Computational Complexity Theory

Lecture 8: Ladner’s theorem

Department of Computer Science,
Indian Institute of Science

Recap: Class EXP

e Definition. Class EXP is the exponential time
analogue of class P.

EXP = UDTIME (2)

c= |

e Observation. P € NP € EXP

Recap: Class EXP

e Definition. Class EXP is the exponential time
analogue of class F.

EXP = U DTIME (2")

c=|

e Observation. P € NP € EXP

e Exponential Time Hypothesis.
Any algorithm for 3-SAT takes = 2°" time, where 6> 0
is some fixed constant and n is the no. of variables.

\

In other words, d cannot be made arbitrarily close to 0.

Recap: Class co-NP and NP(co-NP

Conjecture: NP # co-NP

l
P # NP

General belief: P # NP N co-NP

Recap: Class co-NP and NP(co-NP

Conjecture: NP # co-NP

l
P # NP

General belief: P # NP N co-NP

! J
|

Edmonds (1966)
...conjectured P = NP (1 co-NP

Recap: Class co-NP and NP(co-NP

Conjecture: NP # co-NP

l
P # NP

General belief: P # NP N co-NP

Check:
https://cstheory.stackexchange.com/questions/20

02 | [reasons-to-believe-p-ne-np-cap-conp-or-not

* Integer factoring (FACT)
* Approximate shortest vector in a lattice
Ref: “Lattice problems in NPNco-NP” by Aharonov & Regev (2005)

NP-intermediate problems

NP-intermediate

Conjecture: NP # co-NP

l
P # NP

General belief: P # NP N co-NP

Obs: If NP # co-NP and FACT ¢ P
then FACT is NP-intermediate.

* Integer factoring (FACT)
* Approximate shortest vector in a lattice
Ref: “Lattice problems in NPNco-NP” by Aharonov & Regev (2005)

NP-intermediate problems

NP-intermediate

Conjecture: NP # co-NP

l
P # NP
General belief: P # NP N co-NP

Obs: If NP # co-NP and FACT ¢ P
then FACT is NP-intermediate.

Ladner’s theorem: P # NP implies
existence of a NP-intermediate
language.

* Integer factoring (FACT)
* Approximate shortest vector in a lattice
Ref: “Lattice problems in NPNco-NP” by Aharonov & Regev (2005)

NP-intermediate problems

NP-intermediate

Conjecture: NP # co-NP

l
P # NP

General belief: P # NP N co-NP

Obs: If NP # co-NP and FACT ¢ P
then FACT is NP-intermediate.

Ladner’s theorem: P # NP implies
existence of a NP-intermediate
language.

* Integer factoring (FACT) (proved using diagonalization)

* Approximate shortest vector in a lattice
Ref: “Lattice problems in NPNco-NP” by Aharonov & Regev (2005)

Recap: Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

e These techniques are characterized by two main
features:

|. There’s a universal TM U that when given
strings O and X, simulates M, on x with only a
small overhead.

2. Every string represents some TM, and every
TM can be represented by infinitely many
strings.

Recap: Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).

e Theorem.
DTIME(f(n)) & DTIME(g(n))

e Theorem. P & EXP

e This type of results are called lower bounds.

Ladner’s Theorem

- Another application of Diagonalization

NP-intermediate problems

o Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

—> NP-intermediate

NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

Proof. A delicate argument using diagonalization.

NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

Proof. Let H: N — N be a function.

NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

Proof. Let H: N — N be a function.

_H(m)

Let SAT,={¥0I : W e€SATand |¥|=m}

NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

Proof. Let H: N — N be a function.

_H(m)

Let SAT,={¥0I : W e€SATand |¥|=m}

H would be defined in such a way that SAT,, is NP-intermediate
(assuming P # NP)

Ladner’s theorem: Constructing H

e Theorem. There’s a function H: N — N such that

|. H(m) is computable from m in O(m?) time.

Ladner’s theorem: Constructing H

e Theorem. There’s a function H: N — N such that

|. H(m) is computable from m in O(m?) time.

2. If SAT, €P then H(m) = C (a constant).

for every m

Ladner’s theorem: Constructing H

e Theorem. There’s a function H: N — N such that

|. H(m) is computable from m in O(m?) time.
2. If SAT, €P then H(m) = C (a constant).

3. If SAT, € P then H(m)-— o0 with m.

Ladner’s theorem: Constructing H

e Theorem. There’s a function H: N — N such that

|. H(m) is computable from m in O(m?) time.
2. If SAT, €P then H(m) = C (a constant).

3. If SAT, € P then H(m)-— o0 with m.

Proof: Later (uses diagonalization).

Let’s see the proof of Ladner’s theorem
assuming the existence of such a “special” H.

Ladner’s theorem: Proof

P # NP
e Suppose SAT, € P Then Hm) = C.

Ladner’s theorem: Proof

P # NP
e Suppose SAT, € P Then Hm) = C.
e This implies a poly-time algorithm for SAT as follows:

Ladner’s theorem: Proof

P # NP
e Suppose SAT, € P Then Hm) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

Ladner’s theorem: Proof

P # NP

e Suppose SAT, € P Then Hm) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

_H(m)
» Compute H(m), and construct the string ¢ O |

Ladner’s theorem: Proof

P # NP

e Suppose SAT, € P Then Hm) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

_H(m)
» Compute H(m), and construct the string ¢ O |

_H(m)

» Checkif ¢ O | belongs to SAT, .

Ladner’s theorem: Proof

P #NP
e Suppose SAT, € P Then Hm) = C.
e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

_H(m)
» Compute H(m), and construct the string ¢ O |

_H(m)

» Checkif ¢ O | belongs to SAT, .

——

length at most m + | + m©

Ladner’s theorem: Proof

P # NP
e Suppose SAT, € P Then Hm) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

_H(m)
» Compute H(m), and construct the string ¢ O |

_H(m)

» Checkif ¢ O | belongs to SAT, .

e As P # NP, it must be that SAT,, ¢ P.

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT <, SAT, ¢ —sWO Ik

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT <, SAT, ¢ —sWO Ik

v

|§] =n WO I¥ =nc

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ |f_> LIJ O I . Let m, be the largest

‘ , ‘ ' s.t. H(m) = 2c.

01 = n WO 1Y = ne

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ |f_> LIJ 0| . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ |f_> LIJ 0| . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ lf_> LIJ O I . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].

» Compute H(m) and check if k = mH(Mm)_ (Verify that
this can be done in poly(n) time.)

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ lf_> LIJ O I . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m/

Either m = m (in which case the task reduces to
checking if a constant-size W is satisfiable),

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ |f_> LIJ 0| . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute HQ)‘ and check if k = mH(m),

or H(m) > 2c (as H(m) tends to infinity with m).

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
» Hence, w.lo.g. If(d)] = k> m?Z

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),

» Hence,w.l.o.g. n¢ = [f(®)] = k> m?*

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT <, SAT, ¢ —sWO Ik

» On input ¢, compute f(¢) =¥ 0 I Let
» Compute H(m) and check if k = mH(m),

» Hence, Vn = m.

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

Thus, checking if an n-size formula ¢
is satisfiable reduces to checking if a
n-size formula W is satisfiable.

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

Do this recursively! Only O(log log n) recursive steps required.

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT <, SAT, ¢ —sWO Ik

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

» Hence SAT, is not NP-complete,as P # NP.

Ladner’s theorem: Properties of H

e Theorem. There’s a function H: N — N such that

|. H(m) is computable from m in O(m?) time.
2. If SAT, €P then H(m) = C (a constant).

3. If SAT, € P then H(m)-— o0 with m.

_H(m)

o SAT,={W0 1 : Y eSAT and |¥| = m}

Construction of H

° The value of H(m) determines
membership in SAT , of strings whose length is 2 m.

e Therefore, it is OK to define H(m) based on strings in
SAT_, whose lengths are < m (say, log m).

Construction of H

° The value of H(m) determines
membership in SAT , of strings whose length is 2 m.

e Therefore, it is OK to define H(m) based on strings in
SAT_, whose lengths are < m (say, log m).

e Think of computing H(m) sequentially: Compute H(l),
H(2),...,H(m-1). Just before computing H(m), find
SAT, N {0,1}leem,

Construction of H

° The value of H(m) determines
membership in SAT , of strings whose length is 2 m.

e Therefore, it is OK to define H(m) based on strings in
SAT_, whose lengths are < m (say, log m).

° H(m) is the smallest k < log log m s.t.
|. M, decides membership of all length up to
log m strings x in SAT, within k.|x|* time.

2. If no such k exists then H(m) = log log m.

Construction of H

° The value of H(m) determines
membership in SAT , of strings whose length is 2 m.

e Therefore, it is OK to define H(m) based on strings in
SAT_, whose lengths are < m (say, log m).

° Prove that H(m) is computable from m
in O(m?) time.

Construction of H

o Claim. If SAT, € P then H(m) = C (a constant).

* Proof. @ There is a poly-time ™M that decides
membership of every x in SAT, within c.|x| time.

Construction of H

o If SAT, € P then H(m) = C (a constant).

* Proof. @ There is a poly-time ™M that decides
membership of every x in SAT, within c.|x| time.

e As M can be represented by infinitely many strings,
there’s ana = c s.t. M = M_ decides membership of
every x in SAT, within a.|x|% time.

* So, for every m satisfying o < log log m, H(m) = a.

Construction of H

e Claim. If Him) = C (a constant) for infinitely many
m, then SAT, € P.

e Proof. There’sa k = C s.t. H(m) = k for infinitely many
m.

Construction of H

e Claim. If Him) = C (a constant) for infinitely many
m, then SAT, € P.

e Proof. There’sa k = C s.t. H(m) = k for infinitely many
m.

* Pick any x € {0,1}*. Think of a large enough m s.t.
x| = log m and H(m) = k.

Construction of H

e Claim. If Him) = C (a constant) for infinitely many
m, then SAT, € P.

e Proof. There’sa k = C s.t. H(m) = k for infinitely many
m.

* Pick any x € {0,1}*. Think of a large enough m s.t.
x| = log m and H(m) = k.

 This means x is correctly decided by M, in k.|x|* time.
So, M, is a poly-time machine deciding SAT ..

Natural NP-intermediate problems ??

e Integer factoring
e Approximate shortest vector in a lattice

e Minimum Circuit Size Problem

()

e Graph isomorphism
()

