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Determinant

e Naive algorithm (Laplace expansion) takes O(n!).
@ Gaussian elimination takes O(n);

o faster algorithms exists (Strassen- O(n?8%7)) with at best
O(n*37°) by Coppersmith-Winograd time.

@ However, these algorithms cannot be efficiently performed
in parallel.
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Main theorem

Theorem (Csanky, 1976)
Let A = (ajj)nxn be a matrix with ajj a m-bit integer. Then we
can compute the following in (log mn)°®) time using (mn)°®)
many processors.

@ characteristic polynomial of a A (pa()\))
o determinant of A (detA)
e inverse of A (A71)
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Basic NC operations Inner product

Take two vectors (ai,...,a,) and (b1, ..., by). The inner
product is computed by first multiplying

a,--b,-,i: 1,2,...,”
and then adding the products in tree like fashion. Thus, the

entire process is done in O(log n) parallel steps using O(n)
arithmetic processors.
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Basic NC operations Matrix multiplication
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Take two matrices Amxn, Bnxp- Say ¢jj is an element of AB.

CIEERE  Then, ¢j = Y ;_; aikbyj which is basically the inner product of

Basic NC
operations

(3;1, ey a,~,,) and (blj’ ey bnj)

Matrin By previous slide, this can be done in O(log n) steps with O(n)

SRl processors.

(el And, this has to be done for each cjj so we will have O(mnp)
processors running in parallel followed by addition (appropriately)

in the subsequent steps in O(log n) time.

Summary

Extra
Proof of Newton
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Basic NC operations Matrix power

Take the n x n matrix A. From previous slide, A- A = A? is in
NC. So, to compute A¥, we can just perform repeated squaring
(atmost O(log k) many multiplications) and since matrix
multiplication is in NC, this process is also in NC.

Determinant is in NC November 22, 2022 7/44



Determinant
is in NC

Main theorem

Basic NC
operations
Inner duct
Matrix multiplication

Matrix power

Matrix
operations of
interest

Inversion of lower
triangular matrix

Notation and facts
Newton

Determinant of

Inverse of matrix

Summary

Extra

Proof of Newton

Irish Debbarma

Basic NC operations Matrix power

The process to compute all powers of A, i.e., A A2 A3 ... A"
can be done in O((log n)?) time with O(n*) processors.

In the 0-th stage we have A. In the 1-st stage we will compute
A-A= A% In the 2-nd stage we will compute A3, A* and in the
3-rd we will compute A%, A%, A7, A8 So, to compute all n
powers we will take O(log n) time and generation of each power
is a matrix multiplication that is done in O(log n) time. So the
total time taken is O((log n)?). And, we have total of n — 1
multiplications so the number of processors required is O(n*).
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Matrix operations of interest Inversion of lower triangular matrix

Look at the lower triangular n x n matrix A. A can be written in
the following manner:

B|O
cC|D
where B is [n/2] x |n/2]| matrix, Cis [n/2] x | n/2| matrix and
D is [n/2] x [n/2] matrix.
Compute B~! and D! recursively and get

B' |0

-1
AT ={pce™ DY)
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Matrix operations of interest Inversion of lower triangular matrix

The computation time of this algorithm follows the relation:
T(n)= T(n/2) +2M(n/2)

where T(n/2) is the time needed to invert B and D in parallel
and 2M(n/2) corresponds to matrix multiplication D"*CB™!.
From previous calculations we know that M(n) = O(log n) and
therefore T(n) = O((log n)?).
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Main theorem X1=a
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operations X2 - 321X]_ + C2
Inner product

X3 = as1x1 + asxe + G3

Matrix power

Matrix
operations of
interest

e Xn = ap1X1 +amxXo+ ...+ Cp

triangular matrix

Solving linear
recurrence

We can write this in matrix form as Ax + ¢ = x where A is the
matrix with a; = 0 Vj > i and aj; as in the relations for i < j,
c=(cac...c)T,x=(x1...xn) 7.
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Matrix operations of interest Solving linear recurrence

Observe that Ax + ¢ = x = x(I — A) = ¢ where | — A is a lower

triangular matrix and from previous result we know that finding
inverse of a lower triangular matrix is in NC.
This enables us to find the inverse of | — A giving

x=(I-A)"tc

Determinant is in NC November 22, 2022 12 /44
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A1, A2, ..., Ap be the eigenvalues of A.
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Matrix operations of interest Computing characteristic polynomial

Clearly, s; = (—1)'E;.
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0
0

P /3

(—1)™1P, 1/n (~1)"2P, »/n

Determinant is in NC

E;
E3

OO O o o

November 22, 2022

These recurrence relations can be written in the following matrix
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E=P+AE=P=(—AE=ME

Main theorem

Basic NC

operations 1 0
Inner product _ Pl /2 ]_
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Matrix power
’ where M = P2/3 —P1/3
Matrix
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interest

et af Uiz (_1)n Pn—l/n (_1)n—1 Pn—2/f7

triangular matrix

_ O O O o

ERres M is lower triangular and thus computing inverse is in NC. This

Newton Identities

e allows us to solve E = M~1P.
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@ Since we have shown that solving recurrence relations is in
NC, therefore finding E; and consequently s; is also in NC.

@ So, finding the characteristic polynomial is also in NC.

det(A) = (—1)"s, = E, and computing E, is in NC
therefore computing det(A) is also in NC.
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Matrix operations of interest Inverse of matrix

From Cayley-Hamilton theorem, we know that a square matrix
satisifies its characteristic equation. Therefore,

pa(A) = A" + 5] A" 451 =0

snl = —(A" + 51A" L 4+ 51 A)

1
Al= —— (A4 A2 4o 4 51)

Sn

The coefficients s, and A* are computed as stated previously.

e Computing s, is a NC process and so is computing A¥. So,
we can compute sg's and Ax's in parallel and then compute

each entry of A1 in parallel, thereby making the whole
process in NC.
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@ First, we computed inverse of a lower triangular matrix.

Main theorem

Basic NC @ Then, we find complexity of solving linear recurrence.
operations
i © We then compute the characteristic polynomial of the
Matrix multiplication

matrix using Newton identities (basically a recurrence
Matrix relation for coefficients of characteristic polynomial).
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Summary

First, we computed inverse of a lower triangular matrix.

Then, we find complexity of solving linear recurrence.

©e0oe

We then compute the characteristic polynomial of the
matrix using Newton identities (basically a recurrence
relation for coefficients of characteristic polynomial).

@ Determinant of the matrix then comes for free.

@ Finally, we compute the inverse of a GENERAL matrix.
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Summary

First, we computed inverse of a lower triangular matrix.

Then, we find complexity of solving linear recurrence.

©e0oe

We then compute the characteristic polynomial of the
matrix using Newton identities (basically a recurrence
relation for coefficients of characteristic polynomial).

@ Determinant of the matrix then comes for free.

@ Finally, we compute the inverse of a GENERAL matrix.
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Extra Proof of Newton identities

Ey - Tr(A™) = S iy

1<ip<--<ix<n

- ¥

1<ih<--<ik<njé#{i,...,

+ 2

1<i<--<ik<nje{i,..

= E[" + EY!

Determinant is in NC
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operations
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B = %(Ek—lrﬁ”(Al) — - F B Te(A) + Tr(A%))

Notation and fac
Newton Ident
Determinant of
mat)
Inverse of matrix

Summary

Extra

Proof of Newton

Irish Debbarma, Upamanyu Yeddanapudi Determinant is in NC November 22, 20 23 /44



Extra Integer arithmetic is in NC

Determinant

Upamanyu

Yeddanapudi

Main theorem

Bacic NC We will show that we can add two n-bit integers (a, b) in

operations H H

peration O(log n) time using n processors.

o @ First, we shall construct a string u to record the carry over.
Matrix

: @ Then, we will add the two numbers and u bitwise using
operations of .
interest exclusive OR.

Inversion of lower
triangular matrix

Notation and facts

Newton Id

Summary

Extra

Proof of Ney

Irish Debbarma, Upamanyu Yeddanapudi Determinant is in NC November 22, 2022 24 /44



Extra Integer arithmetic is in NC

Determinant
is in NC

Yeddanapudi

et th @ Start u with a 0 in the first position.

Basic NC @ If the i-th bits of a, b are 0, then / + 1-th bit of u will be 0
operations irrespective of the i-th bit.

Inner product

W @ If the i-th bits of a, b are 1, then i + 1-th bit of u will be 1
Matrix irrespective of the i-th bit.

operations of

merest @ If the i-th bits of a, b are 0,1, then i/ 4 1-th bit of u will be
same as i-th bit of u. We will say that the carry over has
been " propagated”.
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We will represent u using three things 0,1, p and encode the

Ml procedure in the following table:

Basic NC
operations O

Inner product

Matrix multiplication O

Matrix power

0
Matrix ]. 1
0

operations of
interest P

Inversion of lower

e k=
—|ola

triangular matrix

Notice that the string u can be constructed from a, b in constant
time using n processors.

Notation and facts

Newton Id

Summary

Extra
Proof of Ne
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Extra Integer arithmetic is in NC

For example:
Let 2 =100101011101011, b = 110101001010001. Then

u=1p01010p1ppp0p10
carry = 1001010110000110
a= 100101011101011

b= 110101001010001
sum = 1011010100111100

The log n complexity comes from converting u to carry.
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| 101101
e x 101011

operations

n 101101
LS. 101101
= 000000
101101
000000
+ 101101

— 11110001111

Extra

Proof of Newton
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Extra Integer arithmetic is in NC

Notice that there are n partial sums which can be computed
using n’ processors.

@ Then, we can use our previous algorithm to add them up. It
will take O((log n)?) time.

@ Since, addition was an NC process, so is multiplication.
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so it works only on fields with characteristic 0 or > n.

Motivation

The formula

Background @ Other algorithms, like those of Berkowitz or Chistov, work
Forml poversres over arbitrary fields.

Inverse of a series

Determinant lemmas

Theorem [Pippenger, 2022]
Complexity We can compute det of an n X n matrix using a circuit of size

NC?

improvemens O(n*log n) and depth O((log n)?), over any commutative ring.

Main Proof

Summary

References
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Main Theorem i
1

Motivation

B:(god det A = (—1)"[x"] Z 1- H Z ((Ak)j)k,kxj ’

Formal power series - -
v e s 0<i<n k€[n] 0<<n

Determinant lemmas

Main Proof where

Complexty @ [x"] denotes the coefficient of x" in the given expression

e @ Ay is upper-left k x k submatrix of A

Summary

P @ M;; denotes the i, jth entry of M. )
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i>0

Determinant is in NC

Formal power series

R[[x]], the ring of formal power series over R, is the set of all
Motvatn elements of the form p(x) = Z pix'.
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Let R be a commutative ring.
R[[x]], the ring of formal power series over R, is the set of all

elements of the form p(x) = Z pix'.
i>0

Main Theorem

The formula

Background

Formal power series

Sl  Multiplication is defined in the usual way:
Main Proof r(x) :== p(x)q(x) = (po+pr1x+p2x*+... ) (qo+qix+qx>+...),

oy where re = poqk + p1gk—1+ -+ PkGo = Z PiQk—i-

NC?
Improvements 0<i<k
Summary
References
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Background Formal power series

Let R be a commutative ring.
R[[x]], the ring of formal power series over R, is the set of all

elements of the form p(x) = Z pix'.
i>0

Multiplication is defined in the usual way:
r(x) = p(x)q(x) = (po+prx+p2x>+...)(qo+qix+qx>+. . .),

where rx = poqi + p1Gk—1 + -+ + pkqGo = Z PiQk—i-
0<i<k

If po =1, we call p to be unic.
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Background Inverse of a series

If po is invertible in R, then p(x) has an inverse in R[[x]].

Proof.

We want g(x) such that p(x)g(x) = 1.

We define the coefficients of g(x) inductively, by comparing

coefficients on both sides.
Base case: ppgo =1, so qp = pal.
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Background Inverse of a series

If po is invertible in R, then p(x) has an inverse in R[[x]].

Proof.

We want g(x) such that p(x)g(x) = 1.
We define the coefficients of g(x) inductively, by comparing
coefficients on both sides.
Base case: ppgo =1, so qp = pal.
Inductive step: suppose the coefficients of g have been
calculated upto gx_7. Observe that Z piqk—; = 0.
0<i<k
= qk=—py" Z PiQk—i-
1<i<k
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Background Inverse of a series

If po is invertible in R, then p(x) has an inverse in R[[x]].

Proof.

We want g(x) such that p(x)g(x) = 1.

We define the coefficients of g(x) inductively, by comparing
coefficients on both sides.

Base case: ppgo =1, so qp = pal.

Inductive step: suppose the coefficients of g have been
calculated upto gx_7. Observe that Z piqk—; = 0.

0<i<k
-1
= Gk = —Pg E PiQk—i- O
1<i<k
v
In particular, a unic power series has an inverse.
33 /44
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We will only be dealing with polynomials of degrees < n, so we
DOREIN  can assume that all coefficients beyond x” are zero.
More formally, we can work in R[[x]], := R[[x]]/(x"*1).
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Background Inverse of a series

We will only be dealing with polynomials of degrees < n, so we
can assume that all coefficients beyond x” are zero.
More formally, we can work in R[[x]], := R[[x]]/(x"*1).

Lemma

If p(x) € R[[x]]n is unic, then its inverse is Z (q(x))", where
0<i<n

p(x)-p(x) 7t = (1= q(x)) (1 + q(x) + - + q(x)") is a
telescoping sum, and is equal to 1 — g(x)"**.
The constant term of q(x) is zero, so this is equal to 1. O

N
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Determinant

Let ¢(x) = E cix' be the characteristic polynomial of A.
\U;Jy;umnrui OSISN
Yeddanapudi .

Observations:

Main Theorem

@ ¢, =1, i.e c(x)is monic.
The formula ° detA _ (_1)nCO — (—1)”[X0]C(X)

Background

Formal
Inverse

Determinant lemmas i
Main Proof Define d(x) := x"c(x71), i.e. d(x) = Z Cn—ix'.
Complexity 0<i<n

NC?

Improvements
Summary

References
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Upamanyu 0<i<n

Yeddanapudi )
Observations:

@ ¢, =1, i.e c(x)is monic.

Main Theorem

Motivation

Background Determinant lemmas

The formula ° detA — (—1)”60 — (—1)”[X0]C(X)

Background

Formal
Inver seri

Determinant lemmas

Main Proof Define d(x) := x"c(x71), i.e. d(x) = Z Cnix'.

Complexity
NC?

Observations:

Improvements

Summary [~} d(X) is unic.

References o det A = (71)”[X”]d(X)
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i Let ¢(x) = E ¢ix' be the characteristic polynomial of A.
Upamanyu OSISN

Yeddanapudi )
Observations:

@ ¢, =1, i.e c(x)is monic.

Main Theorem

Motivation

The formula ° detA — (—1)”60 — (—1)”[X0]C(X)

Background

Formal
Inver seri

Determinant lemmas

Main Proof Define d(x) := x"c(x71), i.e. d(x) = Z Cnix'.
Complexity 0<i<n
NC?

N Observations:
SRS e d(x) is unic.

efeences o det A= (—1)"[x"]d(x).
@ c(x) = det(xl — A), so d(x) = det(/ — xA).
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Background Determinant lemmas

Suppose det M is invertible, and let M[j, i] be the matrix
obtained by removing row j and column /i from M.

Recall that (M_l)iJ = (—1)" det M[j, i]-(det M)~1L.

In particular,
. det Bx_1

((BO™ )k = “derB, -

)

Multiplying over all k, we get

det B
11 -1y _ o _ -1

((Bk) )k,k = det B (det B) .
keln]
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Background Determinant lemmas

Suppose det M is invertible, and let M[j, i] be the matrix
obtained by removing row j and column /i from M.

Recall that (M_l)iJ = (—1)" det M[j, i]-(det M)~1L.

In particular,
_ det Bx_1
By, = ——rn.
(B )ik = “der g,

)

Multiplying over all k, we get
o det By

kle'[[n] (B ™) = Torp = (det B)™1.

This gives us det B = H ((B) ™)
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Background Determinant lemmas

Suppose det M is invertible, and let M[j, i] be the matrix
obtained by removing row j and column /i from M.
Recall that (M_l)iJ = (—1)" det M[j, i]-(det M)~1L.

In particular,

det By _
—1 . k—1
((Bk) )kk T detB,

)

Multiplying over all k, we get

det B
11 -1y _ o _ -1

((Bk) )k,k = det B (det B) .
keln]

-1

This gives us det B = H (B)™),,
ke[n]
Note that det(/ — xA) is unic, so it is invertible.
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Main Theorem -1
d(x) = det(l —xA) = | J] (((/ =)™ ex
The formula ke[n]
Background
Now, (I — xA)y lies in R**K[[x]], (and is unic there). The

nant lemmas

subring of this generated by A is commutative, so we can invert

Main Proof
the above formula there.
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det A = (—1)"[x"]d(x).

Main Theorem

1
Bz:ckground d(X) == det(l - XA) = H (((I - XA)k)_l)k k

Formal ke[n] ’

Main Proof -1 -
Cri?“"exity = H Z (XAk)j = H Z ((Ak)j)k,k X!

e — ke[n] \0<j<n Kk ke[n] 0<j<n
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det A = (—1)"[x"]d(x).

Main Theorem -
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o kel
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Determinant lemmas

Main Proof _ H Z (XAk)j _ H Z ((Ak)j)k,kxj

Complexity
Ne? ke[n] \0<j<n Kk k ke[n] 0<j<n

Improvements

Summary Now each factor in the product is unic, so the product itself is
References unic and we can invert it.
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Main Proof

Determinant

det A = (—1)"[x"]d(x).

-1
Main Theorem
d(x) = de(l = xA) = | T] (1 =xA)) 7)),
Background kE[n]
Formal p: ) 3

Ir of a seri

Determinant lemmas

Main Proof = H Z (XAk)j = H Z ((Ak)J) Kk X

Complexity ke[n] \0<j<n Kk ke[n] 0<j<n

S' Now each factor in the product is unic, so the product itself is
ummary . . .

unic and we can invert it.
Recall that p(x)™t = Y g<;<,(1 — p(x))". This gives us
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P detA = (—1)"[x"]d(x).
Yeddanapudi
-1
- d(x) =det(/ — xA) = [ J] (1 =xA))™), .
The formula ke[n] )
Background
i -1 -1
nant lemmas . . .
Main Proof = H Z (XAk)J = H Z ((Ak)j) k,k XJ
Complexity ke[n] 0<j<n k,k ke[n] 0<j<n
j
Summary . .
References = Z 1 - H Z ((Ak)J)k,k XJ
0<i<n ke[n) 0<j<n
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Complexity NC?

dx)= > |1- ]I Z((Ak)j)k,kxj

0<i<n ke[n] 0<<n
o Recall that for a matrix A, finding A', A%,... A" can be
done with O(n*) operations in O((log n)?) depth.

@ Two polynomials p, g of degree < n can be multiplied in
O(log n) steps using O(n?) operations:
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dx)= > |1- ]I Z((Ak)j)k,kxj

Main Theorem

0<i<n ke[n] 0<j<n
Background @ Recall that for a matrix A, finding A, A%,..., A" can be
s of 3 s done with O(n*) operations in O((log n)?) depth.

Determinant lemmas

@ Two polynomials p, g of degree < n can be multiplied in
Complexity O(log n) steps using O(n?) operations:
- we have n + 1 coefficients; each of the form Y7o, piqk—i.
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Complexity NC?

deg= > (1= 1T 2 ()

0<i<n ke[n] 0<<n

o Recall that for a matrix A, finding A', A%,... A" can be
done with O(n*) operations in O((log n)?) depth.

@ Two polynomials p, g of degree < n can be multiplied in
O(log n) steps using O(n?) operations:
we have n + 1 coefficients; each of the form > o) piqk—i.

@ Our computation for d(x) has three stages: finding
((Ak)f)k . for every j and k, computing the product for
each i, and finally taking ith powers and adding them.
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Complexity

NC?

dx)= > (1= ]I Z«Ak)j)k,kxj

0<i<n

ke[n] 0<j<n

For a given Ay, computing all jth powers takes O(n*) operations

in O((log n)?) stages.

Determinant is in NC
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Main Theorem d(X) = Z 1- H Z ((Ak)j)k’k Xj

Motivation 0<i<n ke[n] 0<j<n

Background For a given Ay, computing all jth powers takes O(n*) operations
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nant lemmas operations,
Main Proof

Complexity
NC?

Improvements
Summary

References

Irish Debbarma, Upamanyu Yeddanapudi Determinant is in NC November 22, 2022 39 /44



Determinant
is in NC

Irish
D) rma
Upamanyu
Yeddanapudi

Main Theorem
Motivation

The formula

Background

seri

nant lemmas
Main Proof

Complexity
NC?

Improvements
Summary

References

Irish Debbarma,

Complexity NC?

dx)= > (1= ]I Z«Ak)j)k,kxj

0<i<n ke[n] 0<j<n

For a given Ay, computing all jth powers takes O(n*) operations
in O((log n)?) stages. We do this for all Ay, so it takes us O(n®)
operations.

We now need to find

d)= 3 1= I] pe(x)

0<i<n ke[n]
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Complexity NC?

Determinant

Upamanyu

Yeddanapudi d(X) — Z 1 o H pk(X) .
Main Theorem 0<i<n kE[n]

vation

The formula

Background

Formal pou
Inverse of a seri

Determinant lemmas
Main Proof

Complexity
NC?

Improvements
Summary

References

Irish Debbarma, Upamanyu Yeddanapudi Determinant is in NC November 22, 2022



Complexity NC?

Determinant
is in NC

Irish
Debbarma
Upamanyu

Yeddanapudi d(X) = Z 1-— H Pk(X)

Main Theorem 0<i<n kE[n]

Motivation

The formila The product of n polynomials can be computed in log n stages,
Background . . . . . .
by multiplying pairs in a tree-like fashion.

Formal pou
Inverse of a se

Determinant lemmas
Main Proof

Complexity

NC?
Improvements

Summary

References

Irish Debbarma, Upamanyu Yeddanapudi Determinant is in NC November 22, 20! 4



Complexity NC?

Determinant
is in NC

Irish
D) rma
Upamanyu

Yeddanapudi d(X) — Z 1-— H Pk(X)

Main Theorem 0<i<n kE[n]
Motivation
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The product of n polynomials can be computed in log n stages,
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Complexity NC?

d)= 3 1= I] pe(0)

0<i<n ke[n]

The product of n polynomials can be computed in log n stages,
by multiplying pairs in a tree-like fashion. Each multiplication
takes O(log n) steps using O(n?) operations, so the total is
O((log n)?) steps and O(n%) operations.

Our computation is now of the form d(x) = > o<;<, q(x)".
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Complexity NC?

The product of n polynomials can be computed in log n stages
by multiplying pairs in a tree-like fashion. Each multiplication
takes O(log n) steps using O(n?) operations, so the total is
O((log n)?) steps and O(n%) operations.

Our computation is now of the form d(x) = > o<;<, q(x)".

Similar to what we did for matrix powers, we do this in log n
rounds, computing q(X)Qk to q(x)QkH_1 in the kth round.
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Complexity NC?

The product of n polynomials can be computed in log n stages,
by multiplying pairs in a tree-like fashion. Each multiplication
takes O(log n) steps using O(n?) operations, so the total is
O((log n)?) steps and O(n%) operations.

Our computation is now of the form d(x) = > o<;<, q(x)".

Similar to what we did for matrix powers, we do this in log n
rounds, computing q(X)Qk to q(x)QkH_1 in the kth round.
This also takes O((logn)?) steps and O(n3) operations.
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Complexity NC?

The product of n polynomials can be computed in log n stages,
by multiplying pairs in a tree-like fashion. Each multiplication
takes O(log n) steps using O(n?) operations, so the total is
O((log n)?) steps and O(n%) operations.

Our computation is now of the form d(x) = > o<;<, q(x)".

Similar to what we did for matrix powers, we do this in log n
rounds, computing q(X)Qk to q(x)QkH_1 in the kth round.
This also takes O((logn)?) steps and O(n3) operations.
Adding up these powers takes an additional O(logn) steps.
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Complexity Improvements

For the number of operations (O(n®)), the first step is the
dominating one. It is also inefficient - we are computing a whole
matrix just for one entry.

We can improve on this:

Let v be the 1 x nvector (0 0 ... 0 1). Observe that for a
matrix B, vB is the last row of B.
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Complexity Improvements

For the number of operations (O(n®)), the first step is the
dominating one. It is also inefficient - we are computing a whole
matrix just for one entry.

We can improve on this:

Let v be the 1 x nvector (0 0 ... 0 1). Observe that for a
matrix B, vB is the last row of B.

Given B = Ay, we find ((Ax) ).k for each j in log n rounds:
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Complexity Improvements

For the number of operations (O(n®)), the first step is the
dominating one. It is also inefficient - we are computing a whole
matrix just for one entry.

We can improve on this:

Let v be the 1 x nvector (0 0 ... 0 1). Observe that for a
matrix B, vB is the last row of B.

Given B = Ay, we find ((Ax) ).k for each j in log n rounds:
@ First, compute vB.

o In the first round, compute B2 and vB2, then multiply
vB-B? to get vB3.
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Complexity Improvements

For the number of operations (O(n®)), the first step is the
dominating one. It is also inefficient - we are computing a whole
matrix just for one entry.

We can improve on this:

Let v be the 1 x nvector (0 0 ... 0 1). Observe that for a
matrix B, vB is the last row of B.

Given B = Ay, we find ((Ax) ).k for each j in log n rounds:
@ First, compute vB.
o In the first round, compute B2 and vB2, then multiply
vB-B? to get vB3.
o Next, compute B* and vB*, and multiply B* by the matrix
with rows vB,vB?, vB3. This gives the matrix with rows
vB5, vB% vB’.
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Complexity Improvements

After log n rounds, this gives us the n x n matrix with rows
vB,vB?, ... ,vB". The required numbers are just the last entries
in each row.

The point is that we are only performing O(log n) matrix
multiplications (a constant number at each step). So the
number of operations is O(n® log n) instead of O(n*).
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Complexity Improvements

After log n rounds, this gives us the n x n matrix with rows
vB,vB?, ... ,vB". The required numbers are just the last entries
in each row.

The point is that we are only performing O(log n) matrix
multiplications (a constant number at each step). So the
number of operations is O(n® log n) instead of O(n*).

Doing this for all A, adds a factor of n, and gives us O(n* log n)
operations.
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Summary

@ The determinant has some deep structure, which can be
exploited to find efficient parallel algorithms. (Unlike the
permanent, for example)

@ The high-level idea in both algorithms is to work with
polynomial identities.
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