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The case for Average Case Complexity

Real Life Problems
I In our course, we’ve looked at the time taken on the “worst”

possible inputs, i.e. worst-case complexity

I In practice, an algorithm might have vastly different runtimes
for different inputs

I Might have algorithms that run quickly “almost” always

I Notion of an “average” runtime might be useful



Towards average-case complexity

• Several NP-hard problems are actually easy on many input
instances and have small expected running time.

• The ‘expected’ running time of a problem depends on the
frequency in which the inputs appear, i.e. the distribution in which
the inputs appear.
Example. Uniform distribution U = {Un}n≥1: All inputs
x ∈ {0, 1}n appear with the same frequency, i.e. Un is the uniform
distribution on {0, 1}n.

• Thus, when we talk about the average case complexity of a
problem we are really talking about the average case complexity of
(L, {Dn}n≥1) where L is the language associated with the problem
and Dn is the distribution in which the inputs of length n appear.
In regard to this we make the following definition.



Distributional problems

Defn. Distributional Problem
A distributional problem is a pair 〈L,D〉 such that L is a language
(or equivalently, a decision problem) and D = {Dn} is a sequence
of distributions, with Dn being a distribution on {0, 1}n (i.e Dn is a
random variable taking values in {0, 1}n).

Examples:

• (CLIQUE,{G (n, p)}n)

• (3-COLOR, {G (n, p)}n)

• (3-SAT, {Um,n}m,n)



A distribution on undirected graphs

G (n, p) is a distribution on undirected graphs with n vertices
obtained as follows:

I A random graph can be generated by randomly deciding
which edges to include.

I For an undirected graph with n vertices, there are
(n
2

)
edges

I For each edge, include that edge with probability p.

I The obtained distribution is called G (n, p)

Note: Taking p = 1/2 will give us the uniform distribution.

Given this setup, we can think about the expected running time of
algorithms for 3-COLOR, CLIQUE, INDSET.
Facts:
• 3-COLOR has an algorithm which is linear time with high
probability when inputs are sampled using G (n, p).
• CLIQUE and INDSET have algorithms which run in n2 log n with
high probability (where n2 log n is only a little more than polynomial).



Distributional 3-SAT problem

Let Um,n be a uniform distribution on 3-CNFs having m clauses
and n variables. The distribution Um,n is obtained as follows:

I For each clause, pick 3 literals randomly from the 2n available
literals (n variables + n negated variables) and take their
disjunction.

Intuitively as m increases, we expect the fraction of satisfiable
3-CNFs having m clauses and n variables to go down.

Fact: There exist constants c1 < c2 such that if m < c1n, then the
fraction of satisfiable 3-CNFs is very low and if m > c2n, then the
fraction of satisfiable 3-CNFs is very high.



Defining distP: average-case analog of P

We now define the average-case analog of P that aims to capture
the set of distributional problems (L,D) that are efficiently
solvable, i.e. “polynomial time on average”.

Given a distributional problem (L,D) and an algorithm A, let
timeA(x) denote the number of steps A takes on input x .

Defn. Class distP (First attempt)

A distributional problem (L,D) is in distP if there is a constant c
and an algorithm A which decides L and satisfies:

E[timeA(Dn)] ≤ O(nc)

This definition seems appealing at first but it has a few issues.



Defining distP: average-case analog of P

Defn. Class distP (First attempt)

A distributional problem (L,D) is in distP if there is a constant c
and an algorithm A which decides L and satisfies:

E[timeA(Dn)] ≤ O(nc)

Issues with the definition:

I This definition is not robust. If we change the model of
computation to a different model with quadratic slow down
(for example, change from multiple tape Turing machines to
one-tape Turing machines), then a polynomial-time algorithm
can suddenly turn into an exponential-time algorithm as we
shall soon see.

I Using this definition it is difficult to define average-case
reductions.



Defining distP: average-case analog of P

Defn. Class distP (First attempt)

A distributional problem (L,D) is in distP if there is a constant c
and an algorithm A which decides L and satisfies:

E[timeA(Dn)] ≤ O(nc)

Claim: There is an algorithm A such that for every n we have
E[timeA(Un)] ≤ n + 1 but E[time2A(Un)] ≥ 2n.

Proof: Let A be a problem where if x = 00 · · · 0, the algorithm
halts in 2n steps. Else, it halts in n2 steps
Then,

E[timeA(Dn)] = 2−n · 2n +
2n − 1

2n
· n2 ≤ n2

But,

E[time2A(Dn)] = 2−n · 22n +
2n − 1

2n
· n4 ≥ 2n �



Defining distP: average-case analog of P

Defn. Class distP (First attempt)

A distributional problem (L,D) is in distP if there is a constant c
and an algorithm A which decides L and satisfies:

E[timeA(Dn)] ≤ O(nc)

Claim: There is an algorithm A such that for every n we have
E[timeA(Un)] ≤ n + 1 but E[time2A(Un)] ≥ 2n.

Thus, this definition is not robust to model changes. More
generally, in this definition, if we perform a polynomial time (in
expectation) algorithm polynomially many times, the whole process
is not poly-time. We now seek a more robust definition for distP.



Defining distP: average-case analog of P

Defn. Class distP
A distributional problem (L,D) is in distP if there is a constant c
and an algorithm A which decides L and satisfies:

E
[
timeA(Dn)

1
c

]
≤ O(n)

Observation 1: The definition is robust to changes in
computational models: if the running times get squared, we just
multiply c by 2 and satisfy the definition again. More clearly,

if ∃c s.t. E
[
timeA(Dn)

1
c

]
≤ O(n),

then ∃c ′= 2c s.t. E
[
time2A(Dn)

1
c′
]
≤ O(n)

Note: There is nothing special about 2 and the definition is robust
to any polynomial change.



Defining distP: average-case analog of P

Defn. Class distP
A distributional problem (L,D) is in distP if there is a constant c
and an algorithm A which decides L and satisfies:

E
[
timeA(Dn)

1
c

]
≤ O(n)

Observation 1: The definition is robust to changes in
computational models: if the running times get squared, we just
multiply c by 2 and satisfy the definition again. More clearly,

if ∃c s.t. E
[
timeA(Dn)

1
c

]
≤ O(n),

then ∃c ′= 2c s.t. E
[
time2A(Dn)

1
c′
]
≤ O(n)

Note: There is nothing special about 2 and the definition is robust
to any polynomial change.



Observations about the class distP

Defn. Class distP
A distributional problem (L,D) is in distP if there is a constant c
and an algorithm A which decides L and satisfies:

E
[
timeA(Dn)

1
c

]
≤ O(n)

Observation 2: P ⊆ distP, i.e. given L in P and given any
distribution {Dn}, we have (L, {Dn}) is in distP.
This is because given L in P, there is a constant c and an
algorithm A s.t. timeA(x) ≤ O(nc) for all x of size n. Thus

E
[
timeA(Dn)

1
c

]
≤ O(n) and (L, {Dn}) is in distP.



Observations about the class distP

Defn. Class distP
A distributional problem (L,D) is in distP if there is a constant c
and an algorithm A which decides L and satisfies:

E
[
timeA(Dn)

1
c

]
≤ O(n)

Observation 3: Given (L, {Dn}), if there is an algorithm A which
decides L in expected O(nc) steps, then (L, {Dn}) is in distP as by
Hölder’s inequality we have

E
[
timeA(Dn)

1
c

]
≤ (E[timeA(Dn)])

1
c = O(n)

Thus, our new definition is a relaxation of our previous attempt.



Observations about the class distP

Defn. Class distP
A distributional problem (L,D) is in distP if there is a constant c
and an algorithm A which decides L and satisfies:

E
[
timeA(Dn)

1
c

]
≤ O(n)

Observation 4: There is a high probability that the algorithm runs
in polynomial time.
Mathematically, using Markov’s inequality, we have

P[tA(Dn) ≥ T ] = P[tA(Dn)
1
c ≥ T

1
c ] ≤ E[tA(Dn)

1
c ] · 1

T
1
c

= O(n) · 1

T
1
c



Formalizing “Real-life distributions”

Given a string x and a string length n, We define the cumulative
probability

µDn(x) =
∑
y≤x

P[Dn = y ]

where y are all the strings ≤ x in lexicographic order. (≤ being the
lexicographic order)

Defn. P-computable distributions

We say that the distribution D is poly-time computable if given
n, x , t, we can compute µDn to t-digit precision in time polynomial
in n and t

Note:
This restriction is as strong as requiring the probability P[Dn = x ]
to be polytime computable since P[Dn = x ] can be computed as
µDn(x)− µDn(x − 1), where x − 1 is the string before x in
lexicographic order.



Formalizing “Real-life distributions”

Given a string x and a string length n, We define the cumulative
probability

µDn(x) =
∑
y≤x

P[Dn = y ]

where y are all the strings ≤ x in lexicographic order. (≤ being the
lexicographic order)

Defn. P-computable distributions

We say that the distribution D is poly-time computable if given
n, x , t, we can compute µDn to t-digit precision in time polynomial
in n and t

Examples:
• The distribution U = {Un}n where Un is the uniform distribution
on {0, 1}n is P-computable.
• Many other distributions that are defined using explicit formulas
are P-computable.



Computable Distributions

Motivation for Definition
In the following section, we will define the NP version of average
case problem. There, we will only look at Distributions that are
poly-time computable.
This is because of the following reasons:

I It is a reasonable assumption that the problem instances were
either generated by someone while inputting into a program
and thus, it is reasonable to put computability restrictions on
the generated distribution. (Since the generator, presumably
does not have infinite computing power)

I There exist distributions where every problem is as hard on
average as the worst case. So, unless we restrict the kinds of
distributions we take, average case analysis will be equivalent
to worst case analysis for the most part and we’d have sort of
wasted our time.
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distNP - average-case analog of NP

Defn. Class distNP
A distributional problem 〈L,D〉 is in distNP if L ∈ NP and D is
P-computable.

Examples:

• (CLIQUE,{G (n, p)}n)

• (3-COLOR, {G (n, p)}n)

• (3-SAT, {Um,n}m,n)

Questions:

I What are the hardest problems in this class?

I Is there a distNP-complete problem?

I Is distP = distNP?



Average-case reduction

We want to define average-case polynomial reduction (or simply
average-case reduction).

Properties we want from a reduction

Let 〈L,D〉 and 〈L′,D ′〉 be two distributional problems and let
f : L→ L′ be a reduction.
We would naturally expect the following properties:

I x ∈ L ⇐⇒ f (x) ∈ L′

I |f (x)| = p(|x |)
I if 〈L′,D ′〉 is “easy”, then so is 〈L,D〉.



Average-case reduction

To capture “if 〈L′,D ′〉 is “easy”, then so is 〈L,D〉, we ask f to be
poly-time computable.
Is this sufficient? Let’s see.

I Assume there is an efficient algorithm A′ for 〈L′,D ′〉.
I Let A be“obvious” algorithm for the problem 〈L,D〉, i.e. on

input x compute y = f (x) and run algorithm A′ on y .

Is A an efficient algorithm for 〈L,D〉 ?
Not always. There is a possibility that A′ is very slow on some
input that is unlikely to be sampled according to distribution D ′

but has a high probability of showing up as f (x) when we sample x
according to D.
To prevent this from happening we introduce a domination
condition in our definition of average-case reduction.

Domination condition
For every y ∈ {0, 1}p(n), P[f (Dn) = y ] ≤ q(n) P[D ′p(n) = y ]
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Average-case reduction

Defn. Average-case reduction

We say that a distributional problem 〈L,D〉 average-case reduces
to a distributional problem 〈L′,D ′〉, denoted by 〈L,D〉 ≤a 〈L′,D ′〉,
if there is a polynomial-time computable f and polynomials
p, q : N→ N satisfying

I (Correctness) For every x ∈ {0, 1}∗, x ∈ L ⇐⇒ f (x) ∈ L′

I (Length regularity) |f (x)| = p(|x |)
I (Domination) For every n ∈ N and y ∈ {0, 1}p(n),
P[f (Dn) = y ] ≤ q(n) P[D ′p(n) = y ]

Theorem: If 〈L,D〉 ≤a 〈L′,D ′〉 and 〈L′,D ′〉 ∈ distP then
〈L,D〉 ∈ distP.



“if (L′,D ′) is easy, then so is (L,D)” when 〈L,D〉 ≤a 〈L′,D ′〉

Theorem: If 〈L,D〉 ≤a 〈L′,D ′〉 and 〈L′,D ′〉 ∈ distP then
〈L,D〉 ∈ distP.

Proof: As 〈L′,D ′〉 ∈ distP, there is an algorithm A′ which decides
L′, and constants C ′, ε′ s.t. for every m

E[timeA′(D ′m)ε
′
] ≤ C ′m.

Let f be the reduction from 〈L,D〉 to 〈L′,D ′〉, and let A be the
“obvious” algorithm for deciding L: Given input x it computes
f (x) and then outputs A′(f (x)). From defn, A decides L. Thus it
remains to show that A is efficient, i.e. ∃C , ε s.t. for every n

E[timeA(Dn)ε] ≤ Cn.

Now note

timeA(x) = time to compute f (x) + timeA′(f (x))



“if (L′,D ′) is easy, then so is (L,D)” when 〈L,D〉 ≤a 〈L′,D ′〉

Theorem: If 〈L,D〉 ≤a 〈L′,D ′〉and 〈L′,D ′〉∈ distP then
〈L,D〉 ∈ distP.

Proof:
• timeA(x) = time to compute f (x) + timeA′(f (x))

≤ h(|x |) timeA′(f (x)) (for some polynomial h(·))

• For simplicity assume: |f (x)| = |x |d , for every x .

Let ε := ε′ and observe:

E[timeA(Dn)ε] =
∑

x∈{0,1}n
P[Dn = x ] timeA(x)ε

≤
∑

x∈{0,1}n
P[Dn = x ] (h(n) timeA′(f (x)))ε

=
∑

x∈{0,1}n
P[f (Dn) = f (x)] h(n)ε timeA′(f (x))ε



“if (L′,D ′) is easy, then so is (L,D)” when 〈L,D〉 ≤a 〈L′,D ′〉

Theorem: If 〈L,D〉 ≤a 〈L′,D ′〉and 〈L′,D ′〉∈ distP then
〈L,D〉 ∈ distP.

Proof:

E[timeA(Dn)ε] =
∑

x∈{0,1}n
P[Dn = x ] timeA(x)ε

=
∑

x∈{0,1}n
P[f (Dn) = f (x)] h(n)ε timeA′(f (x))ε

=
∑

y∈{0,1}nd
P[f (Dn) = y ] h(n)ε timeA′(y)ε

≤
∑

y∈{0,1}nd
q(n)P[D ′nd = y ] h(n)ε timeA′(y)ε

= h(n)εq(n)E[timeA′(D ′nd )ε]

≤ C ′h(n)εq(n)nd



“if (L′,D ′) is easy, then so is (L,D)” when 〈L,D〉 ≤a 〈L′,D ′〉

Lemma: Say A is an algorithm for a distributional problem (L,D)
and say there are constants ε1,C1, d such that
E[timeA(Dn)ε1 ] ≤ C1n

d , then ∃ε2,C2 s.t. E[timeA(Dn)ε2 ] ≤ C2n

Proof:
Fact: If X is a non-negative random variable and d ≥ 1, then
E[X ]d ≤ E[X d ].

Note:

E
[

timeA(Dn)ε1

nd

]
≤ C1

=⇒ E

[
timeA(Dn)ε1/d

n

]d
≤ E

[
timeA(Dn)ε1

nd

]
≤ C1

=⇒ E

[
timeA(Dn)ε1/d

n

]
≤ C

1/d
1 �



There exists a distNP-complete problem

Theorem
There exists a distributional problem that is distNP-complete.

Proof: We do this by defining a language NBH and a distribution
U such that (NBH,U) is in distNP and every (L,D) in distNP
can be average-case reduced to (NBH,U).

Non-deterministic bounded halting (NBH) problem

NBH = {〈M, x , 1t〉 : M is a NTM that accepts x in atmost t steps}

• NBH is in NP as we can use a universal NTM to simulate M on
x for t steps of M using tO(1) steps of the universal NTM.
• NBH is NP-hard because given L in NP, there is NTM ML which
decides L in p(|x |) time. Thus we can (Karp) reduce L to NBH
using

x 7→ (ML, x , 1
p(|x |)).
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There exists a distNP-complete problem

A “roughly-uniform” distribution U on instances of the NBH
problem

To sample from Un, we first pick at random three positive integers
a, b, c such that a + b + c = n, then we sample a random
M ∈ {0, 1}a and x ∈ {0, 1}b, and we output (M, x , 1c). So we
have

P[Un = (M, x , 1c)] = Θ

(
1

n2

)
· 1

2|M|
· 1

2|x |

• U is P-computable, hence (NBH,U) is in distNP.

(NBH ,U) is distNP-complete

Let (L,D) be a distributional problem in distNP, i.e. L is in NP
and D is P-computable.We need to find an average-case reduction
from (L,D) to (NBH,U). Will the reduction from before work as
an average-case reduction? i.e. Does the map x 7→ (ML, x , 1

p(|x |))
satisfy the domination condition? (Spoiler: No)



There exists a distNP-complete problem

A “roughly-uniform” distribution U on instances of the NBH
problem

To sample from Un, we first pick at random three positive integers
a, b, c such that a + b + c = n, then we sample a random
M ∈ {0, 1}a and x ∈ {0, 1}b, and we output (M, x , 1c). So we
have

P[Un = (M, x , 1c)] = Θ

(
1

n2

)
· 1

2|M|
· 1

2|x |

• U is P-computable, hence (NBH,U) is in distNP.

(NBH ,U) is distNP-complete

Let (L,D) be a distributional problem in distNP, i.e. L is in NP
and D is P-computable.We need to find an average-case reduction
from (L,D) to (NBH,U). Will the reduction from before work as
an average-case reduction? i.e. Does the map x 7→ (ML, x , 1

p(|x |))
satisfy the domination condition? (Spoiler: No)



There exists a distNP-complete problem

We will soon see that the map f : x 7→ (ML, x , 1
p(|x |)) satisfies the

domination condition only when for all x we have

P[Dn = x ] ≤ O

(
nO(1)

2|x |

)
There are many P-computable distributions for which the above is
false.

Example: Consider a distribution D defined by:

P[Dn = x ] =


1/2 if x = 00 · · · 0
1/2 if x = 11 · · · 1
0 else

Here, clearly

P[Dn = 00 · · · 0] =
1

2

 O

(
nO(1)

2n

)
(for large enough n)



There exists a distNP-complete problem

• We will soon see that the map f : x 7→ (ML, x , 1
p(|x |)) satisfies

the domination condition only when for all x we have

P[Dn = x ] ≤ O

(
nO(1)

2|x |

)

There are many distributions for which the above is false.

• Now if we instead use the map f : x 7→ (NL,C (x), 1p
′(|x |)), then

f satisfies the domination condition only when for all x we have

P[Dn = x ] ≤ O

(
nO(1)

2|C(x)|

)



There exists a distNP-complete problem

• Now if we instead use the map f : x 7→ (NL,C (x), 1p
′(|x |)), then

f satisfies the domination condition only when for all x we have

P[Dn = x ] ≤ O

(
nO(1)

2|C(x)|

)

• We will soon construct an “invertible compression” algorithm C
that satisfies the above identity. The compression algorithm will be
such that

I x ∈ L ⇐⇒ (NL,C (x), 1p
′(|x |)) ∈ NBH

I |C (x)| is “small” when P[Dn = x ] is “big”
(i.e. when P[Dn = x ] ≥ 1/2|x|).

I |C (x)| ≈ |x | when P[Dn = x ] is “small”
(i.e. when P[Dn = x ] ≤ 1/2|x|).

This reduction, f , will turn out to be a valid average-case
reduction from (L,D) to (NBH,U).



There exists a distNP-complete problem

Details part 1: P [Dn = x ] ≤ O
(

nO(1)

2|x|

)
Assume the map f : x 7→ (ML, x , 1

p(|x |)) satisfies the domination
condition, i.e. there is a polynomial q s.t. for all y

P [f (Dn) = y ] ≤ q(n) P
[
U|ML|+n+p(n) = y

]
Take y = (ML, x , 1

p(|x |)) and note:

P
[
U? = (ML, x , 1

p(|x |))
]

= Θ(1) · 1

p(n)2
· 1

2ML
· 1

2|x |

P
[
f (Dn) = (ML, x , 1

p(|x |))
]

= P [Dn = x ] (As f is one-to-one)

Thus we get,
P [Dn = x ] ≤ q(n) ·Θ(1) · 1

p(n)2
· 1

2ML
· 1

2|x |

≤ O

(
nO(1)

2|x |

)
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Details part 2: the “invertible compression” algorithm C

Lemma: Let D is a polynomial-time computable distribution. Then
there exists a polynomial-time algorithm C satisfying:

I C (x) = (|x |,C0(x)) for all x .

I C is injective: C (x) = C (y) ⇐⇒ x = y

I |C (x)| ≤ log|x |+ 1 + min
{
|x |, log

(
1

P[Dn=x]

)}

We shall postpone the proof and finish the other details.



There exists a distNP-complete problem

Details part 3: The NTM NL

Let NL be a NTM that on input (n, z) does the following:

I Guesses a string x of length n.

I Computes C (x). If C (x) 6= (n, z), then the machine halts and
outputs 0.

I Else, It simulates ML on input x and returns ML(x).

(i.e. NL computes C−1(n, z) by guessing and simulates ML on it.)

Observation 1: There is a polynomial p′(·) such that NL halts in
at most p′(n) steps for input (n, z).

Observation 2: NL accepts C (x) = (|x |,C0(x)) in p′(|x |) steps iff
ML accepts x in p(|x |) steps.
Note: The ⇒ direction of the proof relies on C being one-to-one.



There exists a distNP-complete problem

Details part 4: f : x 7→ (NL,C (x), 1p′(|x |)) works as an
average-case reduction

Let f (x) := (NL,C (x), 1p
′(|x |)).

Length regularity: |f (x)| = |NL|+ |C (x)|+ |p′(x)| = |x |O(1)

Correctness: x ∈ L ⇐⇒ f (x) ∈ NBH. This is because:

x ∈ L ⇐⇒ ML accepts x in p(|x |) steps

⇐⇒ NL accepts C (x) in p′(|x |) steps

⇐⇒ (NL,C (x), 1p
′(|x |)) ∈ NBH

Domination condition: We want for all y :

P [f (Dn) = y ] ≤ q(n) P [U? = y ] (∗)

If y 6= (NL,C (x), 1p
′(n)) for some x , then (∗) trivially holds as LHS

becomes 0.
Assume y = (NL,C (x), 1p

′(n)) for some x .
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Details part 4: f : x 7→ (NL,C (x), 1p′(|x |)) works as an
average-case reduction

Domination condition: We want for all y :

P [f (Dn) = y ] ≤ q(n) P [U? = y ] (∗)

Assume y = (NL,C (x), 1p
′(n)) for some x .

Note:

P
[
f (Dn) = (NL,C (x), 1p

′(n))
]

= P[Dn = x ]

P
[
U? = (NL,C (x), 1p

′(n))
]

= Θ(1) · 1

p′(|x |)2
· 1

2NL
· 1

2|C(x)|

≥ Θ(1) · 1

p′(|x |)2
· 1

2NL
· 1

2
log|x |+1+min

{
|x |,log

(
1

P[Dn=x]

)}
≥ Θ(1) · 1

p′(|x |)2
· 1

2NL
· 1

2|x |
· P[Dn = x ] �
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Lemma: Let D is a polynomial-time computable distribution. Then
there exists a polynomial-time algorithm C satisfying:

I C (x) = (|x |,C0(x)) for all x .

I C is injective: C (x) = C (y) ⇐⇒ x = y

I |C (x)| ≤ log|x |+ 1 + min
{
|x |, log

(
1

P[Dn=x]

)}
Proof:
Let

C0(x) :=

{
1x when P[Dn = x ] ≤ 2−|x |

0h(x) when P[Dn = x ] > 2−|x |

where h(x) is a poly-time computable function s.t. h is one-to-one
on inputs of same length and h(x) has “small” length.

Let µn(x) = P[Dn ≤ x ] and let h(x) be the longest common prefix
of µn(x) and µn(x − 1) when both are written out in binary.
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h(x) is the longest common prefix of µn(x) and µn(x − 1) after the
decimal point when both are written out in binary.

Observations about h:

I h(x) is poly-time computable as µn(x) and µn(x − 1) are
poly-time computable.

I h is one-to-one on inputs of same length as given
h(x1) = h(x2) = s where |x1| = |x2|, we must have:

µn(x1 − 1) = 0.s 0 ∗ ∗ · · ·
µn(x1) = 0.s 1 ∗ ∗ · · ·

µn(x2 − 1) = 0.s 0 ∗ ∗ · · ·
µn(x2) = 0.s 1 ∗ ∗ · · ·

As µn is monotonic we have x1 − 1 < x2 and x2 − 1 < x1 from
which it follows that x1 = x2.
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h(x) is the longest common prefix of µn(x) and µn(x − 1) after the
decimal point when both are written out in binary.

Observations about h:

I h(x) is poly-time computable as µn(x) and µn(x − 1) are
poly-time computable.

I h is one-to-one on inputs of same length.

I |h(x)| ≤ log
(

1
P[Dn=x]

)
This is because

|h(x)| > log

(
1

P[Dn = x ]

)
⇒ µn(x)− µn(x − 1) < 2

−log
(

1
P[Dn=x]

)
⇒ µn(x)− µn(x − 1) < P[Dn = x ]

⇒ P[Dn = x ] < P[Dn = x ], a contradiction.
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h(x) is the longest common prefix of µn(x) and µn(x − 1) after the
decimal point when both are written out in binary.

Observations about h:

I h(x) is poly-time computable as µn(x) and µn(x − 1) are
poly-time computable.

I h is one-to-one on inputs of same length.

I |h(x)| ≤ log
(

1
P[Dn=x]

)
Recall:

C (x) :=

{
(|x |, 1x) when P[Dn = x ] ≤ 2−|x |

(|x |, 0h(x)) when P[Dn = x ] > 2−|x |

Hence C is a poly-time computable injective function satisfying

|C (x)| ≤ log|x |+ 1 + min
{
|x |, log

(
1

P[Dn=x]

)}
�
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