Computational Complexity Theory

Lecture 7: Time Hierarchy Theorem; Ladner's Theorem

> Department of Computer Science, Indian Institute of Science

Recap: Nondeterministic Turing Machines

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple $(\Gamma, Q, \delta_0, \delta_1)$. It has a special state q_{accept} in addition to q_{start} and q_{halt} .
- At every step of computation, the machine applies one of two functions δ_0 and δ_1 arbitrarily.
- Unlike DTMs, NTMs are not intended to be physically realizable (because of the arbitrary nature of application of the transition functions).

Recap: Nondeterministic Turing Machines

- Definition. An NTM M accepts a string $x \in \{0,1\}^*$ iff on input x there **exists** a sequence of applications of the transition functions δ_0 and δ_1 (beginning from the start configuration) that makes M reach q_{accept} .
- Defintion. An NTM M decides L in T(|x|) time if
 - ➤ M accepts x ← x∈L
 - ➤ On <u>every sequence</u> of applications of the transition functions on input x, M either reaches q_{accept} or q_{halt} within T(|x|) steps of computation.

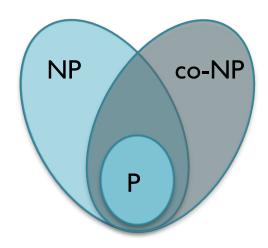
Recap: Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.

• Theorem. $NP = \bigcup_{c>0} NTIME (n^c)$.

Recap: Class co-NP

- Definition. For every $L \subseteq \{0,1\}^*$ let $\overline{L} = \{0,1\}^* \setminus L$. A language L is in co-NP if \overline{L} is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$.



Recap: Alternate definition of co-NP

• Recall, a language $L \subseteq \{0,1\}^*$ is in NP if there's a poly function p and a poly-time verifier M such that

```
x \in L \Longrightarrow \exists u \in \{0,1\}^{p(|x|)} s.t. M(x, u) = I

x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. M(x, u) = 0

x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. \overline{M}(x, u) = I
```

• Definition. A language $L \subseteq \{0,1\}^*$ is in co-NP if there's a poly function p and a poly-time TM M such that

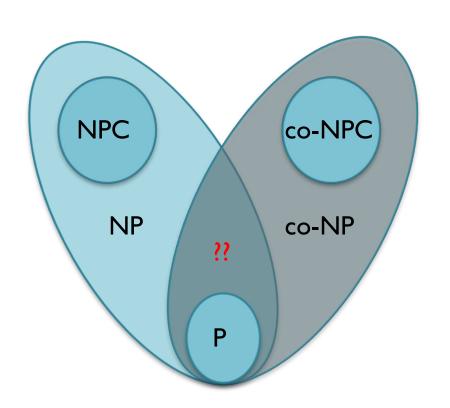
$$x \in L$$
 $\forall u \in \{0,1\}^{p(|x|)}$ s.t. $M(x, u) = I$ for NP this was \exists

Recap: co-NP-completeness

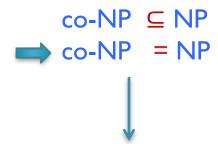
- Definition. A language $L' \subseteq \{0,1\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

- Theorem. SAT and TAUTOLOGY are co-NP-complete.
- Theorem. If L in NP-complete then L is co-NP-complete

Recap: co-NPC not in NP



If a co-NP-complete language belongs to NP then



Let C_1 and C_2 be two complexity classes.

If
$$C_1 \subseteq C_2$$
, then $co-C_1 \subseteq co-C_2$.

Obs.
$$co-(co-C) = C$$
.

Recap: Integer factoring in NP\(\text{Co-NP}\)

Integer factoring.

FACT = $\{(N, U): \text{there's a prime in } [U] \text{ dividing } N\}$

Claim. FACT ∈ NP ∩ co-NP

• So, FACT is NP-complete implies NP = co-NP.

FACT not known to be in P.

Recap: Class EXP

 Definition. Class EXP is the exponential time analogue of class P.

$$EXP = \bigcup_{c \ge 1} DTIME (2^{n^c})$$

• Observation. $P \subseteq NP \subseteq EXP$

• Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes $\geq 2^{\delta,n}$ time, where $\delta > 0$ is some fixed constant and n is the no. of variables.

ETH
$$\Rightarrow$$
 P \neq NP

Recap: Class EXP

 Definition. Class EXP is the exponential time analogue of class P.

$$EXP = \bigcup_{c \ge 1} DTIME (2^{n^c})$$

• Observation. $P \subseteq NP \subseteq EXP$

Is
$$P \subseteq EXP$$
?

• Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes $\geq 2^{\delta,n}$ time, where $\delta > 0$ is some fixed constant and n is the no. of variables.

ETH
$$\Rightarrow$$
 P \neq NP

 Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a small overhead.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a small overhead.

If M_{α} takes T time on x then U takes O(T log T) time to simulate M_{α} on x.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a small overhead.
 - 2. Every string represents some TM, and every TM can be represented by <u>infinitely many</u> strings.

- An application of Diagonalization

• Let f(n) and g(n) be <u>time-constructible</u> functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$

• Theorem. (Hartmanis & Stearns 1965)

 $DTIME(f(n)) \subseteq DTIME(g(n))$

This type of results are called <u>lower bounds</u>.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- - 1. On input x, compute $|x|^2$.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.

TM D:

- I. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.

D's time steps not M_x 's time steps.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.

TM D:

- I. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_x stops and outputs b then output 1-b.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.

TM D:

- I. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_{ν} stops and outputs b then output 1-b.
 - b. Otherwise, output 1.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.

TM D:

- I. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_{ν} stops and outputs b then output 1-b.
 - b. Otherwise, output 1.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. DTIME(f(n)) \subsetneq DTIME(g(n))

 Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - D runs in $O(n^2)$ time as n^2 is <u>time-constructible</u>.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 c is a constant

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \triangleright Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \rightarrow Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose M(x) = M_x(x) = b.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \rightarrow Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose $M(x) = M_x(x) = b$.
 - \triangleright D on input x, simulates M_x on x for $|x|^2$ steps.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \rightarrow Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - \triangleright Suppose M(x) = M_x(x) = b.
 - ightharpoonup on input x, simulates M_x on x for $|x|^2$ steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \rightarrow Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose $M(x) = M_x(x) = b$.
 - Don input x, simulates M_x on x for $|x|^2$ steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps. (as c'.c. |x|. log |x| < |x|^2 for sufficiently large x)

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \rightarrow Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose $M(x) = M_x(x) = b$.
 - ➤ D on input x, simulates M_x on x for $|x|^2$ steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps. And D outputs the **opposite** of what M_x outputs!

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \rightarrow Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose M(x) = M_x(x) = b.
 - \rightarrow Hence, D(x) = I-b.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x)) for all x
 - \rightarrow Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose $M(x) = M_x(x) = b$.
 - \rightarrow Hence, D(x) = I-b.

Contradiction! M does not decide L.

• Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$

• Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$

Is there a <u>natural problem</u> that takes close to n² time?

Is there a <u>natural problem</u> that takes close to n² time?

3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.

- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. **No** algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.

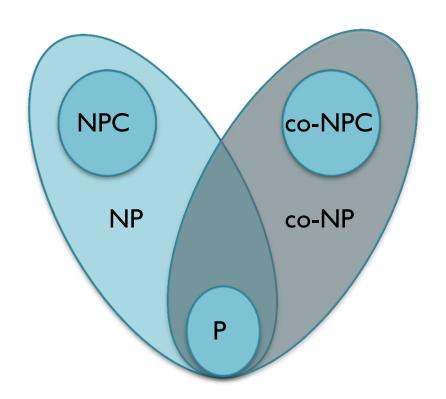
- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. **No** algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.

• However, there's a $\sim O(n^2 / (\log n)^2)$ time algorithm for 3SUM. (" \sim " suppressing a poly(log log n) factor.)

- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. **No** algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.
- kSUM: Given a list of n numbers, check if there exists k numbers in the list that sum to zero.

- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. **No** algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.
- kSUM: Given a list of n numbers, check if there exists k numbers in the list that sum to zero.
- Theorem (Patrascu & Williams 2010). ETH implies kSUM requires $n^{\Omega(k)}$ time.

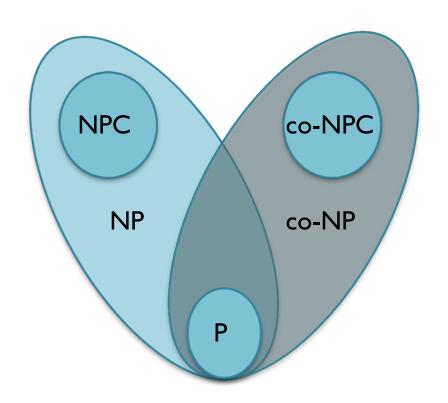
Revisiting NP∩co-NP



Conjecture: $NP \neq co-NP$ $\downarrow \\ P \neq NP$

General belief: $P \neq NP \cap co-NP$

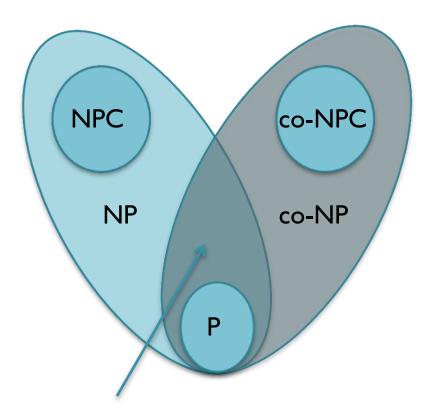
Revisiting NP∩co-NP



```
Conjecture: NP \neq co-NP
P \neq NP
General belief: P \neq NP \cap co-NP
Edmonds (1966)
```

...conjectured $P = NP \cap co-NP$

Revisiting NP\(\)co-NP

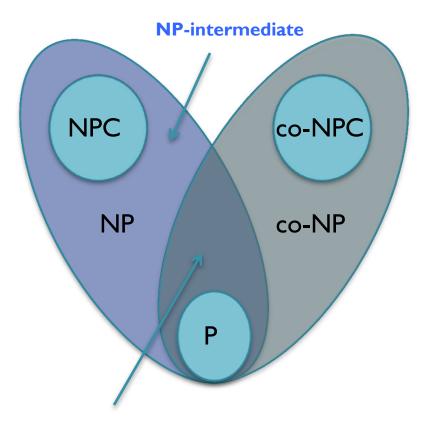


General belief: $P \neq NP \cap co-NP$

Check:

https://cstheory.stackexchange.com/questions/20 02 | /reasons-to-believe-p-ne-np-cap-conp-or-not

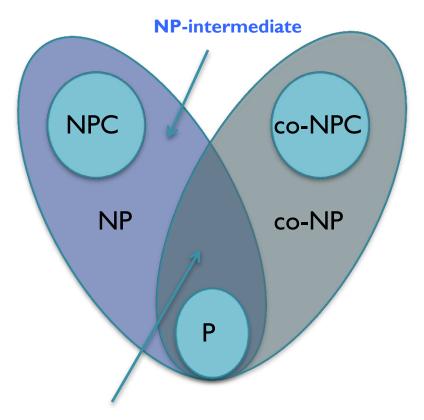
- Integer factoring (FACT)
- Approximate shortest vector in a lattice



General belief: $P \neq NP \cap co-NP$

Obs: If NP ≠ co-NP and FACT ∉ P then FACT is NP-intermediate.

- Integer factoring (FACT)
- Approximate shortest vector in a lattice

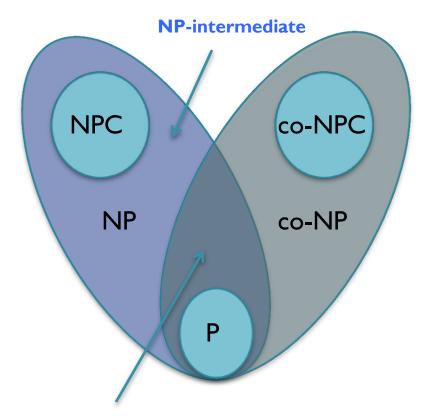


General belief: $P \neq NP \cap co-NP$

Obs: If NP \neq co-NP and FACT \notin P then FACT is NP-intermediate.

Ladner's theorem: P ≠ NP implies existence of a NP-intermediate language.

- Integer factoring (FACT)
- Approximate shortest vector in a lattice



- Integer factoring (FACT)
- Approximate shortest vector in a lattice

Conjecture: $NP \neq co-NP$ \downarrow $P \neq NP$

General belief: $P \neq NP \cap co-NP$

Obs: If NP ≠ co-NP and FACT ∉ P then FACT is NP-intermediate.

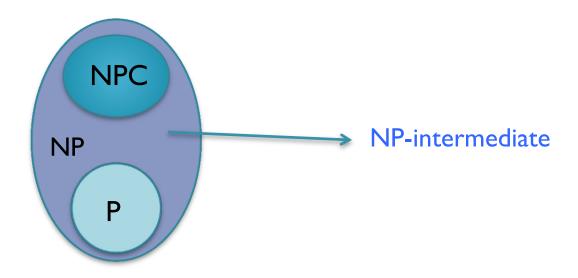
Ladner's theorem: P ≠ NP implies existence of a NP-intermediate language.

(proved using diagonalization)

Ladner's Theorem

- Another application of Diagonalization

 Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.



- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 - Proof. A delicate argument using diagonalization.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 - Proof. Let H: $N \rightarrow N$ be a function.

 Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.

Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.

Proof. Let H: $N \rightarrow N$ be a function.

```
Let SAT_H = \{\Psi 0 \mid \prod^{m^{H(m)}} : \Psi \in SAT \text{ and } |\Psi| = m\}
```

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.

Proof. Let H: $N \rightarrow N$ be a function.

Let
$$SAT_H = \{\Psi 0 \mid I^{mH(m)} : \Psi \in SAT \text{ and } |\Psi| = m\}$$

H would be defined in such a way that SAT_H is NP-intermediate (assuming $P \neq NP$)

• Theorem. There's a function H: $N \rightarrow N$ such that

I. H(m) is computable from m in $O(m^3)$ time.

• Theorem. There's a function H: $N \rightarrow N$ such that

- I. H(m) is computable from m in $O(m^3)$ time.
- 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).

for every m

• Theorem. There's a function $H: \mathbb{N} \to \mathbb{N}$ such that

- I. H(m) is computable from m in $O(m^3)$ time.
- 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).

3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

• Theorem. There's a function H: $N \rightarrow N$ such that

- I. H(m) is computable from m in $O(m^3)$ time.
- 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.
- Proof: Later (uses diagonalization).

Let's see the proof of Ladner's theorem assuming the existence of such a "special" H.

$$P \neq NP$$

• Suppose $SAT_H \in P$. Then $H(m) \leq C$.

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input ϕ , find $m = |\phi|$.

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input ϕ , find $m = |\phi|$.
 - \rightarrow Compute H(m), and construct the string $\phi 0 I^{m^{1/(11)}}$

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input ϕ , find $m = |\phi|$.
 - \triangleright Compute H(m), and construct the string $\phi 0 I^{m''''''}$
 - ightharpoonup Check if $\phi \circ I$ belongs to SAT_H .

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input ϕ , find $m = |\phi|$.
 - \triangleright Compute H(m), and construct the string $\phi 0 I^{m + (m)}$
 - Check if $\phi 0 I$ belongs to SAT_H .

 length at most $m + I + m^C$

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input ϕ , find $m = |\phi|$.
 - \rightarrow Compute H(m), and construct the string $\phi 0 I^{m^{\square(\square)}}$
 - ightharpoonup Check if $\phi \circ I$ belongs to SAT_H .
- As $P \neq NP$, it must be that $SAT_H \notin P$.

$$P \neq NP$$

• Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

$$P \neq NP$$

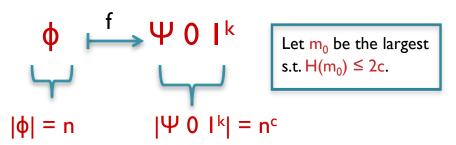
- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$



$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^k$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

 \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

```
\phi \stackrel{f}{\longmapsto} \Psi 0 I^k
```

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if k = m^{H(m)}.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

```
\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}
```

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- ightharpoonup Compute H(m) and check if $k = m^{H(m)}$. (Homework: Verify that this can be done in poly(n) time.)

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- ightharpoonup Compute H(m) and check if $k = m^{H(m)}$.

Either $m \le m_0$ (in which case the task reduces to checking if a constant-size Ψ is satisfiable),

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.

or H(m) > 2c (as H(m) tends to infinity with m).

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if k = m^{H(m)}.
- ightharpoonup Hence, w.l.o.g. $|f(\phi)| \ge k > m^{2c}$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.
- ightharpoonup Hence, w.l.o.g. $n^c = |f(\phi)| \ge k > m^{2c}$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{\downarrow}$$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.
- > Hence, \sqrt{n} ≥ m.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if k = m^{H(m)}.
- ightharpoonup Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.
- \triangleright Hence, \sqrt{n} ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

Thus, checking if an n-size formula ϕ is satisfiable reduces to checking if a \sqrt{n} -size formula Ψ is satisfiable.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^k$$

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.
- \triangleright Hence, \sqrt{n} ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

Do this recursively! Only O(log log n) recursive steps required.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- ightharpoonup Compute H(m) and check if $k = m^{H(m)}$.
- ightharpoonup Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$
- Hence SAT_H is not NP-complete, as $P \neq NP$.

Natural NP-intermediate problems ??

- Integer factoring
- Approximate shortest vector in a lattice
- Minimum Circuit Size Problem

("Multi-output MCSP is NP-hard", Ilango, Loff & Oliveira 2020)

Graph isomorphism

```
("GI in QuasiP time", Babai 2015)
```