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Prime Numbers

Definition 1
A natural number n ą 1 is called prime if the only divisors of
n are 1 and n. A natural number n ą 1 that is not a prime
number is called composite.

For example, 2, 3, 5, 7, 11 are first few prime numbers.
n is a composite number if and only if n has a divisor d such
that 1 ă d ă n.
For example, 4 is a compositive number as 1 ă 2 ă 4 and 2|4.

Theorem 1 (Fundamental Theorem of Arithmetic)
Every natural number n ą 1 is either a prime or a product of
prime numbers in a unique way (up to rearrangement).

Let PRIMES = {n: n is prime} be the set of prime numbers.
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Checking if n P PRIMES

We want to check if a natural number n is prime, ie, if n P

PRIMES.

Why can’t we just list all the prime numbers and check if n
belongs to that list or not?
There are infinitely many prime numbers!

Proof (due to Euclid).
Suppose not. Then there are finitely many primes p1, p2, ..., pk.
Consider the number N “ p1p2...pk ` 1. It is not divisible
by any prime. So, it is a prime number by the Fundamental
Theorem of Arithmetic. Now, N ě pi ` 1 for any i with
1 ď i ď k So, N ‰ pi for 1 ď i ď k. But according to our
assumption, p1, p2, ..., pk are the only primes. Contradiction!
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An Inefficient Algorithm to Check Primality

One can try to check primality right from its definition.

Given a number n ą 2, check if m divides n for any 2 ď m ď

n ´ 1.
It is sufficient to check for m ď

?
n only.

Proof.
n is composite if and only if it has a divisor d with 1 ă d ă n.
Then n{d is also a divisor of n with 1 ă n

d ă n. Both d
and n

d cannot be ą
?
n (otherwise n “ d ¨ n

d ą p
?
nq2 “ n,

a contradiction!). So, n is composite if and only if it has a
divisor d with 1 ă d ď

?
n.

Still not a good test. We want some algorithm that runs in
time polynomial in logpnq.
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What is a Group?

Definition 2
A group G is a set together with a binary operation ˚ : G ˆ

G Ñ G such that

(i) for a, b P G, a ˚ b P G
(ii) there is an element e P G such that a ˚ e “ e ˚ a “ a for
any a P G
(iii) for any a P G, there is b P G such that a ˚ b “ b ˚ a “ e.

If in a group G, a ˚ b “ b ˚ a for all a, b P G, then G is called
abelian.
Examples:
(i) Z{nZ “ t0, 1, 2, ..., pn ´ 1qu with addition modulo n (a ˚

b :“ a ` b mod n).
(ii) pZ{nZq˚ “ tr : 0 ď r ď n ´ 1, gcdpr, nq “ 1u with
multiplication modulo n (a ˚ b :“ pab mod nq).
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Order of a Group & Order of an Element

Let G be a finite group.

The order of G (denoted by |G|) is the no. of elements in G.
For a P G, the order of a (denoted by |a|) is the smallest
natural number n for which an “ a ˚ a ˚ ... ˚ a pn timesq “ e.
Note that if |a| “ n, then am “ e iff m is a multiple of n.
Examples:
(i) |Z{nZ| “ n. Order of 1 P Z{nZ is n.
(ii) |pZ{nZq˚| “ ϕpnq, where ϕ is the Euler’s totient function
(ϕpnq is the number of natural numbers ď n, that are co-prime
to n). Order of n ´ 1 P pZ{nZq˚ is 1, if n “ 2 and 2,
otherwise.

Theorem 2 (Corollary to Lagrange’s Theorem)

If G is a finite group and a P G, then |a| divides |G|.
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Fermat’s Little Theorem

Theorem 3

If n and a are co-prime natural numbers, aϕpnq “ 1 (mod nqq.

Proof.
As a P pZ{nZq˚, |a| divides |pZ{nZq˚| “ ϕpnq.

Corollary 1 (Fermat’s Little Theorem)

If p is prime and a P N is not divisible by p, then ap´1 “

1 (mod pq.

Proof.
If p is prime, ϕppq “ p ´ 1.
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Converse of Fermat’s Little Theorem

One might be tempted to think of an efficient test of primality
based on Fermat’s Little Theorem: Given a number n, choose
a P N co-prime to n and verify if an´1 “ 1 (mod nq.

However, this test doesn’t work!
The converse of the Fermat’s Little Theorem is not true.
For example, a “ 5 and n “ 4 are co-prime and an´1 “ 125 “

1 (mod 4q but 4 is not co-prime.
In fact, there are composite numbers n such that an´1 “

1 (mod nq for any a P N co-prime to n. Such numbers
are called Carmichael numbers and there are infinitely many
Carmichael numbers [Alford, Granville & Pomerance, 1994].
561 “ 3 ˆ 11 ˆ 17 is one such Carmichael number.
However, there is a partial converse of Fermat’s Little Theorem
– Lehmer’s Theorem.
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Lehmer’s Theorem

Theorem 4 (Lehmer’s Theorem)

If a is an integer co-prime to n such that an´1 “ 1 (mod nq

but ar ‰ 1 (mod nq for any 1 ď r ă n ´ 1, then n is prime.

Using Lehmer’s theorem and the fact that pZ{pZq˚ is cyclic
for any prime p, we get the following result:

Proposition 1
A number n is prime if and only if there is a number a P

t2, 3, ..., n ´ 1u satisfying
(i) an´1 “ 1 (mod nq and (ii) for every prime factor r of n´1,
a

n´1
r ‰ 1 (mod nq.

This was precisely the hint given in Q3 of Assignment 1.
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PRIMES is in NP X co-NP

1 Does PRIMES P NP?

Yes, we saw in Question 3 of Assignment 1 that PRIMES
is in NP. The certificate of primality constructed using
the hint given in that question is called Pratt certificate
[Pratt, 1975].

2 Does PRIMES P co-NP?
It is equivalent to asking if PRIMES P NP . If n ą 1 is
not prime (ie, if n is composite), we can give a factor d
of n with 1 ă d ă n as a certificate to prove that n is
not prime. So, PRIMES is in co-NP as well.
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Status of Primality Testing Before the AKS Paper

1 In 1975, Miller obtained a deterministic polynomial-time
algorithm for primality testing using a property based on
FLT assuming Extended Riemann Hypothesis (ERH).

In
1980, Rabin modified his test to obtain an unconditional
randomized poly-time algorithm.

2 In 1974, Solovay and Strassen obtained a randomized
polynomial-time algorithm, which can be derandomized
assuming ERH.
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Status of Primality Testing Before the AKS Paper (cont.)

3 A major breakthrough came in 1983, when a deterministic
algorithm for primality testing was obtained by Adleman,
Pomerance and Rumely, that runs in plog nq

Oplog log lognq

time (all the previous deterministic algorithms required
exponential time).

4 In 1986, Goldwasser and Kilian proposed a randomized
algorithm (based on Elliptic Curves) running in expected
poly-time on almost all inputs. A similar algorithm based
on similar ideas was developed by Atkin. Adleman and
Huang modified the Goldwasser-Kilian algorithm in 1992
to obtain a randomized algorithm that runs in expected
poly-time on all inputs.

In 2002, Agrawal, Kayal and Saxena proposed an algorithm.
The AKS algorithm is an unconditional deterministic poly-time
algorithm for primality testing.
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A More General Result

Lemma 1

Let a P Z and n ě 2 be a natural number such that
gcdpa, nq “ 1. Then n is prime if and only if

pX ` aqn “ Xn ` a (mod nq (1)

Proof.
From binomial theorem, coefficient of Xi in pX ` aqn is
`

n
i

˘

an´i.
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gcdpa, nq “ 1. Then n is prime if and only if

pX ` aqn “ Xn ` a (mod nq (1)

Proof.
From binomial theorem, coefficient of Xi in pX ` aqn is
`

n
i

˘

an´i.
ñ Suppose n is prime. Then for any 0 ă i ă n,

`

n
i

˘

“
n!

i!pn´iq! is divisible by n as 0 ă i, n ´ i ă n. So, pX ` aqn “

Xn ` an “ Xn ` a (mod nq for any a by Fermat’s Last
Theorem.
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Proof.
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n
i

˘

an´i.
ð Suppose n is composite. Take a prime factor q of n. Then
qk|n but qk`1 ffl n for some k.
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`

n
i

˘

an´i.
ð Suppose n is composite. Take a prime factor q of n.
Then qk|n but qk`1 ffl n for some k. Note that

`

n
q

˘

“
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Let a P Z and n ě 2 be a natural number such that
gcdpa, nq “ 1. Then n is prime if and only if
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Proof.
From binomial theorem, coefficient of Xi in pX ` aqn is
`

n
i

˘

an´i.
ð Suppose n is composite. Take a prime factor q of n.
Then qk|n but qk`1 ffl n for some k. Note that

`

n
q

˘

“

npn´1q...pn´q`1q

q! is not divisible by qk. As gcdpn, an´qq “ 1

and n does not divide
`

n
q

˘

, we get that the coefficient of Xq in
pX ` aqn is

`

n
q

˘

an´q ‰ 0 (mod nq. So, (1) cannot hold.
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Some Prerequisites

Recall that for a prime p, Z{pZ is an additive abelian group
and pZ{pZq˚ is a multiplicative abelian group containing all
elements of Z{pZ except 0. Also, the distributive law holds:
bpa ` cq “ ba ` bc. So, Z{pZ is a field. We denote this field
by Fp.

Now, in the polynomial ring FprXs, if hpXq is an irreducible
polynomial of degree d, then FprXs{phpXqq is a finite field of
order pd.
Note that Z{nZ is a ring. Call this ring Zn. If hpXq P ZnrXs,
we get the quotient ring ZnrXs{phpXqq.
rOplogkpnqq “ Oplogkpnq ¨ polyplog logpnqqq “ Oplogk`ϵpnqq

for any ϵ ą 0.
For n P N, a P Z with gcdpa, nq “ 1, the order of a modulo n
is defined as the order of pa mod nq in pZ{nZq˚. We denote
it by onpaq. From Theorem 3, for a P Z with gcdpa, nq “ 1,
onpaq ‌ ϕpnq.
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A Test of Primality Based on Lemma 1

From Lemma 1, we can get a simple test for primality: for an
input n, choose a number a co-prime to n and check whether
the equation (1) is satisfied or not. Unfortunately, this requires
computing n coefficients of pX ` aqn.

To reduce the number
of coefficients to be evaluated, one may evaluate both sides of
(1) modulo a polynomial of the form Xr ´1 for some small r:

pX ` aqn “ Xn ` a (mod pXr ´ 1, nqq (2)

As any prime n satisfies the equation (1), it satisfies (2) for
all values of r. However, some composite number n may also
satisfy the equation for a few values of a and r. AKS show
that for some appropriately chosen r if the equation (2) is
satisfied for a number of a’s, then n is a prime number. The
appropriate r and the number of a’s for which (2) needs to
be checked are both bounded by a polynomial in logpnq. This
gives a deterministic poly-time algorithm for testing primality.
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be checked are both bounded by a polynomial in logpnq.

This
gives a deterministic poly-time algorithm for testing primality.
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A Lower Bound for LCM of first N Natural Numbers

Lemma 2

Let LCMpNq :“ lcmp1, 2, ..., Nq be the least common
multiple of first N natural numbers. Then for N ě 7,
LCMpNq ě 2N .
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Algorithm for Primality Testing (AKS Algorithm)

Input: n (an integer ą 1)
1 If (n “ ab for some a P N and b ą 1),

output COMPOSITE;
2 Find the smallest r such that orpnq ą log2pnq.
3 If 1 ă gcdpa, nq ă n for some a P N with 1 ď a ď r,

output COMPOSITE;
4 If n ď r,

output PRIME;
5 For a “ 1 to t

a

ϕprq logpnqu do
if ppX ` aqn ‰ Xn ` a (mod pXr ´ 1, nqqq,

output COMPOSITE;
6 output PRIME;
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Output of AKS Algorithm for Prime Input

Input: n (an integer ą 1)

1 If (n “ ab for some a P N and b ą 1), output COMPOSITE;

2 Find the smallest r such that orpnq ą log2pnq.
3 If 1 ă gcdpa, nq ă n for some a P N with 1 ď a ď r, output COMPOSITE;
4 If n ď r, output PRIME;

5 For a “ 1 to t
a

ϕprq logpnqu do if ppX ` aqn ‰ Xn ` a (mod pXr ´ 1, nqqq, output
COMPOSITE;

6 output PRIME;

Lemma 3

If n is prime, AKS algorithm returns PRIME.

Proof.
If n is prime, neither of steps 1 and 3 can return COMPOSITE.

From Lemma 1, step 5 also cannot return COMPOSITE.
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AKS Algorithm Returns PRIME

Input: n (an integer ą 1)
3 If 1 ă gcdpa, nq ă n for some a P N with 1 ď a ď r, output COMPOSITE;
4 If n ď r, output PRIME;
6 output PRIME;

We proved that if n is prime, AKS algorithm returns PRIME.
To show the correctness of the algorithm, we need to show
the converse as well, ie, we need to prove that if the algorithm
returns PRIME, then n is prime.

Suppose the algorithm returns PRIME. If step 4 returns PRIME,
then as n ď r and step 3 did not return COMPOSITE, for all
a P N with 1 ď a ă n, gcdpa, nq “ 1. So, n is prime. (If n
is composite, it would have a divisor d with 1 ă d ă n. Then
1 ă gcdpd, nq “ d ă n.) So, we just need to prove that if
step 6 returns PRIME, then n is prime. For future analysis,
assume that this is the case (ie, step 6 returns PRIME).
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Bound on r

Recall step 2 of AKS algorithm: Find the smallest r such that
orpnq ą log2pnq.

Lemma 4

There is a natural number r ď maxp3, rlog5pnqsq such that
orpnq ą log2pnq.

Proof.
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Bound on r

Lemma 4

There is a natural number r ď maxp3, rlog5pnqsq such that
orpnq ą log2pnq.

Proof.
For n “ 2, we can take r “ 3 as 3 ď maxp3, rlog5p2qsq “ 3
and o3p2q “ 2 ą 1 “ log2p2q. For n “ 3, we can take
r “ 5 as 5 ď maxp3, rlog5p3qsq “ 11 and o5p3q “ 4 ą

log2p3q « 2.51. For n “ 4, we can take r “ 11 as 11 ď

maxp3, rlog5p4qsq “ 32 and o1 1p4q “ 5 ą 4 “ log2p4q. For
n “ 5, we can take r “ 7 as 7 ď maxp3, rlog5p5qsq “ 68 and
o7p5q “ 6 ą log2p5q « 5.39.
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Bound on r

Lemma 4

There is a natural number r ď maxp3, rlog5pnqsq such that
orpnq ą log2pnq.

Proof.
Assume n ě 6. Then logpnq ě logp6q ą 5{2 as 62 ą 25. So
log5pnq ą log5p6q ą 30 and B :“ rlog5pnqsą 30 and we can
apply Lemma 2 for LCMpBq. Also, log2pnq ą p5{2q

2
“ 25{4

and log3pnq ą p5{2q3 “ 125{8 ą 15.
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Bound on r

Proof.
Consider the smallest number r that does not divide the
product

C :“ ntlogpBqu

tlog2pnqu
ź

i“1

pni ´ 1q.

Firstly, note that C “ ntlogpBqu
śtlog2pnqu

i“1 pni ´ 1q ă

ntlogpBqu
śtlog2pnqu

i“1 ni ď nlogpBq` 1
2
log2pnqplog2pnq`1q. Now,

logpBq ď logplog6pnqq ď 6 logplogpnqq ď 6 logpnq ă

6 logpnq ˆ
log3pnq

15 “ 2
5 log

4pnq. And 1
2 log

2pnq ď 1
2 log

2pnq ˆ

log2pnq

25{4 “ 8
100 log

4pnq ă 1
10 log

4pnq. So, logpBq `

1
2 log

2pnqplog2pnq ` 1q ă 2
5 log

4pnq`1
2 log

4pnq` 1
10 log

4pnq “

log4pnq. So, C ă nlog4pnq “ 2log
5pnq ď 2B.
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Bound on r

Lemma 4

There is a natural number r ď maxp3, rlog5pnqsq such that
orpnq ą log2pnq.

Proof.
Assume n ě 6. B :“ rlog5pnqs. Consider the smallest number
r that does not divide the product

C :“ ntlogpBqu

tlog2pnqu
ź

i“1

pni ´ 1q.

C ă nlog4pnq “ 2log
5pnq ď 2B. Note that C cannot be divisible

by all natural numbers ď B as LCMpBq ě 2B and C ă 2B.
So, r ď B.
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Bound on r

Proof.
Assume n ě 6. B :“ rlog5pnqs. Consider the
smallest number r that does not divide the product C :“

ntlogpBqu
śtlog2pnqu

i“1 pni ´ 1q.
r ď B. We claim that gcdpr, nq “ 1. Otherwise, there
will be a prime p dividing gcdpr, nq. Let r “ pkm, where
m is co-prime to p. As p ě 2, k ď logprq ď logpBq. So,
k ď tlogpBqu. As p ‌ n, pk ‌ C. So, m “ r

pk
does not divide

C. (Otherwise, both pk and m will divide C and as pk and
m are co-prime, r “ pkm will also divide C, contradiction!)
But then m ă r and m does not divide C. Contradiction!
So, gcdpr, nq “ 1. As ni ´ 1 is not divisible by r for 1 ď

i ď tlog2pnqu, ni ‰ 1 (mod rq for 1 ď i ď tlog2pnqu. Hence,
orpnq ě tlog2pnqu ` 1 ą log2pnq.
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Towards Introspectivity

We have found an r such that orpnq ą log2pnq. As n ě 2,
orpnq ą 1. So, there is a prime factor p of n such that orppq ą

1. (If not, then orppq “ 1 and hence, p “ 1 (mod rq for all
p dividing n, which will imply n “ 1 (mod rq contradicting
orpnq ą 1.)

pX ` aqn “ Xn ` a (mod pXr ´ 1, pqq (3)

for all a with 0 ď a ď ℓ.

pX ` aqp “ Xp ` a (mod pXr ´ 1, pqq (4)

for all a with 0 ď a ď ℓ. Hence,

pX ` aq
n
p “ X

n
p ` a (mod pXr ´ 1, pqq (5)

for all a with 0 ď a ď ℓ. Note that each of n, n
p and p satisfies

pX ` aqm “ Xm ` a (mod pXr ´ 1, pqq

for m for any a with 0 ď a ď ℓ.

Arka Das PRIMES is in P 21 / 38



Towards Introspectivity

Input: n (an integer ą 1)
3 If 1 ă gcdpa, nq ă n for some a P N with 1 ď a ď r, output COMPOSITE;
4 If n ď r, output PRIME;
6 output PRIME;

We have found an r such that orpnq ą log2pnq. So, there is
a prime factor p of n such that orppq ą 1.
As we have assumed that step 6 returns PRIME, we must
have p ą r. [If p ď r and p ă n, then step 3 would return
COMPOSITE as 1 ă p “ gcdpp, nq ă n with 1 ď p ď r.
If p ď r and p “ n, then n ď r and step 4 would return
PRIME.]
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a prime factor p of n such that orppq ą 1.
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Moreover, note that gcdpn, rq “ 1. So, p, n P pZ{rZq˚.
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Towards Introspectivity

Input: n (an integer ą 1)

5 For a “ 1 to t
a

ϕprq logpnqu do if ppX ` aqn ‰ Xn ` a (mod pXr ´ 1, nqqq, output
COMPOSITE;

We have found an r such that orpnq ą log2pnq. So, there is
a prime factor p of n such that orppq ą 1.
As we have assumed that step 6 returns PRIME, we must have
p ą r.
Moreover, note that gcdpn, rq “ 1. So, p, n P pZ{rZq˚.
Take ℓ “ t

a

ϕprq logpnqu. As step 5 does not return COMPOSITE,
we must have pX ` aqn “ Xn ` a (mod pXr ´ 1, nqq for
all a with 1 ď a ď ℓ. For a “ 0, pX ` aqn “ Xn “

Xn ` a (mod pXr ´ 1, nqq trivially.
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Towards Introspectivity

Take ℓ “ t
a

ϕprq logpnqu.

pX ` aqn “ Xn ` a (mod pXr ´ 1, pqq (3)

for all a with 0 ď a ď ℓ. From Lemma 1,

pX ` aqp “ Xp ` a (mod pXr ´ 1, pqq (4)

for all a with 0 ď a ď ℓ.

Hence,
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Towards Introspectivity

pX ` aqn “ Xn ` a (mod pXr ´ 1, pqq (3)

for all a with 0 ď a ď ℓ.

pX ` aqp “ Xp ` a (mod pXr ´ 1, pqq (4)

for all a with 0 ď a ď ℓ. Now, note that pXpq
n
p ` a “ Xn `

a “ pX ` aqn “ ppX ` aqpq
n
p “ pXp ` aq

n
p (mod pXr ´

1, pqq. As gcdpp, rq “ 1, there exist integers k, s such that
kr`sp “ 1. X “ Xkr`sp “ pXrq

k Xps “ Xps in FprXs{ppXr´

1qq as Xr “ 1 in FprXs{ppXr ´ 1qq. Hence, pX ` aq
n
p “

pXps ` aq
n
p “ ppXs ` aq

p
q
n
p “ pXs ` aqn in FprXs{ppXr ´

1qq. From (3), pXs`aqn “ Xns`a in FprXs{ppXrs´1qq. So,
pXs ` aqn “ Xns ` a in FprXs{ppXr ´ 1qq. So, pX ` aq

n
p “

Xns`a “ pXpsq
n
p `a “ X

n
p `a in FprXs{ppXr ´1qq.
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Introspectivity

Definition 3
Let fpXq be a polynomial and m P N. m is said to be
introspective for fpXq, if rfpXqsm “ fpXmq (mod pXr ´

1, pqq.

From the previous slide, we know that each of n, n
p and p is

introspective for X ` a for any a with 0 ď a ď ℓ.
We shall now prove two short lemmata about introspectivity.
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Introspective Numbers are Closed Under Multiplication

Lemma 5

If m and m1 are introspective numbers for fpXq, then m ¨ m1

is also introspective for fpXq.

Proof.
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Introspective Numbers are Closed Under Multiplication

Lemma 5

If m and m1 are introspective numbers for fpXq, then m ¨ m1

is also introspective for fpXq.

Proof.
rfpXqsm “ f pXmq (mod pXr ´ 1, pqq and rfpXqsm

1

“

f
´

Xm1
¯

(mod pXr ´1, pqq. Replacing X by Xm1

in the first

equation, we get
”

f
´

Xm1
¯ım

“ f
´

Xmm1
¯

(mod pXm1r ´

1, pqq.
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“
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Xm1
¯

(mod pXr ´ 1, pqq. As Xr ´ 1 divides Xm1r ´

1, ppXm1r ´ 1qq Ď ppXr ´ 1qq. So,
”

f
´

Xm1
¯ım

“

f
´

Xmm1
¯

(mod pXr ´ 1, pqq. Now, the second equation

gives rfpXqsm¨m1

“

”

rfpXqsm
1
ım

“

”

f
´

Xm1
¯ım

“

f
´

Xmm1
¯

(mod pXr ´ 1, pqq.
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Polynomials with Same Introspective Number are Closed
Under Multiplication

Lemma 6

If m is introspective for polynomials fpXq and gpXq, then m
is also introspective for fpXq ¨ gpXq.

Proof.
rfpXqsm “ f pXmq (mod pXr ´ 1, pqq and rgpXqsm “

g pXmq (mod pXr ´ 1, pqq. So, rfpXq ¨ gpXqsm “ rfpXqsm ¨

rgpXqsm “ fpXmq ¨ gpXmq (mod pXr ´ 1, pqq.
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Defining The First Group

As both p and n
p are introspective for X ` a for any a with

0 ď a ď ℓ, from Lemma 5,
´

n
p

¯i
pj is introspective for X ` a

for all i, j ě 0 (trivially true for i “ j “ 0) for any a with
0 ď a ď ℓ.
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Defining The First Group

As both p and n
p are introspective for X ` a for any a with

0 ď a ď ℓ, from Lemma 5,
´

n
p

¯i
pj is introspective for X ` a

for all i, j ě 0 (trivially true for i “ j “ 0) for any a with

0 ď a ď ℓ. So, from Lemma 6, for any i, j ě 0,
´

n
p

¯i
pj is

introspective for the polynomial
śℓ

a“0pX`aqea , where ea ě 0
for all a (again if all ea “ 0, this is trivially true as any number
is introspective for the constant polynomial 1).
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0 ď a ď ℓ. So, from Lemma 6, for any i, j ě 0,
´

n
p

¯i
pj is

introspective for the polynomial
śℓ

a“0pX`aqea , where ea ě 0
for all a (again if all ea “ 0, this is trivially true as any number
is introspective for the constant polynomial 1). Thus, every

number in I :“

"

´

n
p

¯i
pj : i, j ě 0

*

is introspective for every

polynomial in P :“
!

śℓ
a“0pX ` aqea : ea ě 0 for 0 ď a ď ℓ

)

.
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Defining The First Group

Every number in I :“

"

´

n
p

¯i
pj : i, j ě 0

*

is introspective

for every polynomial in P :“
!

śℓ
a“0pX ` aqea : ea ě 0

)

.
Consider G :“ the set of residues of numbers in I modulo
r. As gcdpn, rq “ 1 “ gcdpp, rq and

´

n
p

¯i
pj “ nipj´i, G is

a subset of pZ{rZq˚. As I is closed under multiplication, G is
also closed under multiplication modulo r. So, G is a subgroup
of pZ{rZq˚. [If a finite subset G of a group H is closed under
group operation, then G is a subgroup.] Let t :“ |G|. Then as
n P I and orpnq ą log2pnq, t “ |G| ě |n| “ orpnq ą log2pnq.
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Cyclotomic Polynomials over Finite Fields

Definition 4
Let F be a finite field of characteristic p and r be a natural
number not divisible by p. ξ P F is called a primitive r-th root
of unity, if ξr “ 1 and ξm ‰ 1 for any natural number m ă r.

Definition 5
Let Fq be a finite field with q elements and characteristic p and
let r be a natural not divisible by p. Then the r-th cyclotomic
polynomial QrpXq over Fq is the monic polynomial, whose
roots are precisely the primitive r-th roots of unity in Fq.

Put another way, if S is the set of primitive r-th roots of
unity in Fq, then the r-th cyclotomic polynomial QrpXq “
ś

ξPSpX ´ ξq.
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Some Facts about QrpXq over Fq

Let Fq be a finite field with characteristic p and let r be a
natural not divisible by p. Let the r-th cyclotomic polynomial
over FqpXq be QrpXq.

1 QrpXq P FqrXs.
2 QrpXq divides Xr ´ 1 in FqrXs.
3 Degree of QrpXq is ϕprq.
4 QrpXq factors into irreducible factors of degree orpqq in

FqrXs.
For our purpose, we take q “ p, ie, Fq “ Fp. Then QrpXq

factors into irreducible factors of degree orppq.
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Defining the Second Group

Let the r-th cyclotomic polynomial over FppXq be QrpXq.
We know that QrpXq factors into irreducible factors of degree
orppq.

Let hpXq be one such irreducible factor. Since orppq ą

1, the degree of hpXq is orppq ą 1. Now, as hpXq P FprXs

is irreducible, F :“ FprXs{pphpXqq is a field.
The second group G is defined as the set of all residues of
polynomials in P “

!

śℓ
a“0pX ` aqea : ea ě 0 for 0 ď a ď ℓ

)

modulo hpXq and p with usual multiplication. Alternatively,
G is the subgroup of F˚ generated by the elements of the form
X ` a for 0 ď a ď ℓ.
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The Two Groups

Every number in I :“

"

´

n
p

¯i
pj : i, j ě 0

*

is introspective for

every polynomial in P :“
!

śℓ
a“0pX ` aqea : ea ě 0

)

. G :“

the set of residues of numbers in I modulo r. G is a subgroup
of pZ{rZq˚. Let t :“ |G|. Then as n P I and orpnq ą log2pnq,
t “ |G| ě |n| “ orpnq ą log2pnq.

G is defined as the set of all residues of polynomials in P “
!

śℓ
a“0pX ` aqea : ea ě 0 for 0 ď a ď ℓ

)

modulo hpXq and
p with usual multiplication. Alternatively, G is the subgroup of
F˚ generated by the elements of the form X`a for 0 ď a ď ℓ.
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Lower Bound on the size of G

Lemma 7 (Hendrik Lenstra Jr.)

|G| ě
`

t`ℓ
t´1

˘

Proof.
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Lower Bound on the size of G

Proof.
hpXq is an irreducible factor of the cyclotomic polynomial
QrpXq over Fp. So, hpXq “ 0 in FprXs{phpXqq “ F, or,
QrpXq “ 0 in F. Hence, X is a primitive r-th root of unity in
F as the only roots of QrpXq are the primitive r-th roots of
unity in Fp.
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Lower Bound on the size of G

Proof.
We claim that distinct polynomials of degree ă t in P map to
different elements in G.
Let fpXq and gpXq be two polynomials of degree ă t
in P . If fpXq “ gpXq in F, then for any m P N,
rfpXqsm “ rgpXqsm in F. In particular, for any m P I,
rfpXqsm “ rgpXqsm. As any number in I is introspective
for f and g, fpXmq “ rfpXqsm (mod pXr ´ 1, pqq and
gpXmq “ rgpXqsm (mod pXr ´ 1, pqq in F. As hpXq divides
QrpXq and QrpXq divides Xr ´ 1, we get: fpXmq “ gpXmq

in F. As Xr “ 1 in F, Xm “ Xm mod r. So, Xm is a root
of the polynomial QpY q :“ fpY q ´ gpY q for any m P G.

Arka Das PRIMES is in P 30 / 38



Lower Bound on the size of G

Proof.
As X is a primitive r-th root of unity in F, Xm ‰ Xm1

in
F for distinct m,m1 P G. Hence, there are at least t “ |G|

distinct roots of QpY q in F. However, as the degree of QpY q

is less than t, QpY q cannot have t distinct roots in F. Thus,
we get a contradiction! Hence, fpXq ‰ gpXq in F.
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Lower Bound on the size of G

Proof.
As gcdpr, nq “ 1, n P pZ{rZq˚ and log2pnq ă orpnq ď

|pZ{rZq˚| “ ϕprq ď r. Now, if 1 ď i ‰ j ď ℓ, then i ‰ j
in Fp, since ℓ “ t

a

ϕprq logpnqu ď
?
r logpnq ă r ă p. So,

the elements X, X ` 1, X ` 2, ..., X ` ℓ are distinct in F.
Also, since degree of h is ą 1, X ` a ‰ 0 in F for every a,
0 ď a ď ℓ. So there exist at least ℓ ` 1 distinct polynomials
of degree 1 in G.
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Lower Bound on the size of G

Proof.
We want to find no. of distinct polynomials of degree ă t in
P “

!

śℓ
a“0pX ` aqea : ea ě 0

)

. Call this number NP . NP

is same as the no. of ways, we can choose ea’s with ea ě 0
and

ř

0ďaďℓ ea ď t ´ 1.
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Lower Bound on the size of G

Proof.
We want to find no. of distinct polynomials of degree ă t in
P “

!

śℓ
a“0pX ` aqea : ea ě 0

)

. Call this number NP . NP

is same as the no. of ways, we can choose ea’s with ea ě 0
and

ř

0ďaďℓ ea ď t ´ 1.
Take pt´1q identical balls and pℓ`1q identical sticks. Arrange
them in a row. Let e0 be the no. of balls, that are on the left
of first stick. Let e1 be the no. of balls between the first
stick and the second stick. ... Let eℓ be the no. of balls
between the ℓ-th stick and pℓ ` 1q-th stick. Thus, there is
a one-to-one correspondence between such permutations and
polynomials of degree ă t in P . Hence, NP “

pt´1`ℓ`1q!
pt´1q!pℓ`1q! “

`

t`ℓ
t´1

˘

. Therefore, there exist at least
`

t`ℓ
t´1

˘

distinct polynomials
of degree ă t in G.

Arka Das PRIMES is in P 30 / 38



Upper bound on the size of G

Lemma 8

If n is not a power of p, then |G| ď n
?
t.

Proof.
Consider the set

J “

#

ˆ

n

p

˙i

¨ pj : 0 ď i, j ď t
?
tu

+

.

J is a subset of I. Now, if
´

n
p

¯i1
¨ pj1 “

´

n
p

¯i2
¨ pj2 for

pi1, j1q ‰ pi2, j2q, then ni1´i2 “ pj2´j1´i2`i1 . So, n will be
a power of p. Hence, if n is not a power of p, then the set J
has pt

?
tu ` 1q2 ą t distinct elements.
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Upper bound on the size of G

Lemma 8

If n is not a power of p, then |G| ď n
?
t.

Proof.
As |G| “ t, at least two numbers in J must be equal in G.
Let m1 and m2 be two such numbers in J . Then m1 “

m2 (mod rq. Without loss of generality, m1 ą m2. Note that
Xm1 ´ Xm2 “ Xm2pXm1´m2 ´ 1q. So,

Xm1 “ Xm2 (mod Xr ´ 1q.

Hence, for any polynomial f , f pXm1q “ f pXm2q (mod Xr´

1q.
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Upper bound on the size of G

Lemma 8

If n is not a power of p, then |G| ď n
?
t.

Proof.
For any polynomial f , f pXm1q “ f pXm2q (mod Xr ´ 1q.
Let fpXq P P . Then

rfpXqs
m1 “f pXm1q (mod pXr ´ 1q, pq

“f pXm2q (mod pXr ´ 1q, pq

“ rfpXqs
m2 (mod pXr ´ 1q, pq.

Thus, rfpXqsm1 “ rfpXqsm2 in the field F. In other words,
fpXq P G is a root of the polynomial QpY q :“ Y m1 ´Y m2 in
the field F.
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Upper bound on the size of G

Lemma 8

If n is not a power of p, then |G| ď n
?
t.

Proof.
If fpXq is a polynomial in G, rfpXqsm1 “ rfpXqsm2 in the
field F. In other words, fpXq P G is a root of the polynomial
QpY q :“ Y m1 ´ Y m2 in the field F. This is true for any
polynomial fpXq P G. So, QpY q has at least |G| distinct roots

in F. As the degree of QpY q is m1 ď

´

n
p

¯

?
t

¨ p
?
t “ n

?
t.

This shows |G| ď n
?
t.
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Proof of Correctness of AKS Algorithm

Input: n (an integer ą 1)

1 If (n “ ab for some a P N and b ą 1), output COMPOSITE;

2 Find the smallest r such that orpnq ą log2pnq.
3 If 1 ă gcdpa, nq ă n for some a P N with 1 ď a ď r, output COMPOSITE;
4 If n ď r, output PRIME;

5 For a “ 1 to t
a

ϕprq logpnqu do if ppX ` aqn ‰ Xn ` a (mod pXr ´ 1, nqqq, output
COMPOSITE;

6 output PRIME;

We proved that if n is prime, then AKS algorithm returns
PRIME. We also noted that if for some input n, the algorithm
returns PRIME in step 4, then n is prime. To complete the
proof, we need to prove that if for some input n, the algorithm
returns PRIME in step 6, then n is prime. We assumed that
this was the case to define and study the groups G and G. As
the algorithm did not return COMPOSITE in step 1, n is not
a non-trivial power of p. If n ‰ p1, then n is not a power of p
and we can apply Lemma 8.

Proof.

Theorem 5
For input n, AKS algorithm returns PRIME if and only if n is
prime.
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Proof of Correctness of AKS Algorithm

Lemma 9

If AKS algorithm returns PRIME in step 6 for some input n,
then n is prime.

Proof.

Theorem 5
For input n, AKS algorithm returns PRIME if and only if n is
prime.

Arka Das PRIMES is in P 32 / 38



Proof of Correctness of AKS Algorithm

Proof.
For t “ |G| and ℓ “ t

a

ϕprq logpnqu, we have ϕprq ě t ą

log2pnq, r ě ϕprq ą log2pnq, ℓ ď
?
r logpnq ă r and ℓ ě

t
?
t logpnqu. Now, Lemma 7 gives

|G| ě

ˆ

t ` ℓ

t ´ 1

˙

“

ˆ

t ` ℓ

ℓ ` 1

˙

ě

ˆ

ℓ ` 1 ` t
?
t logpnqu

t
?
t logpnqu

˙

(since t ą
?
t logpnq)

ě

ˆ

2t
?
t logpnq1u ` 1

t
?
t logpnqu

˙

(since ℓ ě t
?
t logpnqu)

Theorem 5
For input n, AKS algorithm returns PRIME if and only if n is
prime.
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Proof of Correctness of AKS Algorithm

Proof.

Now, note that for m ě 2,
`

2m`1
m

˘

“
p2m`1qp2mq...pm`2q

mpm´1q...1 “

2m`1
m ¨ 2m

m´1 ¨ ... ¨ m`2
1 ą 2m`1. As AKS algorithm returns

PRIME for n “ 2, 3, we can consider n ě 4. Then
t
?
t logpnqu ě tlog2pnqu ě 2. Hence, we have

|G| ě

ˆ

2t
?
t logpnq1u ` 1

t
?
t logpnqu

˙

ě 2t
?
t logpnqu`1 ą n

?
t.

But if n is not a power of p, from Lemma 8, |G| ď n
?
t. So,

n “ p1 “ p is prime.

Theorem 5
For input n, AKS algorithm returns PRIME if and only if n is
prime.

Arka Das PRIMES is in P 32 / 38



Running Time of AKS Algorithm

Before finding the running time of AKS algorithm, note that
for two m bit numbers,

1 addition can be performed in time Opmq “ rOpmq time.
(schoolbook addition)

2 multiplication can be performed in time Opm logpmqq “
rOpmq (Harvey-Hoeven algorithm)

3 division can be performed in time Opm logpmqq “ rOpmq

(Newton-Raphson division with Harvey-Hoeven algorithm
used for multiplication)

Proof.

Arka Das PRIMES is in P 33 / 38



Running Time of AKS Algorithm

Before finding the running time of AKS algorithm, note that
for two m bit numbers,
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2 multiplication can be performed in time Opm logpmqq “
rOpmq (Harvey-Hoeven algorithm)

3 division can be performed in time Opm logpmqq “ rOpmq

(Newton-Raphson division with Harvey-Hoeven algorithm
used for multiplication)

The same operations for two polynomials of degree ď d with
coefficients having m bits can be performed in time rOpd ¨ mq.

Proof.
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Running Time of AKS Algorithm

Input: n (an integer ą 1)

1 If (n “ ab for some a P N and b ą 1), output COMPOSITE;

2 Find the smallest r such that orpnq ą log2pnq.
3 If 1 ă gcdpa, nq ă n for some a P N with 1 ď a ď r, output COMPOSITE;
4 If n ď r, output PRIME;

5 For a “ 1 to t
a

ϕprq logpnqu do if ppX ` aqn ‰ Xn ` a (mod pXr ´ 1, nqqq, output
COMPOSITE;

6 output PRIME;

Theorem 6

The time complexity of AKS algorithm is rOplog21{2pnqq.

Proof.
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Running Time of AKS Algorithm

Input: n (an integer ą 1)

1 If (n “ ab for some a P N and b ą 1), output COMPOSITE;

Proof.

The first step of the algorithm takes time rOplog3pnqq [If n “

ab for some a, b ě 2, then b ď logpnq. Hence, for b “

2, 3, ..., tlogpnqu, use binary search to see if there is a ą 1
with n “ ab.]
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Running Time of AKS Algorithm

Input: n (an integer ą 1)

2 Find the smallest r such that orpnq ą log2pnq.

Proof.
In step 2, the algorithm needs to find an r with orpnq ą

log2pnq. This can be done by considering 1, 2, 3, ...
sequentially and checking if r takes that value by testing
if gcdpn, rq “ 1 and if nk ‰ 1 (mod rq for every 1 ď

k ď log2pnq. For a fixed r, this amounts to computing
at most Oplog2pnqq multiplications modulo r. So, for a
fixed r, it will take at most rOplog2pnq logprqq time. From
Lemma 4, there exists an r ď 3 log5pnq with orpnq ą

log2pnq. So, it is sufficient to check first 3 log5pnq numbers
for finding the desired r. Hence, overall it will take time
rOplog2pnq logplog5pnqq log5pnqq “ rOplog7pnqq.
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Running Time of AKS Algorithm

Input: n (an integer ą 1)
3 If 1 ă gcdpa, nq ă n for some a P N with 1 ď a ď r, output COMPOSITE;

Proof.
The third step requires computing gcd of r pairs of numbers.
Each gcd computation takes time at most Oplog2pnqq

(Euclidean algorithm). So, the time complexity of this step
is Opr log2pnqq “ Oplog7pnqq.
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Running Time of AKS Algorithm

Input: n (an integer ą 1)
4 If n ď r, output PRIME;

Proof.
The time complexity of step 4 is Oplogpnqq.
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Running Time of AKS Algorithm

Input: n (an integer ą 1)

5 For a “ 1 to t
a

ϕprq logpnqu do if ppX ` aqn ‰ Xn ` a (mod pXr ´ 1, nqqq, output
COMPOSITE;

Proof.
In step 5, the algorithm verifies at most t

a

ϕprq logpnqu

equations. Verifying each equation requires Oplogpnqq

multiplications of polynomials of degree ď r with coefficients
having ď logpnq ` 1 bits and then taking each product
modulo Xr ´ 1 and n. So, each equation can be verified
in time rOpr log2pnqq steps. Thus the time complexity of
step 5 is rOpr log2pnq

a

ϕprq logpnqq “ rOpr3{2 log3pnqq “

rOplog21{2pnqq as r ď 3 log5pnq.
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Improving Time Complexity Bound of AKS Algorithm

If either of Artin’s conjecture or Sophie-Germain Prime Density
Conjecture is true, then the time complexity of AKS algorithm
can be shown to be rOplog6pnqq.

Although Sophie-Germain Prime Density Conjecture has not
been proved, a related result was proved by Goldfeld and was
later improved by Fouvry. Fouvry’s result gives time complexity
rOplog15{2pnqq for AKS algorithm.
Lenstra and Pomerance later gave a modified version of AKS
algorithm, that runs in time rOplog6pnqq unconditionally.
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Thank You!
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Appendix A: Proof of LCM Lemma

Lemma 2
Let LCMpNq :“ lcmp1, 2, ..., Nq be the least common
multiple of first N natural numbers. Then for N ě 7,
LCMpNq ě 2N .

Proof.
The result holds for N “ 7, 8. Assume N ě 9. For
1 ď m ď n, consider the integral Im,n “

ş1

0
xm´1p1 ´

xqn´m “
řn´m

r“0 p´1qr
`

n´m
r

˘

1
m`r . Also, from beta function,

Im,n “ 1
mpn

mq
. As LCMpnqIm,n P Z, m

`

n
m

˘

divides LCMpnq.

So, n
`

2n
n

˘

and p2n ` 1q
`

2n
n

˘

“ pn ` 1q
`

2n`1
n`1

˘

both divides
LCMp2n`1q. So, LCMp2n`1q ě np2n`1q

`

2n
n

˘

ě n4n ě

22n`2 for n ě 4.
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Appendix B: Cyclotomic Polynomials over Finite Field

Let Fq be a finite field with characteristic p and let r be a
natural not divisible by p. Let the r-th cyclotomic polynomial
over FqpXq be QrpXq.
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Appendix B: Cyclotomic Polynomials over Finite Field

Let Fq be a finite field with characteristic p and let r be a
natural not divisible by p. Let the r-th cyclotomic polynomial
over FqpXq be QrpXq.

1 QrpXq P FqrXs.

Proof Sketch.
Let Q̃rpXq be the r-th cyclotomic polynomial over Q. From
Algebra II, we know that Q̃rpXq P ZrXs and has degree ϕprq.
Consider Q̃rpXq in FrXs. Note that Q̃rpXq divides Xr ´ 1
and hence, is separable. As Xr ´ 1 “

ś

d‌r Q̃dpXq, any root
of Q̃rpXq is a primitive r-th root of unity. Conversely, for a
primitive r-th root ξ P Fq, ξ is a root of Xr ´ 1 but for any
1 ď d ă r, ξ is not a root of Q̃dpXq (as it divides Xd ´ 1).
So, ξ is a root of Q̃rpXq. Hence, Q̃rpXq “ QrpXq.
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Appendix B: Cyclotomic Polynomials over Finite Field

Let Fq be a finite field with characteristic p and let r be a
natural not divisible by p. Let the r-th cyclotomic polynomial
over FqpXq be QrpXq.

2 QrpXq divides Xr ´ 1 in FqrXs.
Follows from the proof of (1).
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Appendix B: Cyclotomic Polynomials over Finite Field

Let Fq be a finite field with characteristic p and let r be a
natural not divisible by p. Let the r-th cyclotomic polynomial
over FqpXq be QrpXq.

3 Degree of QrpXq is ϕprq.
Follows from the proof of (1).
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Appendix B: Cyclotomic Polynomials over Finite Field

Let Fq be a finite field with characteristic p and let r be a
natural not divisible by p. Let the r-th cyclotomic polynomial
over FqpXq be QrpXq.

4 QrpXq factors into irreducible factors of degree orpqq in
FqrXs.

Proof Sketch.
If ξ P Fq be a root of QrpXq, the order of ξ in the
multiplicative group F˚

q is r. Note that if rFqpξq : Fqs “ s,
then Fqpξq has qs elements. As Fqpξq˚ is a multiplicative
group, ξq

s´1 “ 1. Conversely, the roots of the polynomial
Xqs

1
´1 ´ 1 “ 0 are precisely the non-zero elements of Fqs1 .

So, rFqpξq : Fqs is the smallest natural number s for which
Xqs´1´1 “ 0. Alternatively, it is the smallest natural number
s for which qs ´1 “ 0 (mod rq. So, rFqpξq : Fqs “ orpqq.
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