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Introduction

x ∈ {0, 1}n

Alice
y ∈ {0, 1}n

Bob

f (x , y)

• Two parties, Alice and Bob with unlimited computational
power.

• Wish to collaboratively compute f (x , y) where
f : {0, 1}n × {0, 1}n → {0, 1}.

• Already agreed upon communication protocol.
• Cost of the protocol is the number of bits communicated for

worst-case choice for x and y .
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Definition of two-party communication complexity [1]

• Two parties (players), Alice and Bob.
• Function f : {0, 1}2n → {0, 1}.
• A t-round two-party protocol Π for computing f which is a

sequence of t functions P1, ..., Pt : {0, 1}∗ → {0, 1}∗.
• An execution of Π on inputs x , y involves the following: Alice

computes p1 = P1(x) and sends p1 to Bob. Bob computes
p2 = P2(y , p1) and sends p2 to Alice. And so on.

• Protocol Π is valid, if ∀x , y , last message sent pt is equal to
f (x , y).
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Diagram for two-party communication model

Alice
x ∈ {0, 1}n

Bob
y ∈ {0, 1}n

p1 = P1(x)

p2 = P2(y , p1)

p3 = P3(x , p1, p2)

pt = Pt(y , p1, ..., pt−1)

3/48



Diagram for two-party communication model

Alice
x ∈ {0, 1}n

Bob
y ∈ {0, 1}n

p1 = P1(x)

p2 = P2(y , p1)

p3 = P3(x , p1, p2)

pt = Pt(y , p1, ..., pt−1)

3/48



Diagram for two-party communication model

Alice
x ∈ {0, 1}n

Bob
y ∈ {0, 1}n

p1 = P1(x)

p2 = P2(y , p1)

p3 = P3(x , p1, p2)

pt = Pt(y , p1, ..., pt−1)

3/48



Diagram for two-party communication model

Alice
x ∈ {0, 1}n

Bob
y ∈ {0, 1}n

p1 = P1(x)

p2 = P2(y , p1)

p3 = P3(x , p1, p2)

pt = Pt(y , p1, ..., pt−1)

3/48



Definition of two-party communication complexity

• Communication complexity of Π is maximum number of bits
communicated, i.e., max({|p1|+... + |pt |: ∀x , y ∈ {0, 1}n})

• Communication complexity of f (denoted by C(f )), is
minimum communication complexity over all valid protocols Π
for f .

• For any function f , C(f ) ≤ n + 1. Why?
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Examples

• Parity: PARITY(x , y) is parity of all bits in x , y .
C(PARITY ) = 2.

• Halting Problem:
• Function H : {0, 1}n × {0, 1} → {0, 1}, defined as follows. If

x = 1n and y = code(M) for some Turing machine M such
that M halts on x , then H(x , y) = 1 and otherwise
H(x , y) = 0.

• C(H) = 2.

• Both parties have unbounded computation power.
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Example - Equality

• Equality function will be used as running example through the
presentation.

EQ(x , y) =

1 if x = y
0 otherwise

Theorem 1
Equality has linear communication complexity C(EQ) ≥ n.

• We will prove Theorem 1 using various methods.
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Fooling set method

Observation 1
For any communication protocol for any function, ∀ distinct
x , x ′ ∈ {0, 1}n such that the communication pattern is the same
for (x , x) and (x ′, x ′), then the output of the protocol will be
same for (x , x), (x , x ′), (x ′, x), (x ′, x ′).

Proof by induction: Let us assume, Alice has x and Bob has x ′. It
is given that communication pattern for (x , x) and (x ′, x ′) is same.
If Alice communicates a bit first, it will be same whether his input
in x or x ′. If Bob communicates next, it will communicate same
bit whether its input is x or x ′ since he receives the same bit from
Alice. And so on. At the end, the Alice and Bob answer on (x, x)
must agree with their answer on (x, x’).
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Proof Of C(EQ) ≥ n by Fooling Method

• For contradiction let us assume, C(EQ) = n − 1. We could
have 2n−1 different possible communication pattern.

• For 2n−bit input pair (x , x), we have 2n possibilities. By
pigeonhole principle, ∃ distinct pair (x , x) and (x ′, x ′) such
that their communication pattern is same.

• Using Observation, EQ(x , x) = 0 = EQ(x , x ′).
Contradiction.
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Generalized Fooling Set Method

• Definition of Fooling Set S ⊆ {0, 1}n × {0, 1}n corresponding
to a value b ∈ {0, 1} and function f : {0, 1} × {0, 1} → {0, 1}

1. ∀⟨x , y⟩ ∈ S, f (x , y) = b
2. ∀ distinct ⟨x , y⟩, ⟨x ′, y ′⟩ ∈ S, either f (x , y ′) ̸= b or

f (x ′, y) ̸= b.

Lemma 2
If f has size-M fooling set then C(f ) ≥ log M.

• We need at least M distinct communication pattern. Why?

• If we have M − 1 distinct communication pattern then
∃⟨x , y⟩, ⟨x ′, y ′⟩ ∈ S s.t., their communication pattern is same.

• From observation, f (x , y ′) = f (x ′, y) = b. Contradiction.
• For M distinct communication pattern we require at least

log M bits. C(f ) ≥ log M.
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Example

Disjointness

• x , y are characteristic vectors of subsets of {0, ..., n}. Thus,
x , y ∈ {0, 1}n.

• DISJ(x , y) = 1 if x and y are disjoint, 0 otherwise.
• C(DISJ) ≥ n

Proof : Following 2n pairs constitute fooling set:

S =
{

(A, Ā) : A ⊆ {1, 2, ..., n}
}

Thus, C(DISJ) ≥ log(2n) = n.
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The Tiling Method

• The tiling bound for lower bounds take a more global view of
the function f .

• Matrix M(f ) of size 2n × 2n whose (x , y)th entry has value
f (x , y).

11/48



Matrix of EQ

Figure 1: Matrix M(f ) for the equality function when the inputs have 3
bits. 12/48



The Tiling Method

• The tiling bound for lower bounds take a more global view of
the function f .

• Matrix M(f ) of size 2n × 2n whose (x , y)th entry has value
f (x , y).

• Combinatorial Rectangle: Sub-matrix of M that corresponds
to entries in A × B where A ⊆ {0, 1}n, B ⊆ {0, 1}n

• Monochoromatic rectangle: A × B is monochromotic if
∀x ∈ A, y ∈ B, Mxy is same.
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Partition of M based on communication bits

• If Alice sends first bit, M(f ) gets partitions into two
rectangles of type A0 × {0, 1}n, A1 × {0, 1}n where Ab ⊆ A
for which bit sent by Alice is b.

• Bob sends next bit, which further partitions two rectangles
into smaller rectangles (combinatorial rectangle).

• If total number of bits communicated is k, then matrix gets
partitioned into 2k rectangles.

14/48



Example of Communication Matrix

000

001
010
011
100
101
110
111

000 001 010 011 100 101 110 111

Alice’s
string

Bob’s string

0

1

00 01

10 11 10
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Partition of M based on communication bits

Observation 2
After protocol ends, each partition of matrix will be
monochromatic rectangle. Why?

Definition:

• Monochromatic tiling of M(f ) is a partition of M(f ) into
disjoint monochromatic rectangles.

• χ(f ) : Minimum of rectangles in any monochromatic tiling of
M(f ).

16/48
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Lower and Upper bound using Tiling Method

Theorem 3
log2 χ(f ) ≤ C(f ) ≤ 16(log2 χ(f ))2

• Number of rectangles in M at most doubles for each bit
communicated.

• Thus, χ(f ) ≤ 2C(f ) ⇒ log χ(f ) ≤ C(f )
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Relation between fooling set method and tiling method

Lemma 4
If f has a fooling set with m pairs, then χ(f ) ≥ m.

• For contradiction, χ(f ) = m − 1.
• By pigeonhole principle, ∃(x1, y1) and (x2, y2) as two pairs in

fooling set such that they belong to in same monochromatic
rectangle, thus f (x1, y1) = f (x2, y1) = f (x1, y2) = f (x2, y2).

• Contradiction.

• log M ≤ log χ(f ) ≤ C(f ).
• Thus, Tiling method consumes fooling set method.

18/48
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Rank Method

Lemma 5
The rank of an n × n matrix over a field F, denoted by rank(M)
is the minimum value of l such that M can be expressed as

M =
l∑

i=1
Bi

where each Bi is an n × n rank-1 matrix.

Proof idea: Matrix M = ∑l
i=1 uiuT

i where uiuT
i is a rank-1 matrix

and uis are linearly independent. Now, consider a matrix
Y = ∑n

i=1 uiuT
i where n is the dimension of the space and uis

form the basis for it. (using Gram-Schmidt process)

Matrix Y has rank n. Why?

19/48



Rank Method

Lemma 5
The rank of an n × n matrix over a field F, denoted by rank(M)
is the minimum value of l such that M can be expressed as

M =
l∑

i=1
Bi

where each Bi is an n × n rank-1 matrix.

Proof idea: Matrix M = ∑l
i=1 uiuT

i where uiuT
i is a rank-1 matrix

and uis are linearly independent. Now, consider a matrix
Y = ∑n

i=1 uiuT
i where n is the dimension of the space and uis

form the basis for it. (using Gram-Schmidt process)

Matrix Y has rank n. Why?
19/48



Rank Method

Yv =
n∑

i=1
uiuT

i v

For the sake of contradiction, let rank(Y ) < n. This means than
Yv = 0 for some non-zero v .

From the above equation, Yv = 0 only when uT
i v = 0 for all i as

uis are linearly independent.

Now, v = c1u1 + c2u2 + · · · + cnun where atleast one of c1, · · · , cn

is non-zero. But, uT
i v = 0 for all i which is a contradiction.

Hence, rank(Y ) = n.

Rank of (Y − M) can be atmost n − l , hence rank of M must be l .
20/48



Rank Method

Theorem 6
For every function f , χ(f ) ≥ rank(M(f )) and hence the
communication complexity C(f ) ≥ log2(rank(M(f )))

Proof : Consider a deterministic protocol which has communication
complexity c. Then there exists a partition of Mf into atmost 2c

monochromatic rectangles. Let these rectangles be R1, · · · , Rl for
some l ≤ 2c .

Let R = {Ri} be the subset of rectangles for which f (x , y) = 1,
∀(x , y) ∈ Ri . For each such rectangle in R, define a matrix Mi as

Mi =

1 if (x, y) ∈ Ri

0 otherwise
Now, Mf = ∑

i Mi

21/48



Rank Method

Theorem 6
For every function f , χ(f ) ≥ rank(M(f )) and hence the
communication complexity C(f ) ≥ log2(rank(M(f )))

Proof : Consider a deterministic protocol which has communication
complexity c. Then there exists a partition of Mf into atmost 2c

monochromatic rectangles. Let these rectangles be R1, · · · , Rl for
some l ≤ 2c .

Let R = {Ri} be the subset of rectangles for which f (x , y) = 1,
∀(x , y) ∈ Ri . For each such rectangle in R, define a matrix Mi as

Mi =

1 if (x, y) ∈ Ri

0 otherwise
Now, Mf = ∑

i Mi 21/48



Rank Method

Theorem 7
For every function f , χ(f ) ≥ rank(M(f )) and hence the
communication complexity C(f ) ≥ log2(rank(M(f )))

Proof : Consider a deterministic protocol which has communication
complexity c. Then there exists a partition of Mf into atmost 2c

monochromatic rectangles. Let these rectangles be R1, · · · , Rl for
some l ≤ 2c .
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Rank Method

We know that rank(A + B) ≤ rank(A) + rank(B)
Hence, rank(Mf ) ≤

∑
i rank(Mi)

Now each Mi has rank atmost 1 since it takes the following form

Mi =



1 1 · · · 1 0 · · · 0
1 1 · · · 1 0 · · · 0
1 1 · · · 1 0 · · · 0
0 0 · · · 0 0 · · · 0
... ... · · ·

... ... · · ·
...

0 0 · · · 0 0 · · · 0


Hence, rank(Mf ) ≤ l where l is the number of rectangles that

Mf gets partitioned into. Finally,

rank(Mf ) ≤ χ(f ) ≤ 2C(f )
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Rank Method

Ex 1:

EQ(x , y) =

1 if x = y
0 otherwise

The matrix Mf for EQ is 2n × 2n identity matrix and hence the
rank is 2n. Therefore, C(EQ) ≥ n

Ex 2: Consider the Dot Product function
DPn : {0, 1}n × {0, 1}n → {0, 1}.
DP(x , y) = ∑n

i=1 xiyi

Observation
The rank of the matrix MDP is atmost 2n − 1 over GF (2)n and
hence the communication complexity is atleast n.
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Rank Method

Proof : Choice of field is crucial in giving tighter bounds. [2]

• Consider the square of the matrix N = M2
DP .

• We know that (AB)ij = ∑n
k=1 AikBkj , therefore,

N(x , y) = ∑
z∈{0,1}n(x · z) × (y · z).

• Now, N(x , y) gives the number of vectors z for which x · z
and y · z are both 1.

• When x = y , the number of such z ’s is 2n/2 = 2n−1 and
hence, diagonal entries of N are 2n−1.

• When x ̸= y , the number of such z ’s is 2n/4 = 2n−2 and
hence, off-diagonal entries of N are 2n−2.

• Hence, rank(N) = 2n − 1 as the first row is always 0.
• Therefore, rank(MDP) ≥ 2n − 1 and CF (DP) ≥ n

25/48
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Discrepancy Method

For any 0/1 matrix, consider the map b → (−1)b.

Definition
The discrepancy of a rectangle A × B in a matrix M is

disc(Ri) = 1
22n

∣∣∣∣∣∣
∑

x∈A,y∈B
Mxy

∣∣∣∣∣∣
The discrepancy of a matrix M(f ) with rectangles R1, R2, · · · , Rl

Disc(f ) = max
i

disc(Ri)
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Discrepancy Method

Lemma 8
The discrepancy of the matrix M(f ), denoted by Disc(f ), is the
maximum discrepancy among all rectangles. The relation of χ(f )
to Disc(f ) is

χ(f ) ≥ 1
Disc(f )

Proof : If χ(f ) ≤ K , then there exists a monochromatic rectangle
having atleast 22n

K entries. Such a rectangle has discrepancy atleast
1/22n × 22n/K = 1/K

Note: The bound is loose. Consider the equality function. The
discrepancy for the matrix M(EQ) is atleast 1 − 21−n which gives
the lower bound for χ(EQ) as 2.
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Discrepancy Method

Lemma 9
For any symmetric real matrix M, the discrepancy of a rectangle
A × B is atmost λmax

√
|A||B|/22n, where λmax (M) is the largest

eigenvalue of M.

Proof : For a symmetric matrix M, for vectors x , y , we know that
xT My ≤ λmax (M)|x · y | where x · y denotes the dot product of
vectors x and y . Also 1S is the characteristic vector for a subset S.

1S(i) =

1 if i ∈ S
0 otherwise

Hence, ||1S ||=
√∑

x∈S 12 =
√

|S|.
Now, for every A, B ⊆ {0, 1}n, ∑

x∈A,y∈B Mxy = 1A
†M1B
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Discrepancy Method

The discrepancy of the rectangle A × B is
1

22n 1A
†M1B ≤ 1

22n λmax (M)|1A
†1B|≤ 1

22n

√
|A||B|

using the Cauchy-Schwarz inequality.

Ex: Consider the function DP(x , y) = x · y = ∑
i xiyi (mod 2)

1. Let Mxy = (−1)x ·y . M is the inner product function matrix
with entries {+1, −1}.

2. Now, for this matrix, every pair of rows (columns) are
mutually orthogonal. For distinct rows x and y ,∑

z∈{0,1}n M(x , z).M(y , z). For 1/2 of the vectors z ,
M(x , z) = M(y , z) resulting in summand +1, otherwise
summand −1. Hence, any two rows x and y are mutually
orthogonal.
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Discrepancy Method

3. We will calculate each entry of M2 as follows:

MMT [i , j] =
∑

k∈{0,1}n

M(i , k).M(j , k) =

2n if i = j
0 otherwise

This is because when i = j , the product is 1 for all k and
otherwise we have, ∑

k M(i , k).M(j , k) = 0 as seen earlier.
M2 = 2nI.

4. Hence, the spectral norm of the matrix given by√
λmax (MT M) is

√
2n = 2n/2.

5. Finally, using Lemma Disc(A × B) ≤ 2−3n/2√
|A||B| and the

overall discrepancy Disc(DP) ≤ 2−n/2
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Upper Bounding the Discrepancy

Definition
For a ±1 valued function f ,

ϵ(f ) = Ea1,a2,b1,b2

 ∏
i=1,2

∏
j=1,2

f (ai , bj)



Lemma 10

Disc(f ) ≤ ϵ(f )1/4

31/48



Upper Bounding the Discrepancy

Definition
For a ±1 valued function f ,

ϵ(f ) = Ea1,a2,b1,b2

 ∏
i=1,2

∏
j=1,2

f (ai , bj)



Lemma 10

Disc(f ) ≤ ϵ(f )1/4

31/48



Upper Bounding the Discrepancy

Proof : Define g , h to be the characteristic functions of A and B
respectively.

Also,

ϵ(f ) = Ea1,a2

Eb1,b2

 ∏
i=1,2

∏
j=1,2

f (ai , bj)


= Ea1,a2

[
(Eb[f (a1, b)f (a2, b)])2

]
≥ Ea1,a2

[
g(a1)2g(a2)2 (Eb[f (a1, b)f (a2, b)])2

]
= Ea1,a2

[
(Eb[g(a1)g(a2)f (a1, b)f (a2, b)])2

]
≥ Ea1,a2 ([Eb[g(a1)g(a2)f (a1, b)f (a2, b)]])2

≥ (Ea,b[f (a, b)g(a)h(b)])4

Now, Disc(f ) = Ea,b∈{0,1}n [f (a, b)g(a)h(b)]
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Upper Bounding the Discrepancy

Ex: Consider the DP function f (x , y) = x · y = ∑
i xiyi (mod 2).

Now,

ϵ(DP) ≤ 2−n

Proof :

ϵ(f ) = Ea1,a2

[
(Eb[f (a1, b)f (a2, b)])2

]
Now, E [X 2] ≥ E [X ]2

ϵ(f ) ≤ Ea1,a2

[(
Eb[f 2(a1, b)f 2(a2, b)]

)]
Since the IP function takes values only ±1, we have

ϵ(IP) ≤ 2n

22n = 2−n

Hence, the Disc(IP) ≤ 2−n/4
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Comparison between lower bound techniques

• Tiling method provides the strongest lower bound
• The rank method is always atleast as strong as the fooling set

method

Observation 4
If a function f has a fooling set of size S, then the rank method
can be used to give a lower bound of atleast 1

2 log2 S

Lemma 11
Rank of A

⊗
B over any field F is the product of ranks of A and

B.
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Comparison between lower bound techniques

Proof : Let S = {(x1, y1), · · · , (xn, yn)} be the elements of the
fooling set. Consider the sub-matrix A of Mf that corresponds to
the rows of x1, · · · , xn and columns of y1, · · · , yn.

From the definition of fooling set, A ⊙ AT = I where ⊙ represents
element-wise multiplication of A.

|S| = rank(I) = rank(A ⊙ AT ) ≤ rank(A ⊗ AT ) ≤ rank(A)2

|S| ≤ rank(Mf )2

For fooling set of size |S|, rank gives a lower bound of atleast
log2(rank(Mf )) ≥ 1

2 log2|S| [3]
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Comparison between lower bound techniques

Low rank conjecture
There is a constant c > 1 such that
C(f ) = O(log(rank(M(f )))c) for all f and all input sizes n,
where rank is taken over reals.

Nisan and Widgerson ’94
1/Disc(f ) = O(rank(f )3/2)
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Multiparty Communication Complexity

• Many ways to generalize two party communication complexity
to multiparty setting.

• Most interesting model is “number on the forehead model”.
• Each player has a string on his head that everyone except him

can see.
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Multiparty Communication Complexity

• Formally, there are k players and k string x1, ..., xk . Player i
has access to all strings except xi . The players are interested
in computing f (x1, ..., xk) where f : ({0, 1}n)k → {0, 1}.

• A protocol for communication if agreed upon by all players
beforehand. For communication, players write on a “public
blackboard” that all of them can see.

• Last message sent should be f (x1, x2, ..., xk).
• Ck(f ) is number of bits exchanged by the best protocol for a

function f .
• Ck(f ) ≤ n + 1
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Examples of multiparty communication

• Consider a three-party model which computes following
function:

f (x1, x2, x3) =
n⊕

i=1
maj(x1i , x2i , x3i)

where x1, x2, x3 ∈ {0, 1}n.
C3(f ) = 3. Each player will determine majority by examining
information available to her. He writes the parity of majority
on blackboard. Final answer is parity of all players bit.

40/48



Lower bound for multiparty communication

• Idea corresponding to monochromatic rectangle in two-party
model is cylinder intersection in k-party model.

• Cylinder in dimension i is a subset S of the inputs such that if
(x1, ..., xk) ∈ S then (x1, ..., xi−1, x ′

i , xi+1, ..., xk) ∈ S for all x ′
i

also.

Figure 2: Example of cylinder for k = 3. [2]

• Cylinder intersection is ∩k
i=1Si where Si is cylinder in

dimension i . 41/48



Lower bound for multiparty communication

• Observation: Player i ’s communication does not depend upon
xi , so it can be viewed as partitioning input according to
cylinders in dimension i .

• At end of protocol, cube {0, 1}nk is partitioned using cylinder
intersections.

• If the protocol communicates c bits, then the partition
consists of at most 2c monochromatic cylinder intersections.
How?
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Lower bound for multiparty communication

Lemma 12
If every partition of M(f ) into monochromatic cylinder
intersections requires at least R cylinder intersections, then the
k-party communication complexity is at least ⌈log2R⌉, where
M(f ) is the k-dimensional table whose (x1, ..., xk)th entry is
f (x1, ..., xk).

Observation in previous slide and taking idea from two-party model
proves this lemma.
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Discrepancy-based lower bound for Multiparty Communication

k-party Discrepancy of a function

Disc(f ) = 1
2nk max

T

∣∣∣∣∣∣
∑

(a1,···,ak)∈T
f (a1, · · · , ak)

∣∣∣∣∣∣
where T ranges over all cylinder intersections

To upper bound the discrepancy, ϵ(f ) is required. Define
(k, n)-cube D to be subset of {0, 1}nk consisting of 2k points
{a1, a′

1} × {a2, a′
2} × · · · × {ak , a′

k} where each ai , a′
i ∈ {0, 1}n.

k-party ϵ(f )
ϵ(f ) = ED [∏a∈D f (a)]
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Discrepancy-based lower bound for Multiparty Communication

Lemma 13

Disc(f ) ≤ (ϵ(f ))1/2k

Proof idea: Recall the proof for the lemma Disc(f ) ≤ ϵ(f )1/4 in
the 2-party case.

ϵ(f ) = ED

 ∏
a∈D

f (a)


For each ai in a, we follow the same steps as in 2-party case and
arrive at

ϵ(f ) ≥ (Ea\aiEai [f (a)g(ai)])2

Repeating the same for all 2k values of ai , we obtain the desired
result.
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Other Communication Models

• Randomized Protocols:
All players have access to a shared random string r . R(f ) is
defined as expected number of bits communicated by the
players.
Randomization can make a significant difference. Example:
equality function has a randomized communication protocol
with O(log n) complexity.

• Non-deterministic protocols:
All players are provided with an additional third input z
(non-deterministic guess) of some length m. Apart from this
guess, protocol is deterministic.
f (x , y) = 1 iff ∃z that makes players output 1.
Cost of protocol is m + numbers of bits communicated.
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Other Communication Models

• Average case protocols
• Computing a non-Boolean function
• Asymmetric communication
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