
Computational Complexity Theory

Lecture 2: Class P & NP, Karp reductions,

NP-completeness

Department of Computer Science,
Indian Institute of Science

Recap: Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

 A TM consists of:

 Turing machines A mathematical way to

 describe algorithms.

• Memory tape(s)
• A finite set of rules

Recap: Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

 Q is a finite set of states. (special states: qstart , qhalt)

 δ is a function from Q x Γ to Q x Γ x {L,S,R}

k k k

known as transition function; it captures the
dynamics of M

Recap: TM Computation

 Start configuration.

 All tapes other than the input tape contain blank symbols.

 The input tape contains the input string.

 All the head positions are at the start of the tapes.

 The machine is in the start state qstart .

 Computation.

 A step of computation is performed by applying δ.

 Halting.

 Once the machine enters qhalt it stops computation.

Recap: TM Running time

 Let f: {0,1}* {0,1}* and T: and M be a
Turing machine.

 Definition. We say M computes f if on every x in
{0,1}*, M halts with f(x) on its output tape beginning
from the start configuration with x on its input tape.

 Definition. M computes f in T(|x|) time, if for every x
in {0,1}*, M halts within T(|x|) steps of computation
and outputs f(x).

Recap: Uncomputability

 In this course, we would be dealing with

 Turing machines that halt on every input.

 Computational problems that can be solved by Turing
machines.

 Can every computational problem be solved using
Turing machines?

Recap: Uncomputability

 There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

 Input: A system of polynomial equations in many variables with
integer coefficients.

 Output: Check if the system has integer solutions .

 Question: Is there an algorithm to solve this problem?

 Theorem. There doesn’t exist any algorithm (realizable by a
TM) to solve this problem. (Davis, Putnam, Robinson, Matiyasevich 1970)

Recap: Power of Turing Machines

 TMs are natural and intuitive.

 Church-Turing thesis: “Every physically realizable
computation device – whether it’s based on silicon, DNA,
neurons or some other alien technology – can be
simulated by a Turing machine”.

 --- [quoted from Arora-Barak’s book]

 Several other computational models can be
simulated by TMs.

Recap: Power of Turing Machines

 TMs are natural and intuitive.

 Strong Church-Turing thesis: “Every physically
realizable computation device – whether it’s based on
silicon, DNA, neurons or some other alien technology –
can be simulated efficiently by a Turing machine”.

Possible exception: Quantum machines!

Basic facts about TMs

Recap: Time constructible functions

 Time constructible functions. A function T:
is time constructible if T(n) ≥ n and there’s a TM that
computes the function that maps x to T(|x|) in
O(T(|x|)) time.

 Examples: T(n) = n2, or 2n, or n log n

in binary

Recap: TM Robustness

 Let f: {0,1}* {0,1}* and T: be a time
constructible function.

 Binary alphabets suffice.

 If a TM M computes f in T(n) time using Γ as the alphabet
set, then there’s another TM M’ that computes f in time
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set.

 A single tape suffices.

 If a TM M computes f in T(n) time using k tapes then
there’s another TM M’ that computes f in time 5k . T(n)2
using a single tape that is used for input, work and output.

Recap: TM as strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 Every TM has infinitely many string representations.

 α Mα

{0,1} string TM corresponding to α

Recap: TM as strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 Every TM has infinitely many string representations.

 A TM (i.e., its string representation) can be given as
an input to another TM !!

Recap: Universal Turing Machines

 Theorem. There exists a TM U that on every input x,
α in {0,1}* outputs Mα(x).

 Further, if Mα halts within T steps then U halts within
C. T. log T steps, where C is a constant that depends
only on Mα ’s alphabet size, number of states and
number of tapes.

 Physical realization of UTMs are modern day
electronic computers.

Complexity class P

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

 Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0,1}* to {0,1}.

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

 Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0,1}* to {0,1}.

 Boolean functions can be naturally identified with
sets of {0,1} strings, also called languages.

Decision Problems

Decision problems Boolean functions Languages

 Definition. We say a TM M decides a language L ⊆ {0,1}*
if M computes fL, where fL(x) = 1 if and only if x ∈ L.

The characteristic function of L .

Complexity Class P

 Let T: be some function.

 Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

 Defintion: Class P = ∪ DTIME (nc).
c > 0

Complexity Class P

 Let T: be some function.

 Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

 Defintion: Class P = ∪ DTIME (nc).
c > 0

Deterministic polynomial-time

Complexity Class P : Examples

 Cycle detection (DFS)
 Check if a given graph has a cycle.

Complexity Class P : Examples

 Cycle detection

 Solvabililty of a system of linear equations (Gaussian elimination)

 Given a system of linear equations over check if there exists a
common solution to all the linear equations.

Complexity Class P : Examples

 Cycle detection

 Solvabililty of a system of linear equations

 Perfect matching (Edmonds 1965) (birth of class P)
 Check if a given graph has a perfect matching

Complexity Class P : Examples

 Cycle detection

 Solvabililty of a system of linear equations

 Perfect matching

 Planarity testing (Hopcroft & Tarjan 1974)
 Check if a given graph is planar

Complexity Class P : Examples

 Cycle detection

 Solvabililty of a system of linear equations

 Perfect matching

 Planarity testing

 Primality testing (Agrawal, Kayal & Saxena 2002)
 Check if a number is prime

Polynomial-time Turing Machines

 Definition. A TM M is a polynimial-time TM if there’s a
polynomial function q: such that for every
input x ∈ {0,1}*, M halts within q(|x|) steps.

Polynomial function. q(n) = O(nc) for some constant c.

Class (functional) P

 What if a problem is not a decision problem? Like
the task of adding two integers.

Class (functional) P

 What if a problem is not a decision problem? Like
the task of adding two integers.

 One way is to focus on the i-th bit of the output and
make it a decision problem.

 (Is the i-th bit, on input x, 1?)

Class (functional) P

 What if a problem is not a decision problem? Like
the task of adding two integers.

 One way is to focus on the i-th bit of the output and
make it a decision problem.

 Alternatively, we define a class called functional P or
FP.

Class (functional) P

 What if a problem is not a decision problem? Like
the task of adding two integers.

 One way is to focus on the i-th bit of the output and
make it a decision problem.

 We say that a problem or a function f: {0,1}* {0,1}*
is in FP (functional P) if there’s a polynomial-time TM
that computes f.

Complexity Class FP : Examples

 Greatest Common Divisor (Euclid ~300 BC)
 Given two integers a and b, find their gcd.

Complexity Class FP : Examples

 Greatest Common Divisor

 Counting paths in a DAG (homework)

 Find the number of paths between two vertices in a directed

 acyclic graph.

Complexity Class FP : Examples

 Greatest Common Divisor

 Counting paths in a DAG

 Maximum matching (Edmonds 1965)
 Find a maximum matching in a given graph

Complexity Class FP : Examples

 Greatest Common Divisor

 Counting paths in a DAG

 Maximum matching

 Linear Programming (Khachiyan 1979, Karmarkar 1984)

Optimize a linear objective function subject to linear (in)equality
constraints

Complexity Class FP : Examples

 Greatest Common Divisor

 Counting paths in a DAG

 Maximum matching

 Linear Programming (Khachiyan 1979, Karmarkar 1984)

Optimize a linear objective function subject to linear (in)equality
constraints

Not known if LP has a strongly
polynomial-time algorithm.

Homework: Read about the
differences between strongly poly-
time, weakly poly-time and pseudo
poly-time algorithms.

Complexity Class FP : Examples

 Greatest Common Divisor

 Counting paths in a DAG

 Maximum matching

 Linear Programming

 Factoring Polynomials (Lenstra, Lenstra, Lovasz 1982)

 Compute the irreducible factors of a univariate polynomial over

Complexity class NP

Complexity Class NP

 Solving a problem is generally harder than verifying a
given solution to the problem.

 Class NP captures the set of decision problems
whose solutions are efficiently verifiable.

Complexity Class NP

 Solving a problem is generally harder than verifying a
given solution to the problem.

 Class NP captures the set of decision problems
whose solutions are efficiently verifiable.

 Nondeterministic polynomial-time

Complexity Class NP

 Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

 x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

Complexity Class NP

 Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

 x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

u is called a certificate or witness

for x (w.r.t L and M), if x ∈ L .

Complexity Class NP

 Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

 x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

 It follows that verifier M cannot be fooled !

Complexity Class NP

 Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

 x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

 Class NP contains those problems (languages) which
have such efficient verifiers.

Class NP : Examples

 Vertex cover

 Given a graph G and an integer k, check if G has a vertex
cover of size k.

Class NP : Examples

 Vertex cover

 0/1 integer programming

 Given a system of linear (in)equalities with integer
coefficients, check if there’s a 0-1 assignment to the
variables that satisfy all the (in)equalities.

Class NP : Examples

 Vertex cover

 0/1 integer programming

 Integer factoring

 Given two numbers n and U, check if n has a prime factor
less than or equal to U.

Class NP : Examples

 Vertex cover

 0/1 integer programming

 Integer factoring

 Graph isomorphism

Given two graphs, check if they are isomorphic.

Class NP : Examples

 2-Diophantine solvability

 Given three integers a, b and c, check if the equation ax2 +
by + c = 0 has a solution (x, y), where both x and y are
positive integers.

[Homework]: Show that the above problem is in NP.

Hint: If (x, y) is a solution, then so is (x + b, y - a(2x + b)).

Is P = NP ?

 Obviously, P ⊆ NP.

 Whether or not P = NP is an outstanding open
question in mathematics and TCS!

Is P = NP ?

 Obviously, P ⊆ NP.

 Whether or not P = NP is an outstanding open
question in mathematics and TCS!

 Solving a problem does seem harder than verifying
its solution, so most people believe that P ≠ NP.

Is P = NP ?

 Obviously, P ⊆ NP.

 Whether or not P = NP is an outstanding open
question in mathematics and TCS!

 P = NP has many weird consequences, and if true,
will pose a serious threat to secure and efficient
cryptography (and e-commerce).

Is P = NP ?

 Obviously, P ⊆ NP.

 Whether or not P = NP is an outstanding open
question in mathematics and TCS!

 Mathematics has gained much from attempts to
prove such “negative” statements—Galois theory,
Godel’s incompleteness, Fermat’s Last Theorem,
Turing’s undecidability, Continuum hypothesis etc.

Is P = NP ?

 Obviously, P ⊆ NP.

 Whether or not P = NP is an outstanding open
question in mathematics and TCS!

 Complexity theory has several of such intriguing
unsolved questions.

 The history and status of the P versus NP question

 -- survey by Michael Sipser (1992)

Reductions

Polynomial-time reduction

 Definition. We say a language L1 ⊆ {0,1}* is polynomial-
time (Karp) reducible to a language L2 ⊆ {0,1}* if there’s
a polynomial-time computable function f s.t.

 x∈L1 f(x)∈L2

L1

L1

L2

L2

f(L1)

f(L1)

Polynomial-time reduction

 Definition. We say a language L1 ⊆ {0,1}* is polynomial-
time (Karp) reducible to a language L2 ⊆ {0,1}* if there’s
a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

 Notation. L1 ≤p L2

 Observe. If L1 ≤p L2 and L2 ≤p L3 then L1 ≤p L3 .

NP-completeness

 Definition. A language L’ is NP-hard if for every L in
NP, L ≤p L’. Further, L’ is NP-complete if L’ is in NP
and is NP-hard.

 Observe. If L’ is NP-hard and L’ is in P then P = NP. If
L’ is NP-complete then L’ in P if and only if P = NP.

P

NPC

NP

Hardest problems inside NP in the sense
that if one NPC problem is in P then all
problems in NP is in P.

NP-completeness

 Definition. A language L’ is NP-hard if for every L in
NP, L ≤p L’. Further, L’ is NP-complete if L’ is in NP
and is NP-hard.

 Observe. If L’ is NP-hard and L’ is in P then P = NP. If
L’ is NP-complete then L’ in P if and only if P = NP.

 [Homework]. Let L1 ⊆ {0,1}* be any language and L2
be a language in NP. If L1 ≤p L2 then L1 is also in NP.

Few words on reductions

 As to how we define a reduction from one language
to the other (or one function to the other) is usually
guided by a question on whether two complexity classes
are different or identical.

 For polynomial-time reductions, the question is
whether or not P equals NP.

 Reductions help us define complete problems (the
‘hardest’ problems in a class) which in turn help us
compare the complexity classes under consideration.

Class NP : Examples

 Vertex cover (NP-complete)

 0/1 integer programming (NP-complete)

 3-coloring planar graphs (NP-complete)

 2-Diophantine solvability (NP-complete)

 Integer factoring (unlikely to be NP-complete)

 Graph isomorphism (Quasi-P) Babai 2015

How to show existence of an NPC
problem?

 Let L’ = { (α, x, 1m, 1t) : there exists a u ∈{0,1}m s.t. Mα
accepts (x, u) in t steps }

 Observation. L’ is NP-complete.

 The language L’ involves Turing machine in its definition.
Next, we’ll see an example of an NP-complete problem
that is arguably more natural.

