Computational Complexity Theory

Lecture 14: Karp-Lipton theorem; Class AC and NC

Department of Computer Science, Indian Institute of Science

Recap: Algorithm per input length?

• "One might imagine that $P \neq NP$, but SAT is tractable in the following sense: for every ℓ there is a very short program that runs in time ℓ^2 and correctly treats all instances of size ℓ ." — Karp and Lipton (1982).

• P ≠ NP rules out the existence of a <u>single</u> efficient algorithm for SAT that handles <u>all</u> input lengths. But, it doesn't rule out the possibility of having <u>a sequence of</u> efficient SAT algorithms – one <u>for each input length</u>.

Recap: Lesson from Cook-Levin

- Locality of computation implies that an algorithm A working on inputs of some fixed length n and running in time T(n) can be viewed as a Boolean circuit ϕ of size $O(T(n)^2)$ s.t. $A(x) = \phi(x)$ for every $x \in \{0,1\}^n$.
- On the other hand, a circuit on inputs of length n and of size S can be viewed as an algorithm working on length n inputs and running in time S.
- To rule the existence of a sequence of algorithms –
 one for each input length we need to rule out the
 existence of a sequence of (i.e., a family of) circuits.

Recap: Boolean circuits

- A <u>Boolean circuit</u> is a directed acyclic graph whose nodes/gates are labelled as follows:
- A node with in-degree zero is labelled by an input variable, and it outputs the value of the variable.
- Any other node is labelled by one of the three operations \land , \lor , \neg , and it outputs the value of the operation on its input.

Nodes with out-degree zero are the output gates.

• <u>Size</u> of circuit is the no. of edges in it. <u>Depth</u> is the length of the longest path from an i/p to o/p node.

Recap: Boolean circuits

- A <u>Boolean circuit</u> is a directed acyclic graph whose nodes/gates are labelled as follows:
- A node with in-degree zero is labelled by an input variable, and it outputs the value of the variable.
- Any other node is labelled by one of the three operations \land , \lor , \neg , and it outputs the value of the operation on its input.

Nodes with out-degree zero are the output gates.

Size corresponds to "sequential time complexity".
 Depth corresponds to "parallel time complexity".

Recap: Class P/poly

- Let T: $N \rightarrow N$ be some function.
- Definition: A T(n)-size circuit family is a set of circuits $\{C_n\}_{n\in\mathbb{N}}$ such that C_n has n inputs and $|C_n| \le T(n)$.
- Definition: A language L is in SIZE(T(n)) if there's a T(n)-size circuit family $\{C_n\}_{n\in\mathbb{N}}$ such that

$$x \in L \iff C_n(x) = I$$
, where $n = |x|$.

• Defintion: Class $P/poly = \bigcup_{c>1} SIZE(n^c)$.

Recap: Class P/poly

- Observation: $P \subseteq P/poly$.
- Is P = P/poly? No! P/poly contains undecidable languages.
- Let UHALT = {I^{#(M,y)} : (M,y) ∈ HALT}. Then, UHALT is also an undecidable language.
- Obs. Any unary language is in P/poly.
- Hence, $P \subseteq P/poly$.

Recap: Class P/poly

- What makes P/poly contain undecidable languages? Ans: $L \in P/poly$ implies that L is decided by a circuit family $\{C_n\}$, where $|C_n| = n^{O(1)}$. We don't require that C_n is poly-time computable from I^n .
- P/poly is a <u>non-uniform class</u> as a language in this class is allowed to have different algorithms/circuits for different input lengths.
- P is a <u>uniform class</u> as a language in this class has one algorithm for all inputs.
- Is SAT ∈ P/poly? In other words, is NP ⊊ P/poly?

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. We'll show that $NP \subseteq P/poly$ implies $\prod_2 = \sum_2$. It's sufficient to show that $\prod_2 \subseteq \sum_2$.

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} M(x,u_1,u_2) = I.
```

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} M(x,u_1,u_2) = I.
```

 Goal. Come up with a polynomial function p(.) and a poly-time TM N s.t.

```
x \in L \iff \exists v_1 \in \{0,1\}^{p(|x|)} \ \forall v_2 \in \{0,1\}^{p(|x|)} \ N(x,v_1,v_2) = I.
```

Think about designing such a TM N.

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t. by Cook-Levin

```
x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \phi(x,u_1,u_2) = 1.
```

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. Let $L \in \Pi_2$. There's a polynomial function q(.) and a poly-time TM M s.t. by Cook-Levin $x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \phi(x,u_1,u_2) = 1$.
- If M runs in time $T(n) = n^{O(1)}$ on (x,u_1, u_2) , where |x| = n, then $|\phi| = O(T(n)^2)$. Let $m = \#(bits to write <math>\phi$).
- N can compute \$\phi\$ from M in poly(|x|) time.

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. Let $L \in \Pi_2$. There's a polynomial function q(.) and a poly-time TM M s.t. by Cook-Levin $x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \phi(x,u_1,u_2) = 1$.
- If M runs in time $T(n) = n^{O(1)}$ on (x,u_1, u_2) , where |x| = n, then $|\phi| = O(T(n)^2)$. Let $m = \text{length of } \phi$.
- N can compute \$\phi\$ from M in poly(|x|) time.

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \notin u_2 \in \{0,1\}^{q(|x|)} \varphi(x,u_1,u_2) = 1.
```

 $\phi(x,u_1,u_2)$ as a function of u_2 is satisfiable. Wlog ϕ is a CNF (why?).

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.
 - $x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \quad \phi(x,u_1,u_2) \in SAT.$
- By assumption, SAT \in P/poly, i.e., there's a circuit C_m of size $p(m) = m^{O(1)}$ that correctly decides satisfiability of all input circuits ϕ of length m.

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.
 - $x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \quad \phi(x,u_1,u_2) \in SAT.$
- First attempt. A \sum_2 statement to capture membership of strings in L.
 - $x \in L \longrightarrow C_m \in \{0,1\}^{p(m)} \forall u_1 \in \{0,1\}^{q(|x|)} C_m(\phi(x,u_1,u_2)) = I.$

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \quad \phi(x,u_1,u_2) \in SAT.
```

• First attempt. A \sum_2 statement to capture membership of strings in L.

```
x \in L \longrightarrow C_m \in \{0,1\}^{p(m)} \forall u_1 \in \{0,1\}^{q(|x|)} C_m(\phi(x,u_1,u_2)) = I.
```

• Wrong! Think about a C_m that always outputs 1.

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.
 - $x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \quad \phi(x,u_1,u_2) \in SAT.$
- First attempt. A \sum_2 statement to capture membership of strings in L.
 - $x \in L \longrightarrow C_m \in \{0,1\}^{p(m)} \forall u_1 \in \{0,1\}^{q(|x|)} C_m(\phi(x,u_1,u_2)) = I.$

• Need to be sure that C_m is the right circuit.

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.
 - $x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \quad \phi(x,u_1,u_2) \in SAT.$
- If there's a circuit C_m of size $m^{O(I)}$ that correctly decides satisfiability of all input circuits ϕ of length m, then by self-reducibility of SAT, there's a multi-output circuit D_m of size $r(m) = m^{O(I)}$ that outputs a satisfying assignment for input ϕ if $\phi \in SAT$. (Homework)

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \quad \phi(x,u_1,u_2) \in SAT.
```

• A \sum_{2} statement to capture membership in L.

```
x \in L \Rightarrow \exists D_m \in \{0,1\}^{r(m)} \ \forall u_1 \in \{0,1\}^{q(|x|)} \ \phi(x,u_1,D_m(\phi(x,u_1,u_2)) = 1. assignment to the u_2 variables
```

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \quad \phi(x,u_1,u_2) \in SAT.
```

• A \sum_{2} statement to capture membership in L.

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- Proof. Let $L \in \prod_2$. There's a polynomial function q(.) and a poly-time TM M s.t.

```
x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \quad \phi(x,u_1,u_2) \in SAT.
```

• A \sum_{2} statement to capture membership in L.

```
x \in L \Longrightarrow \exists D_m \in \{0,1\}^{r(m)} \forall u_1 \in \{0,1\}^{q(|x|)} \ N(x,D_m,u_1) = 1.
```

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_2 .
- If we can show NP $\not\subset$ P/poly assuming P \neq NP, then NP $\not\subset$ P/poly \iff P \neq NP.

• Karp-Lipton theorem shows NP $\not\subset$ P/poly assuming the stronger statement PH $\neq \sum_{2}$

 Are there Boolean functions (i.e., languages) outside P/poly?

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- $exp(-2^{n-1})$ fraction of Boolean functions on n variables **do not** have circuits of size $2^n/(22n)$.
- Proof. Follows from a counting argument.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- $exp(-2^{n-1})$ fraction of Boolean functions on n variables **do not** have circuits of size $2^n/(22n)$.
- Proof. Let $s = 2^n/(22n)$. A circuit of size s has at most s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let $exp(m) = 2^m$.
- Theorem. I- $exp(-2^{n-1})$ fraction of Boolean functions on n variables **do not** have circuits of size $2^n/(22n)$.
- Proof. Let $s = 2^n/(22n)$. A circuit of size s has at most s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.
- Number of bits required to write the adjacency lists it at most $s(\log s + 3) + 4(s + n) \le 9s.\log s$.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- $exp(-2^{n-1})$ fraction of Boolean functions on n variables **do not** have circuits of size $2^n/(22n)$.
- Proof. Let $s = 2^n/(22n)$. A circuit of size s has at most s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.
- Number of circuits of size s is at most 3^s.2^{9s.log s}.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- $exp(-2^{n-1})$ fraction of Boolean functions on n variables **do not** have circuits of size $2^n/(22n)$.
- Proof. Let $s = 2^n/(22n)$. A circuit of size s has at most s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.
- Number of circuits of size s is at most 2 | Is.log s .

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- $exp(-2^{n-1})$ fraction of Boolean functions on n variables **do not** have circuits of size $2^n/(22n)$.
- Proof. Let $s = 2^n/(22n)$. A circuit of size s has at most s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.
- Number of circuits of size s is at most $exp(2^{n-1})$.
- Number of functions in n variables is $exp(2^n)$.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- $exp(-2^{n-1})$ fraction of Boolean functions on n variables **do not** have circuits of size $2^n/(22n)$.
- Proof. Let $s = 2^n/(22n)$. A circuit of size s has at most s internal nodes. It can be specified by giving the labels of the internal nodes and the adjacency lists.
- So, circuits of size s can compute at most $exp(-2^{n-1})$ fraction of all Boolean functions on n variables.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many.
- Is one out of so many functions outside P/poly in NP?

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many.
- Is one out of so many functions outside P/poly in NP? We don't know even after ~40 yrs of research!
- Theorem. (Iwama, Lachish, Morizumi & Raz 2002) There is a language $L \in NP$ such that any circuit C_n that decides $L \cap \{0,1\}^n$ requires 5n o(n) many Λ and V gates.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many.
- Is one out of so many functions outside P/poly in NP? We don't know even after ~40 yrs of research!
- Theorem. (Iwama, Lachish, Morizumi & Raz 2002) There is a language $L \in NP$ such that any circuit C_n that decides $L \cap \{0,1\}^n$ requires 5n o(n) many Λ and V gates.

Results of this kind are known as circuit lower bound.

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many.
- Is one out of so many functions outside P/poly in NP? We don't know even after ~40 yrs of research!

Lower bounds for restricted circuits

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly interesting techniques.

Lower bounds for restricted circuits

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly interesting techniques.
- Fact. PARITY($x_1, x_2, ..., x_n$) can be computed by a circuit of size O(n) and a formula of size $O(n^2)$.

Homework

Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly interesting techniques.
- Theorem. (Khrapchenko 1971) Any formula computing PARITY($x_1, x_2, ..., x_n$) has size $\Omega(n^2)$.

Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some natural classes of circuits.
- The proofs of these lower bounds introduced and developed some highly interesting techniques.

• Theorem. (Andreev 1987, Hastad 1998) There's a f that can be computed by a O(n)-size circuit such that any formula computing f has size $\Omega(n^{3-o(1)})$.

Technique: Shrinkage of formulas under random restrictions (Subbotovskaya 1961).

Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some natural classes of circuits.
- The proofs of these lower bounds introduced and developed some highly interesting techniques.
- Conjecture. (Circuits more powerful than formulas) There's a f that can be computed by a O(n)-size circuit such that any formula computing f has size $n^{\omega(1)}$.

An interesting approach was given by Karchmer, Raz & Wigderson (1995).

LB for AC⁰ and monotone circuits

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly interesting techniques.
- We'll discuss a super-polynomial lower bound for constant depth circuits later.

Non-uniform size hierarchy

- Shanon's result. There's a constant c ≥ I such that every Boolean function in n variables has a circuit of size at most c.(2ⁿ/n).
- Theorem. There's a constant $d \ge 1$ s.t. if $T_1: N \to N$ & $T_2: N \to N$ and $T_1(n) \le d^{-1}.T_2(n) \le T_2(n) \le c.(2^n/n)$ then $SIZE(T_1(n)) \subsetneq SIZE(T_2(n))$.

Non-uniform size hierarchy

- Shanon's result. There's a constant c ≥ I such that every Boolean function in n variables has a circuit of size at most c.(2ⁿ/n).
- Theorem. There's a constant $d \ge 1$ s.t. if $T_1: N \to N$ & $T_2: N \to N$ and $T_1(n) \le d^{-1}.T_2(n) \le T_2(n) \le c.(2^n/n)$ then $SIZE(T_1(n)) \subsetneq SIZE(T_2(n)).$
- Proof. Uses Shanon's result and a counting argument.
 (Homework)

Class NCⁱ and ACⁱ

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition. $NC = \bigcup_{i \in N} NC^i$.

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition. $NC = \bigcup_{i \in N} NC^i$.
- Homework: PARITY is in NC¹.

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition. $NC = \bigcup_{i \in N} NC^i$.
- $NC^1 = poly(n)$ -size Boolean formulas. (Assignment)

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Further, L is in <u>log-space uniform</u> NC^i if C_n is implicitly log-space computable from I^n .

Note: Sometimes NCⁱ is defined as log-space uniform NCⁱ.

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Further, L is in <u>log-space uniform</u> NC^i if C_n is implicitly log-space computable from I^n .

log-space uniform $NC \subseteq P$.

NC = Efficient parallel computation

• Definition. A language L can be decided <u>efficiently in parallel</u> if there's a polynomial function q(.) and constants c & i s.t. $L \cap \{0,1\}^n$ can be decided using q(n) many processors in c.(log n)ⁱ time.

NC = Efficient parallel computation

- Definition. A language L can be decided <u>efficiently in parallel</u> if there's a polynomial function q(.) and constants c & i s.t. $L \cap \{0,1\}^n$ can be decided using q(n) many processors in c.(log n)ⁱ time.
- Model: PRAM (has a central shared memory)
- A processor can "deliver" a message to any other processor in O(log n) time.
- \triangleright A processor has $O(\log n)$ bits of memory and performs a poly-time computation at every step.
- > Processor computation steps are synchronized.

NC = Efficient parallel computation

- Definition. A language L can be decided <u>efficiently in parallel</u> if there's a polynomial function q(.) and constants c & i s.t. $L \cap \{0,1\}^n$ can be decided using q(n) many processors in c.(log n)ⁱ time.
- Observation. A language L is in NC if and only if L can be decided efficiently in parallel.
- Proof. Almost immediate from the assumptions on the parallel computation model.

- Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in AC^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size **unbounded fan-in** circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition. AC = $\bigcup_{i \ge 0} AC^i$. (stands for Alternating Class)

• Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in AC^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size **unbounded fan-in** circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.

- Definition. AC = $\bigcup_{i \ge 0} AC^i$.
- Observation. $AC^i \subseteq NC^{i+1} \subseteq AC^{i+1}$ for all $i \ge 0$.

Replace an unbounded fan-in gate by a binary tree of bounded fan-in gates.

• Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in AC^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size **unbounded fan-in** circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.

- Definition. AC = $\bigcup_{i \ge 0} AC^i$.
- Observation. NC = AC.

• Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in AC^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size **unbounded fan-in** circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.

- Definition.AC = $\bigcup_{i \ge 0} AC^i$.
- In the next lecture, we'll show that PARITY is not in AC^0 , i.e., $AC^0 \subseteq NC^1$.

• Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in AC^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size **unbounded fan-in** circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.

- Definition.AC = $\bigcup_{i \ge 0} AC^i$.
- Further, L is in <u>log-space uniform</u> ACⁱ if C_n is implicitly log-space computable from Iⁿ.

log-space uniform $AC \subseteq P$.