
Computational Complexity Theory

Lecture 8: Ladner’s theorem

Department of Computer Science,
Indian Institute of Science

Recap: Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

c

c ≥ 1

NP co-NP

P

EXP

Recap: Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

In other words, δ cannot be made arbitrarily close to 0.

Recap: Class co-NP and NP∩co-NP

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Recap: Class co-NP and NP∩co-NP

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Edmonds (1966)

…conjectured P = NP ∩ co-NP

Recap: Class co-NP and NP∩co-NP

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Check:
https://cstheory.stackexchange.com/questions/20
021/reasons-to-believe-p-ne-np-cap-conp-or-not

• Integer factoring (FACT)
• Approximate shortest vector in a lattice
 Ref: “Lattice problems in NP∩co-NP” by Aharonov & Regev (2005)

NP-intermediate problems

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Obs: If NP ≠ co-NP and FACT ∉ P
then FACT is NP-intermediate.

• Integer factoring (FACT)
• Approximate shortest vector in a lattice
 Ref: “Lattice problems in NP∩co-NP” by Aharonov & Regev (2005)

NP-intermediate

NP-intermediate problems

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Obs: If NP ≠ co-NP and FACT ∉ P
then FACT is NP-intermediate.

Ladner’s theorem: P ≠ NP implies
existence of a NP-intermediate
language.
 • Integer factoring (FACT)

• Approximate shortest vector in a lattice
 Ref: “Lattice problems in NP∩co-NP” by Aharonov & Regev (2005)

NP-intermediate

NP-intermediate problems

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Obs: If NP ≠ co-NP and FACT ∉ P
then FACT is NP-intermediate.

Ladner’s theorem: P ≠ NP implies
existence of a NP-intermediate
language.
 (proved using diagonalization) • Integer factoring (FACT)

• Approximate shortest vector in a lattice
 Ref: “Lattice problems in NP∩co-NP” by Aharonov & Regev (2005)

NP-intermediate

Recap: Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

2. Every string represents some TM, and every
TM can be represented by infinitely many
strings.

Recap: Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. (Hartmanis & Stearns 1965)

 DTIME(f(n)) ⊊ DTIME(g(n))

 Theorem. P ⊊ EXP

 This type of results are called lower bounds.

Ladner’s Theorem

- Another application of Diagonalization

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

P

NPC

NP NP-intermediate

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. A delicate argument using diagonalization.

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. Let H: be a function.

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. Let H: be a function.

 Let SATH = {Ψ0 1 : Ψ ∈ SAT and |Ψ| = m}

m
H(m)

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. Let H: be a function.

 Let SATH = {Ψ0 1 : Ψ ∈ SAT and |Ψ| = m}

m
H(m)

H would be defined in such a way that SATH is NP-intermediate
 (assuming P ≠ NP)

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

2. If SATH ∈ P then H(m) ≤ C (a constant).

for every m

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

2. If SATH ∈ P then H(m) ≤ C (a constant).

3. If SATH ∉ P then H(m) with m.

∞

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

2. If SATH ∈ P then H(m) ≤ C (a constant).

3. If SATH ∉ P then H(m) with m.

 Proof: Later (uses diagonalization).

∞

Let’s see the proof of Ladner’s theorem
assuming the existence of such a “special” H.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

m
H(m)

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

 Check if ϕ 0 1 belongs to SATH .

m
H(m)

m
H(m)

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

 Check if ϕ 0 1 belongs to SATH .

m
H(m)

m
H(m)

length at most m + 1 + mC

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

 Check if ϕ 0 1 belongs to SATH .

 As P ≠ NP, it must be that SATH ∉ P .

m
H(m)

m
H(m)

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

∞

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:
∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:
∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

|ϕ| = n |Ψ 0 1k| = nc

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:
∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

|ϕ| = n |Ψ 0 1k| = nc

Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f
Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f
Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m). (Homework: Verify that
this can be done in poly(n) time.)

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f
Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Either m ≤ m0 (in which case the task reduces to
checking if a constant-size Ψ is satisfiable),

Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

or H(m) > 2c (as H(m) tends to infinity with m).

Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, w.l.o.g. |f(ϕ)| ≥ k > m2c

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, w.l.o.g. nc = |f(ϕ)| ≥ k > m2c

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m.

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Thus, checking if an n-size formula ϕ
is satisfiable reduces to checking if a
√n-size formula Ψ is satisfiable.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Do this recursively! Only O(log log n) recursive steps required.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

 Hence SATH is not NP-complete, as P ≠ NP.

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Properties of H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

2. If SATH ∈ P then H(m) ≤ C (a constant).

3. If SATH ∉ P then H(m) with m.

 SATH = {Ψ0 1 : Ψ ∈ SAT and |Ψ| = m}

∞

m
H(m)

Construction of H

 Observation. The value of H(m) determines
membership in SATH of strings whose length is ≥ m.

 Therefore, it is OK to define H(m) based on strings in
SATH whose lengths are < m (say, log m).

Construction of H

 Observation. The value of H(m) determines
membership in SATH of strings whose length is ≥ m.

 Therefore, it is OK to define H(m) based on strings in
SATH whose lengths are < m (say, log m).

 Think of computing H(m) sequentially: Compute H(1),
H(2),…,H(m-1). Just before computing H(m), find
SATH ∩ {0,1}log m.

Construction of H

 Observation. The value of H(m) determines
membership in SATH of strings whose length is ≥ m.

 Therefore, it is OK to define H(m) based on strings in
SATH whose lengths are < m (say, log m).

 Construction. H(m) is the smallest k < log log m s.t.

1. Mk decides membership of all length up to
log m strings x in SATH within k.|x|k time.

2. If no such k exists then H(m) = log log m.

Construction of H

 Observation. The value of H(m) determines
membership in SATH of strings whose length is ≥ m.

 Therefore, it is OK to define H(m) based on strings in
SATH whose lengths are < m (say, log m).

 Homework. Prove that H(m) is computable from m
in O(m3) time.

Construction of H

 Claim. If SATH ∈ P then H(m) ≤ C (a constant).

 Proof. There is a poly-time M that decides
membership of every x in SATH within c.|x|c time.

Construction of H

 Claim. If SATH ∈ P then H(m) ≤ C (a constant).

 Proof. There is a poly-time M that decides
membership of every x in SATH within c.|x|c time.

 As M can be represented by infinitely many strings,
there’s anα ≥ c s.t. M = Mα decides membership of
every x in SATH within α.|x|α time.

 So, for every m satisfying α < log log m, H(m) ≤ α.

Construction of H

 Claim. If H(m) ≤ C (a constant) for infinitely many
m, then SATH ∈ P.

 Proof. There’s a k ≤ C s.t. H(m) = k for infinitely many
m.

Construction of H

 Claim. If H(m) ≤ C (a constant) for infinitely many
m, then SATH ∈ P.

 Proof. There’s a k ≤ C s.t. H(m) = k for infinitely many
m.

 Pick any x ∈ {0,1}*. Think of a large enough m s.t.
|x| ≤ log m and H(m) = k.

Construction of H

 Claim. If H(m) ≤ C (a constant) for infinitely many
m, then SATH ∈ P.

 Proof. There’s a k ≤ C s.t. H(m) = k for infinitely many
m.

 Pick any x ∈ {0,1}*. Think of a large enough m s.t.
|x| ≤ log m and H(m) = k.

 This means x is correctly decided by Mk in k.|x|k time.
So, Mk is a poly-time machine deciding SATH.

Natural NP-intermediate problems ??

 Integer factoring

 Approximate shortest vector in a lattice

 Minimum Circuit Size Problem

 (“Multi-output MCSP is NP-hard”, Ilango, Loff & Oliveira 2020)

 Graph isomorphism

 (“GI in QuasiP time”, Babai 2015)

