E0 224: Computational Complexity Theory Indian Institute of Science Assignment 1

Due date: Sep 16, 2022 Total marks: 50

1. (**6 marks**)

- (a) (2 marks) Let $L_1, L_2 \in NP$. Are $L_1 \cup L_2$ and $L_1 \cap L_2$ also in NP?
- (b) (4 marks) Let QUADEQ be the language of all satisfiable sets of quadratic equations over 0/1 variables (a quadratic equation over $u_1,...,u_n$ has the form $\sum_{i,j\in[n]}a_{i,j}u_iu_j+\sum_{i\in[n]}a_iu_i=b$) where addition is modulo 2. Show that QUADEQ is NP-complete.
- 2. (5 marks) Design a deterministic polynomial-time algorithm to solve the 2SAT problem (i.e., when every clause of the input CNF formula has at most 2 literals).
- 3. (6 marks) Let PRIMES = $\{n : n \text{ is a prime}\}$. Show that PRIMES \in NP. You may use the following fact: A number n is prime if and only if there exists a number $a \in \{2, ..., n-1\}$ satisfying $a^{n-1} = 1$ mod n and for every prime factor r of n-1, $a^{\frac{n-1}{r}} \neq 1 \mod n$.
- 4. (6 marks) Let $f: \mathbb{Z} \to \mathbb{Z}$ be a bijection that maps n-bit integers to n-bit integers. Such a f is a one-way function if f is polynomial-time computable, but f^{-1} is not. Show that if f is a one-way function, then the language $L_f := \{(x,y): f^{-1}(x) < y\} \in \mathsf{NP} \cap \mathsf{co-NP}$, but L_f is not in P .
- 5. (6 marks) Consider the following variant of the graph isomorphism problem: given two graphs H = (U, F) and G = (V, E) (not necessarily having the same number of vertices), check if there is a one-to-one map (i.e., an injection) $\phi: U \to V$ such that $(u_1, u_2) \in F$ if and only if $(\phi(u_1), \phi(u_2)) \in E$. Prove that this variant of the graph isomorphism problem is NP-complete.
- 6. (9 marks) Prove that there exists a language B such that $NP^B \neq \text{co-}NP^B$.
- 7. (12 points) Two languages $L_1, L_2 \subseteq \{0, 1\}^*$ are said to be *p-isomorphic* if there is a bijection $f: \{0, 1\}^* \to \{0, 1\}^*$ such that $x \in L_1 \iff f(x) \in L_2$ and f and f^{-1} are polynomial-time computable. A language L is *sparse* if there exists a constant c such that for every integer $n \geq 1$, the number of strings of length n belonging to L is bounded by n^c .
 - (a) (4 points) Show that if NP-complete languages are p-isomorphic to each other, then $P \neq NP$.
 - (b) (8 points) Show that if a sparse language is NP-complete, then P = NP.