Computational Complexity Theory

Lecture 8: Ladner's theorem

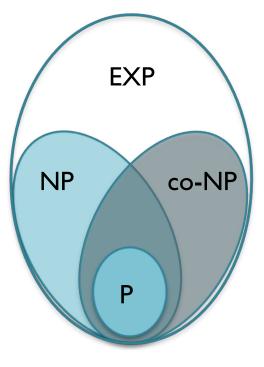
Department of Computer Science, Indian Institute of Science

Recap: Class EXP

• Definition. Class EXP is the exponential time analogue of class P.

 $EXP = \bigcup_{c \ge 1} DTIME (2^n)$

• Observation. $P \subseteq NP \subseteq EXP$



Recap: Class EXP

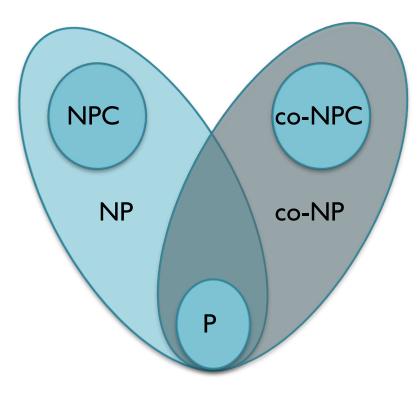
• Definition. Class EXP is the exponential time analogue of class P.

$$EXP = \bigcup_{c \ge 1} DTIME(2^n)$$

- Observation. $P \subseteq NP \subseteq EXP$
- <u>Exponential Time Hypothesis</u>. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes $\geq 2^{\delta.n}$ time, where $\delta \geq 0$ is <u>some fixed constant</u> and n is the no. of variables.

In other words, δ cannot be made arbitrarily close to 0.

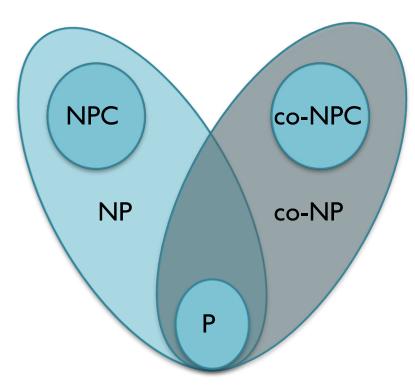
Recap: Class co-NP and NP∩co-NP

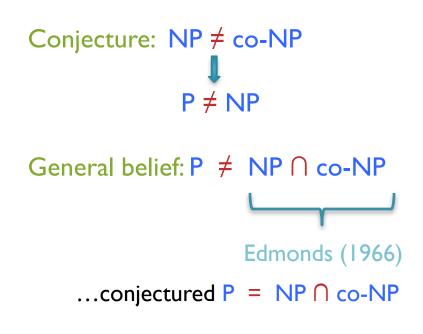


Conjecture: $NP \neq co-NP$ \downarrow $P \neq NP$

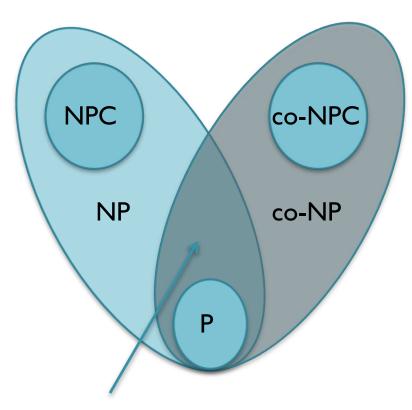
General belief: $P \neq NP \cap co-NP$

Recap: Class co-NP and NP∩co-NP





Recap: Class co-NP and NP∩co-NP



Conjecture: $NP \neq co-NP$ \downarrow $P \neq NP$

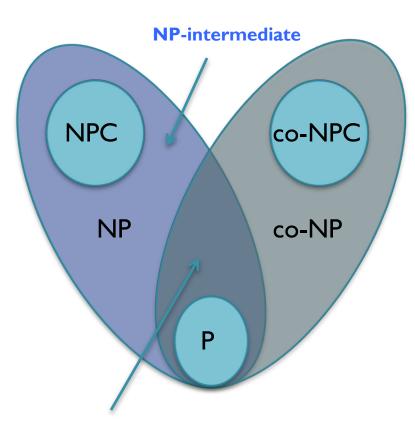
General belief: $P \neq NP \cap co-NP$

Check:

https://cstheory.stackexchange.com/questions/20 021/reasons-to-believe-p-ne-np-cap-conp-or-not

- Integer factoring (FACT)
- Approximate shortest vector in a lattice

Ref: "Lattice problems in NP∩co-NP" by Aharonov & Regev (2005)



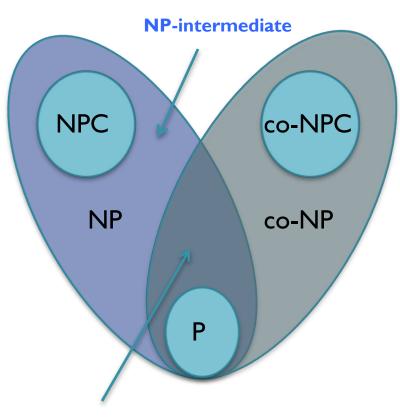
Conjecture: $NP \neq co-NP$ \downarrow $P \neq NP$

General belief: $P \neq NP \cap co-NP$

Obs: If NP \neq co-NP and FACT \notin P then FACT is NP-intermediate.

- Integer factoring (FACT)
- Approximate shortest vector in a lattice

Ref: "Lattice problems in NP∩co-NP" by Aharonov & Regev (2005)



- Integer factoring (FACT)
- Approximate shortest vector in a lattice

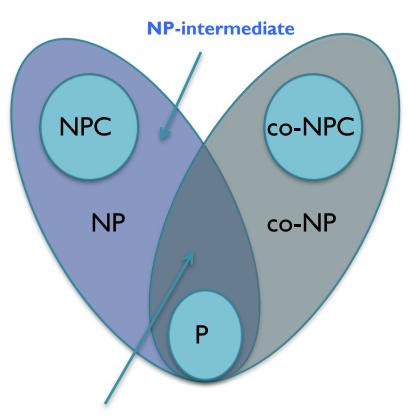
Ref: "Lattice problems in NP∩co-NP" by Aharonov & Regev (2005)

Conjecture: $NP \neq co-NP$ \downarrow $P \neq NP$

General belief: $P \neq NP \cap co-NP$

Obs: If NP \neq co-NP and FACT \notin P then FACT is NP-intermediate.

Ladner's theorem: $P \neq NP$ implies existence of a NP-intermediate language.



- Integer factoring (FACT)
- Approximate shortest vector in a lattice

Ref: "Lattice problems in NP∩co-NP" by Aharonov & Regev (2005)

Conjecture: $NP \neq co-NP$ \downarrow $P \neq NP$

General belief: $P \neq NP \cap co-NP$

Obs: If NP \neq co-NP and FACT \notin P then FACT is NP-intermediate.

Ladner's theorem: $P \neq NP$ implies existence of a NP-intermediate language.

(proved using *diagonalization*)

Recap: Diagonalization

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.
 - 2. Every string represents some TM, and every TM can be represented by <u>infinitely many</u> strings.

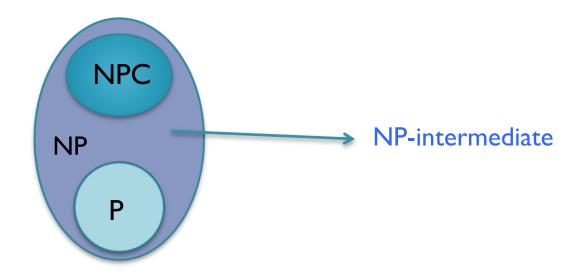
Recap: Time Hierarchy Theorem

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. (Hartmanis & Stearns 1965)
 DTIME(f(n)) ⊊ DTIME(g(n))
- Theorem. $P \subsetneq EXP$
- This type of results are called **lower bounds**.

Ladner's Theorem

- Another application of Diagonalization

 Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.



- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NPintermediate language.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NPintermediate language.
 - **Proof.** A delicate argument using diagonalization.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 Proof. Let H: N → N be a function.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 Proof. Let H: N → N be a function.

Let $SAT_{H} = \{\Psi 0 \mid \overset{m^{H(m)}}{:} \Psi \in SAT \text{ and } |\Psi| = m\}$

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 Proof. Let H: N → N be a function.

Let
$$SAT_H = \{\Psi 0 \mid m^{H(m)} : \Psi \in SAT \text{ and } |\Psi| = m\}$$

H would be defined in such a way that SAT_{H} is NP-intermediate (assuming P \neq NP)

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.
 - 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant). for every m

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.
 - 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
 - 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.
 - 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
 - 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

Proof: Later (uses diagonalization).

Let's see the proof of Ladner's theorem assuming the existence of such a "special" H.

 $P \neq NP$

• Suppose $SAT_H \in P$. Then $H(m) \leq C$.

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 ➢ On input ϕ , find m = |ϕ|.

 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 ➢ On input ϕ , find m = |ϕ|.

> Compute H(m), and construct the string $\phi 0 I$

 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 On input \$\overline{\phi}\$, find \$m = |\$\overline{\phi}\$].

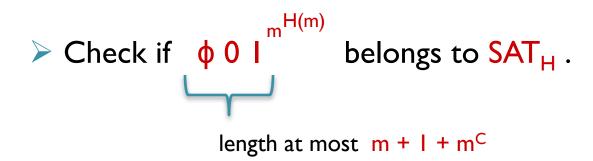
> Compute H(m), and construct the string $\phi 0 I^{m^{H(m)}}$

> Check if $\phi 0 I$ belongs to SAT_{H} .

 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 ➢ On input ϕ , find m = |ϕ|.

> Compute H(m), and construct the string $\phi 0 I^{m^{H(m)}}$



 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 ➢ On input ϕ , find m = |ϕ|.

> Compute H(m), and construct the string $\phi 0 I^{m^{H(m)}}$

> Check if $\phi 0 I$ belongs to SAT_{H} .

• As $P \neq NP$, it must be that $SAT_H \notin P$.

 $P \neq NP$

• Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

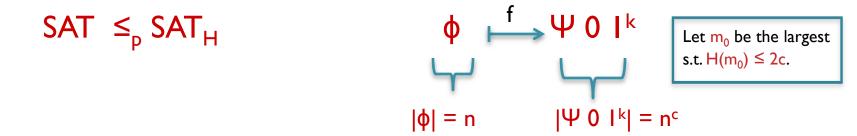
SAT
$$\leq_p SAT_H \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^k$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$

 $\varphi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$
 $|\varphi| = n$
 $|\Psi 0 I^{k}| = n^{c}$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:



 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \phi \stackrel{t}{\longmapsto} \Psi \circ I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

> On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

> On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.

> Compute H(m) and check if $k = m^{H(m)}$.

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- Compute H(m) and check if k = m^{H(m)}. (Homework: Verify that this can be done in poly(n) time.)

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.

Either $m \le m_0$ (in which case the task reduces to checking if a constant-size Ψ is satisfiable),

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

> On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.

> Compute H(m) and check if $k = m^{H(m)}$.

or H(m) > 2c (as H(m) tends to infinity with m).

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- > Hence, w.l.o.g. $|f(\phi)| \ge k > m^{2c}$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- > Hence, w.l.o.g. $n^{c} = |f(\phi)| \ge k > m^{2c}$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$

 \Rightarrow On input ϕ , compute $f(\phi) = \Psi \circ I^{k}$. Let $m = |\Psi|$.
 \Rightarrow Compute H(m) and check if $k = m^{H(m)}$.
 \Rightarrow Hence, $\sqrt{n} \geq m$.

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- ≻ Hence, $\sqrt{n} \ge m$. Also $φ \in SAT$ iff $Ψ \in SAT$

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$

- > On input ϕ , compute $f(\phi) = \Psi 0 | k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- ≻ Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$

Thus, checking if an n-size formula ϕ is satisfiable reduces to checking if a \sqrt{n} -size formula Ψ is satisfiable.

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- ≻ Hence, $\sqrt{n} \ge m$. Also $φ \in SAT$ iff $Ψ \in SAT$

Do this recursively! Only O(log log n) recursive steps required.

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$. > Compute H(m) and check if $k = m^{H(m)}$.
- ≻ Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$
- Hence SAT_H is not NP-complete, as P \neq NP.

Ladner's theorem: Properties of H

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.
 - 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
 - 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

• SAT_H = { Ψ 0 I^{m^{H(m)}}: $\Psi \in$ SAT and | Ψ | = m}

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).
- Think of computing H(m) sequentially: Compute H(1), H(2),...,H(m-1). Just before computing H(m), find $SAT_{H} \cap \{0,1\}^{\log m}$.

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).
- Construction. H(m) is the smallest $k < \log \log m$ s.t.
 - I. M_k decides membership of <u>all</u> length up to log m strings x in SAT_H within k. |x|^k time.
 - 2. If no such k exists then $H(m) = \log \log m$.

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).
- Homework. Prove that H(m) is computable from m in O(m³) time.

- Claim. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- **Proof.** There is a poly-time M that decides membership of every x in SAT_H within c.|x|^c time.

- Claim. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- **Proof.** There is a poly-time M that decides membership of every x in SAT_H within c.|x|^c time.
- As M can be represented by infinitely many strings, there's $an\alpha \ge c$ s.t. $M = M_{\alpha}$ decides membership of every x in SAT_H within $\alpha |x|^{\alpha}$ time.
- So, for every m satisfying $\alpha < \log \log m$, $H(m) \leq \alpha$.

- Claim. If $H(m) \leq C$ (a constant) for infinitely many m, then $SAT_H \in P$.
- Proof. There's a k ≤ C s.t. H(m) = k for infinitely many m.

- Claim. If $H(m) \leq C$ (a constant) for infinitely many m, then $SAT_H \in P$.
- Proof. There's a k ≤ C s.t. H(m) = k for infinitely many m.
- Pick any $x \in \{0,1\}^*$. Think of a large enough m s.t. $|x| \leq \log m$ and H(m) = k.

- Claim. If $H(m) \leq C$ (a constant) for infinitely many m, then $SAT_H \in P$.
- Proof. There's a k ≤ C s.t. H(m) = k for infinitely many m.
- Pick any x ∈ {0,1}*. Think of a large enough m s.t.
 |x| ≤ log m and H(m) = k.
- This means x is correctly decided by M_k in $k.|x|^k$ time. So, M_k is a poly-time machine deciding SAT_H.

Natural NP-intermediate problems ??

- Integer factoring
- Approximate shortest vector in a lattice
- Minimum Circuit Size Problem

("Multi-output MCSP is NP-hard", Ilango, Loff & Oliveira 2020)

• Graph isomorphism

("GI in QuasiP time", Babai 2015)