∈ {0,1}*.  Think of a large enough m s.t.      
|x| ≤ log m and H(m) = k.  



Construction of  H 

 Claim.  If H(m)  ≤  C (a constant) for infinitely many 
m, then SATH ∈ P. 

 Proof.  There’s a k ≤ C s.t. H(m) = k for infinitely many 
m.  

 

 Pick any x ∈ {0,1}*.  Think of a large enough m s.t.      
|x| ≤ log m and H(m) = k.  

 

 This means x is correctly decided by Mk in k.|x|k time. 
So, Mk is a poly-time machine deciding SATH. 



Natural NP-intermediate problems ?? 

 

 Integer factoring 

 

 Approximate shortest vector in a lattice 

 

 Minimum Circuit Size Problem 

       (“Multi-output MCSP is NP-hard”,   Ilango, Loff & Oliveira  2020) 

 

 Graph isomorphism   

      (“GI in QuasiP time”,   Babai  2015) 

 


