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Recap:  Turing Machines 

 An algorithm is a set of instructions or rules. 

 To understand the performance of an algorithm we 
need a model of computation. Turing machine is one 
such natural model (introduced by Alan Turing in 1936).  

 A TM consists of: 

 

 

 Turing machines              A mathematical way to 

                                        describe algorithms. 
 

• Memory tape(s) 
• A finite set of rules 

 



Recap:  Turing Machines 

 Definition.  A k-tape Turing Machine M is described 
by a tuple (Γ, Q, δ) such that 

 M has k memory tapes (input/work/output tapes) 
with heads; 

 Γis a finite set of alphabets. (Every memory cell 
contains an element of Γ) 

 Q is a finite set of states.  (special states: qstart , qhalt) 

 δ is a function from Q x Γ  to Q x Γ x {L,S,R} 

 

k k k 

known as transition function; it captures the 
dynamics of M 



Recap:  TM Computation 

 Start configuration. 

 All tapes other than the input tape contain blank symbols. 

 The input tape contains the input string. 

 All the head positions are at the start of the tapes. 

 The machine is in the start state qstart . 
 

 Computation. 

 A step of computation is performed by applying δ. 
 

 Halting. 

 Once the machine enters qhalt it stops computation. 

 



Recap:  TM Running time 

 Let f:  {0,1}*      {0,1}* and T:  and M be a 
Turing machine. 
 

 Definition.  We say M computes f if on every x in 
{0,1}*, M halts with f(x) on its output tape beginning 
from the start configuration with x on its input tape. 
 

 Definition. M computes f in T(|x|) time, if for every x 
in {0,1}*, M halts within T(|x|) steps of computation 
and outputs f(x).  

 



Recap:  Uncomputability 

 In this course, we would be dealing with 

 

 Turing machines that halt on every input. 

 Computational problems that can be solved by Turing 
machines.  

 

 Can every computational problem be solved using 
Turing machines? 

 
 



Recap:  Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  
 

 Input:  A system of polynomial equations in many variables with 
integer coefficients.  

 Output:  Check if the system has integer solutions .  

 Question: Is there an algorithm to solve this problem?  

 

 Theorem. There doesn’t exist any algorithm (realizable by a 
TM) to solve this problem. (Davis, Putnam, Robinson, Matiyasevich 1970) 

  



Recap:  Power of  Turing Machines 

 TMs are natural and intuitive. 

 

 Church-Turing thesis:  “Every physically realizable 
computation device – whether it’s based on silicon, DNA, 
neurons or some other alien technology – can be 
simulated by a Turing machine”.  

                          --- [quoted from Arora-Barak’s book] 

 Several other computational models can be 
simulated by TMs. 

 



Recap:  Power of  Turing Machines 

 TMs are natural and intuitive. 

 

 Strong Church-Turing thesis:  “Every physically 
realizable computation device – whether it’s based on 
silicon, DNA, neurons or some other alien technology – 
can be simulated efficiently by a Turing machine”.  

Possible exception:  Quantum machines! 



Basic facts about TMs 



Recap:  Time constructible functions 

 Time constructible functions.  A function T:  
is time constructible if T(n) ≥ n and there’s a TM that 
computes the function that maps x to T(|x|) in 
O(T(|x|)) time.  

 

 Examples:  T(n) = n2, or 2n, or n log n 

in binary 



Recap:  TM Robustness 

 Let f:  {0,1}*      {0,1}* and T:  be a time 
constructible function.  
 

  Binary alphabets suffice.  

 If a TM M computes f in T(n) time using Γ as the alphabet 
set, then there’s another TM M’ that computes f in time 
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set. 

 

 A single tape suffices. 

 If a TM M computes f in T(n) time using k tapes then 
there’s another TM M’ that computes f in time 5k . T(n)2 
using a single tape that is used for input, work and output. 

 



Recap:  TM as strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

 

                        α                    Mα 

{0,1} string TM corresponding to α 



Recap:  TM as strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

 

 A TM (i.e., its string representation) can be given as 
an input to another TM !! 



Recap:  Universal Turing Machines  

 Theorem.  There exists a TM U that on every input x, 
α in {0,1}* outputs Mα(x).  

 

 Further, if Mα halts within T steps then U halts within 
C. T. log T steps, where C is a constant that depends 
only on Mα ’s alphabet size, number of states and 
number of tapes.   

 

 Physical realization of UTMs are modern day 
electronic computers.  



Complexity class P 



Decision Problems 

 In the initial part of this course, we’ll focus primarily 
on decision problems.  
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Decision Problems 

 In the initial part of this course, we’ll focus primarily 
on decision problems.  

 

 Decision problems can be naturally identified with 
Boolean functions, i.e., functions from {0,1}* to {0,1}. 

 

 Boolean functions can be naturally identified with 
sets of {0,1} strings, also called languages. 



Decision Problems 

 

Decision problems       Boolean functions       Languages 

 

 Definition.  We say a TM M decides a language L ⊆ {0,1}* 
if M computes fL, where fL(x) = 1 if and only if x ∈ L. 
 

The characteristic function of L . 



Complexity Class P 

 Let T:  be some function. 

 

 Definition:  A language L is in DTIME(T(n)) if there’s a 
TM that decides L in time O(T(n)). 

 

 Defintion: Class P = ∪ DTIME (nc). 
c > 0 



Complexity Class P 

 Let T:  be some function. 

 

 Definition:  A language L is in DTIME(T(n)) if there’s a 
TM that decides L in time O(T(n)). 

 

 Defintion: Class P = ∪ DTIME (nc). 
c > 0 

Deterministic polynomial-time 



Complexity Class P :  Examples 

 Cycle detection (DFS) 
 Check if a given graph has a cycle.   

 



Complexity Class P :  Examples 

 Cycle detection 
 

 Solvabililty of a system of linear equations (Gaussian elimination) 

 Given a system of linear equations over  check if there exists a 
common solution to all the linear equations. 



Complexity Class P :  Examples 

 Cycle detection 
 

 Solvabililty of a system of linear equations 
 

 Perfect matching  (Edmonds 1965) (birth of class P) 
 Check if a given graph has a perfect matching 



Complexity Class P :  Examples 

 Cycle detection 
 

 Solvabililty of a system of linear equations 
 

 Perfect matching 
 

 Planarity testing  (Hopcroft & Tarjan 1974) 
 Check if a given graph is planar 



Complexity Class P :  Examples 

 Cycle detection 
 

 Solvabililty of a system of linear equations 
 

 Perfect matching 
 

 Planarity testing 
 

 Primality testing  (Agrawal, Kayal & Saxena 2002) 
 Check if a number is prime 

 



Polynomial-time Turing Machines 

 Definition.  A TM M is a polynimial-time TM if there’s a 
polynomial function q: such that for every 
input x ∈ {0,1}*, M halts within q(|x|) steps. 

 

 

 

 

Polynomial function.    q(n) = O(nc) for some constant c. 



Class (functional) P 

 What if a problem is not a decision problem? Like 
the task of adding two integers. 



Class (functional) P 

 What if a problem is not a decision problem? Like 
the task of adding two integers. 

 One way is to focus on the i-th bit of the output and 
make it a decision problem.  

                          (Is the i-th bit, on input x, 1?) 

 
 



Class (functional) P 

 What if a problem is not a decision problem? Like 
the task of adding two integers. 

 One way is to focus on the i-th bit of the output and 
make it a decision problem.  

 

 Alternatively, we define a class called functional P or 
FP.  



Class (functional) P 

 What if a problem is not a decision problem? Like 
the task of adding two integers. 

 One way is to focus on the i-th bit of the output and 
make it a decision problem.  

 

 We say that a problem or a function f: {0,1}*     {0,1}* 
is in FP (functional P) if there’s a polynomial-time TM 
that computes f. 

                        
 



Complexity Class FP :  Examples 

 Greatest Common Divisor (Euclid ~300 BC) 
 Given two integers a and b, find their gcd.   

 



Complexity Class FP :  Examples 

 Greatest Common Divisor 
 

 Counting paths in a DAG (homework) 

 Find the number of paths between two vertices in a directed  

     acyclic graph. 



Complexity Class FP :  Examples 

 Greatest Common Divisor 
 

 Counting paths in a DAG 
 

 Maximum matching (Edmonds 1965) 
 Find a maximum matching in a given graph 



Complexity Class FP :  Examples 

 Greatest Common Divisor 
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 Linear Programming (Khachiyan 1979, Karmarkar 1984) 

Optimize a linear objective function subject to linear (in)equality 
constraints 



Complexity Class FP :  Examples 

 Greatest Common Divisor 
 

 Counting paths in a DAG 
 

 Maximum matching 
 

 Linear Programming (Khachiyan 1979, Karmarkar 1984) 

Optimize a linear objective function subject to linear (in)equality 
constraints 

Not known if LP has a strongly 
polynomial-time algorithm. 
 
Homework:  Read about the 
differences between strongly poly-
time, weakly poly-time and pseudo 
poly-time algorithms. 
 



Complexity Class FP :  Examples 

 Greatest Common Divisor 
 

 Counting paths in a DAG 
 

 Maximum matching 
 

 Linear Programming 
 

 Factoring Polynomials (Lenstra, Lenstra, Lovasz 1982) 

 Compute the irreducible factors of a univariate polynomial over    

 



Complexity class NP 



Complexity Class NP 

 Solving a problem is generally harder than verifying a 
given solution to the problem.  

 

 Class NP captures the set of decision problems 
whose solutions are efficiently verifiable.  

 

  



Complexity Class NP 

 Solving a problem is generally harder than verifying a 
given solution to the problem.  

 

 Class NP captures the set of decision problems 
whose solutions are efficiently verifiable.  

 

  Nondeterministic polynomial-time 



Complexity Class NP 

 Definition. A language L ⊆ {0,1}* is in NP if there’s a 
polynomial function p: and a polynomial-time 
TM M (called the verifier) such that for every x, 

 

       x ∈ L             ∃u  ∈ {0,1}p(|x|)    s.t.  M(x, u) = 1 
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 Definition. A language L ⊆ {0,1}* is in NP if there’s a 
polynomial function p: and a polynomial-time 
TM M (called the verifier) such that for every x, 

 

       x ∈ L             ∃u  ∈ {0,1}p(|x|)    s.t.  M(x, u) = 1 

u is called a certificate or witness 

for x (w.r.t L and M), if x ∈ L . 



Complexity Class NP 

 Definition. A language L ⊆ {0,1}* is in NP if there’s a 
polynomial function p: and a polynomial-time 
TM M (called the verifier) such that for every x, 

 

       x ∈ L             ∃u  ∈ {0,1}p(|x|)    s.t.  M(x, u) = 1 
 

 

 It follows that verifier M cannot be fooled !  
 



Complexity Class NP 

 Definition. A language L ⊆ {0,1}* is in NP if there’s a 
polynomial function p: and a polynomial-time 
TM M (called the verifier) such that for every x, 

 

       x ∈ L             ∃u  ∈ {0,1}p(|x|)    s.t.  M(x, u) = 1 
 

 

 Class NP contains those problems (languages) which 
have such efficient verifiers. 



Class NP :  Examples 

 Vertex cover 

 Given a graph G and an integer k, check if G has a vertex 
cover of size k. 

 

 



Class NP :  Examples 

 Vertex cover 

 

 0/1 integer programming 

 Given a system of linear (in)equalities with integer 
coefficients, check if there’s a 0-1 assignment to the 
variables that satisfy all the (in)equalities.  

 



Class NP :  Examples 

 Vertex cover 

 

 0/1 integer programming 

 

 Integer factoring 

 Given two numbers n and U, check if n has a prime factor 
less than or equal to U.  



Class NP :  Examples 

 Vertex cover 

 

 0/1 integer programming 

 

 Integer factoring 

 

 Graph isomorphism 

Given two graphs, check if they are isomorphic. 



Class NP :  Examples 

 

 2-Diophantine solvability 

 Given three integers a, b and c, check if the equation ax2 + 
by + c = 0 has a solution (x, y), where both x and y are 
positive integers.  

 

[Homework]:  Show that the above problem is in NP. 

 

Hint: If (x, y) is a solution, then so is (x + b, y - a(2x + b)). 

 



Is P = NP ? 

 Obviously,  P ⊆ NP. 

 

 Whether or not P = NP is an outstanding open 
question in mathematics and TCS! 
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 Obviously,  P ⊆ NP. 

 

 Whether or not P = NP is an outstanding open 
question in mathematics and TCS! 

 

 Solving a problem does seem harder than verifying 
its solution, so most people believe that P ≠ NP.  



Is P = NP ? 

 Obviously,  P ⊆ NP. 

 

 Whether or not P = NP is an outstanding open 
question in mathematics and TCS! 

 

 P = NP has many weird consequences, and if true, 
will pose a serious threat to secure and efficient 
cryptography (and e-commerce).  



Is P = NP ? 

 Obviously,  P ⊆ NP. 

 

 Whether or not P = NP is an outstanding open 
question in mathematics and TCS! 

 

 Mathematics has gained much from attempts to 
prove such “negative” statements—Galois theory, 
Godel’s incompleteness, Fermat’s Last Theorem, 
Turing’s undecidability,  Continuum hypothesis etc. 
 



Is P = NP ? 

 Obviously,  P ⊆ NP. 

 

 Whether or not P = NP is an outstanding open 
question in mathematics and TCS! 

 

 Complexity theory has several of such intriguing 
unsolved questions. 

        The history and status of the P versus NP question 

                                       -- survey by Michael Sipser (1992) 

 



Reductions 



Polynomial-time reduction 

 Definition. We say a language L1 ⊆ {0,1}* is polynomial-
time (Karp) reducible to a language L2 ⊆ {0,1}* if there’s 
a polynomial-time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

L1 

L1 

L2 

L2 

f(L1) 

f(L1) 



Polynomial-time reduction 

 Definition. We say a language L1 ⊆ {0,1}* is polynomial-
time (Karp) reducible to a language L2 ⊆ {0,1}* if there’s 
a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 

 Notation.    L1  ≤p  L2 

 

 Observe.  If L1  ≤p  L2  and L2  ≤p  L3 then L1  ≤p  L3 .  
   

 



NP-completeness 

 Definition.  A language L’ is NP-hard if for every L in 
NP,  L  ≤p  L’.  Further,  L’ is NP-complete if L’ is in NP 
and is NP-hard. 

 

 Observe.  If L’ is NP-hard and L’ is in P then P = NP.  If 
L’ is NP-complete then L’ in P if and only if P = NP.  

   

    

 

P 

NPC 

NP 

Hardest problems inside NP in the sense 
that if one NPC problem is in P then all 
problems in NP is in P. 



NP-completeness 

 Definition.  A language L’ is NP-hard if for every L in 
NP,  L  ≤p  L’.  Further,  L’ is NP-complete if L’ is in NP 
and is NP-hard. 

 

 Observe.  If L’ is NP-hard and L’ is in P then P = NP.  If 
L’ is NP-complete then L’ in P if and only if P = NP.  

 

 [Homework]. Let L1 ⊆ {0,1}* be any language and L2 
be a language in NP.  If L1  ≤p  L2 then L1 is also in NP. 



Few words on reductions 

 As to how we define a reduction from one language 
to the other (or one function to the other) is usually 
guided by a question on whether two complexity classes 
are different or identical. 

 

 For polynomial-time reductions, the question is 
whether or not P equals NP. 

 

 Reductions help us define complete problems (the 
‘hardest’ problems in a class) which in turn help us 
compare the complexity classes under consideration.  



Class NP :  Examples 

 Vertex cover  (NP-complete) 
 

 0/1 integer programming  (NP-complete) 
 

 3-coloring planar graphs (NP-complete) 
 

 2-Diophantine solvability  (NP-complete) 
 

 Integer factoring  (unlikely to be NP-complete) 
 

 Graph isomorphism  (Quasi-P)   Babai 2015 



How to show existence of an NPC 
problem? 

 Let L’ = { (α, x, 1m, 1t ) :  there exists a u ∈{0,1}m s.t.  Mα 
accepts (x, u) in t steps } 

 

 Observation.  L’ is NP-complete. 

 

 The language L’ involves Turing machine in its definition. 
Next, we’ll see an example of an NP-complete problem 
that is arguably more natural. 

 

 


