
Interactive Proofs

Or how I stopped worrying and learned to ask questions

Dhruva Kashyap, November 2022
Department of Computer Science and Automation, IISc, Bengaluru

What are proofs?

What are proofs?

● A proof tries to assert the correctness(or incorrectness) of a given statement

What are proofs?

● A proof tries to assert the correctness(or incorrectness) of a given statement

● A short sequence of logical statements which are either axiomatic or
consequences of previous statements in the sequence, which assert the
truthiness of the given statement.

What are proofs?

● A proof tries to assert the correctness(or incorrectness) of a given statement

● A short sequence of logical statements which are either axiomatic or
consequences of previous statements in the sequence, which assert the
truthiness of the given statement.

● If there is a correct proof, then the given statement is true

What are proofs?

● A proof tries to assert the correctness(or incorrectness) of a given statement

● A short sequence of logical statements which are either axiomatic or
consequences of previous statements in the sequence, which assert the
truthiness of the given statement.

● If there is a correct proof, then the given statement is true

● If there is no proof, then the given statement must be false

What are interactive proofs?

What are interactive proofs?

● We can model the concept of a proof as an interaction between a “prover”
and a “verifier”.

What are interactive proofs?

● We can model the concept of a proof as an interaction between a “prover”
and a “verifier”.

● The goal of a verifier is to assert the correctness of a statement.

What are interactive proofs?

● We can model the concept of a proof as an interaction between a “prover”
and a “verifier”.

● The goal of a verifier is to assert the correctness of a statement.

● A verifier interrogates the prover with questions related to a statement, prover
answers with intent to convince the verifier of the correctness of the statement

What are interactive proofs?

● We can model the concept of a proof as an interaction between a “prover”
and a “verifier”.

● The goal of a verifier is to assert the correctness of a statement.

● A verifier interrogates the prover with questions related to a statement, prover
answers with intent to convince the verifier of the correctness of the statement

How good is the prover?

What are interactive proofs?

● We can model the concept of a proof as an interaction between a “prover”
and a “verifier”.

● The goal of a verifier is to assert the correctness of a statement.

● A verifier interrogates the prover with questions related to a statement, prover
answers with intent to convince the verifier of the correctness of the statement

How good is the prover?
??

What are interactive proofs?

● We can model the concept of a proof as an interaction between a “prover”
and a “verifier”.

● The goal of a verifier is to assert the correctness of a statement.

● A verifier interrogates the prover with questions related to a statement, prover
answers with intent to convince the verifier of the correctness of the statement

How much interaction?

How good is the prover?
??

Interactive Proofs and Complexity Theory: Hiding behind Ǝ

Interactive Proofs and Complexity Theory: Hiding behind Ǝ

● Can we capture NP using an interactive proof? Yes!

Interactive Proofs and Complexity Theory: Hiding behind Ǝ

● Can we capture NP using an interactive proof? Yes!

● A poly-time machine asking a “machine” to provide a certificate.

Interactive Proofs and Complexity Theory: Hiding behind Ǝ

● Can we capture NP using an interactive proof? Yes!

● A poly-time machine asking a “machine” to provide a certificate.

Verifier

Interactive Proofs and Complexity Theory: Hiding behind Ǝ

● Can we capture NP using an interactive proof? Yes!

● A poly-time machine asking a “machine” to provide a certificate.

Verifier Prover

Interactive Proofs and Complexity Theory: Hiding behind Ǝ

● Can we capture NP using an interactive proof? Yes!

● A poly-time machine asking a “machine” to provide a certificate.

Verifier Prover

● Here, the verifier V, is a polynomial time Turing machine which takes strings
of a language L and outputs 1 if the string is in L or 0 otherwise.

Interactive Proofs and Complexity Theory: Hiding behind Ǝ

● Can we capture NP using an interactive proof? Yes!

● A poly-time machine asking a “machine” to provide a certificate.

Verifier Prover

● Here, the verifier V, is a polynomial time Turing machine which takes strings
of a language L and outputs 1 if the string is in L or 0 otherwise.

● The Prover P, is a function that maps strings to a certificate or “Sorry, not in
the language”.

Interactive Proofs and Complexity Theory: Trusting Strangers

Interactive Proofs and Complexity Theory: Trusting Strangers

● The verifier still has to verify the certificate!

Interactive Proofs and Complexity Theory: Trusting Strangers

● The verifier still has to verify the certificate!

● Provers are always trying to prove correctness, even if a statement is not
correct.

Interactive Proofs and Complexity Theory: Trusting Strangers

● The verifier still has to verify the certificate!

● Provers are always trying to prove correctness, even if a statement is not
correct.

● Even if the prover diligently says that there is no proof, the verifier cannot be
sure unless the verifier knows that the prover is all powerful.

Interactive Proof systems: The Protocol

Definition: Let f, g : {0, 1}* → {0, 1}* be functions. A k-round interaction of f and g on input x {0, 1}∈ *,
denoted by <f, g>(x) is the sequence of the following strings a1, . . . , ak {0, 1}∈ * defined as follows:

a1 = f (x)

a2 = g(x, a1)

. . .

a2i+1 = f (x, a1, . . . , a2i)

a2i+2 = g(x, a1, . . . , a2i+1)

The output of f at the end of the interaction, outf<f, g>(x), is defined to be

f(x, a1, . . . , ak)

Interactive Proof systems: The Protocol

Definition: Let f, g : {0, 1}* → {0, 1}* be functions. A k-round interaction of f and g on input x {0, 1}∈ *,
denoted by <f, g>(x) is the sequence of the following strings a1, . . . , ak {0, 1}∈ * defined as follows:

a1 = f (x)

a2 = g(x, a1)

. . .

a2i+1 = f (x, a1, . . . , a2i)

a2i+2 = g(x, a1, . . . , a2i+1)

The output of f at the end of the interaction, outf<f, g>(x), is defined to be

f(x, a1, . . . , ak)

Transcript

Interactive Proof systems

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

● The verifier starts

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

● The verifier starts

Obs 2: The prover must be all powerful

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

● The verifier starts

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

● The verifier starts

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

● Some sort of “efficient” TM

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

● The verifier starts

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

● Some sort of “efficient” TM

Obs 4: The transcript must be “short”

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

● The verifier starts

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

● Some sort of “efficient” TM

Obs 4: The transcript must be “short”

● From Obs 3, if the transcript is not short, the verifier cannot be efficient.

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

● The verifier starts

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

● Some sort of “efficient” TM

Obs 4: The transcript must be “short”

● From Obs 3, if the transcript is not short, the verifier cannot be efficient.

Obs 5: Both V and P have access to the input x

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

● The verifier starts

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

● Some sort of “efficient” TM

Obs 4: The transcript must be “short”

● From Obs 3, if the transcript is not short, the verifier cannot be efficient.

Obs 5: Both V and P have access to the input x

Deterministic poly-time?

Interactive Proof systems

Definition: Deterministic proof systems

For k ≥ 1, We say that a language L has a k-round deterministic interactive proof
system if there’s a deterministic poly-time TM V that on input x, a1, . . . , ai runs in
time polynomial in |x|, satisfying:

x L P : {0, 1}∈ ⇒ ∃ * → {0, 1}* outV <V, P>(x) = 1 (Completeness)

x L P : {0, 1}∉ ⇒ ∀ * → {0, 1}* outV <V, P>(x) = 0 (Soundness)

Interactive Proof systems

Image Credits: ProgVal, CC0, via Wikimedia Commons

Interactive Proof systems: dIP

Interactive Proof systems: dIP

● Obs: Since the verifier is poly-time, the transcript must be poly-size. Which
means the number of interactions can be at most poly-size.

Interactive Proof systems: dIP

● Obs: Since the verifier is poly-time, the transcript must be poly-size. Which
means the number of interactions can be at most poly-size.

● dIP is the set of all languages with poly(n)-round deterministic interactive
proof system.

Interactive Proof systems: dIP

● Obs: Since the verifier is poly-time, the transcript must be poly-size. Which
means the number of interactions can be at most poly-size.

● dIP is the set of all languages with poly(n)-round deterministic interactive
proof system.

● Can’t we define a class of constant round deterministic interactive proof
systems?

Where is dIP?

dIP?

EXPTIME

NEXPTIME

PSPACE

P#P

PH

NP co-NP

NC

P

Where is dIP?

● Claim: NP ⊆dIP

dIP?

EXPTIME

NEXPTIME

PSPACE

P#P

PH

NP co-NP

NC

P

Where is dIP?

● Claim: NP ⊆dIP

Proof: One round protocol for 3SAT,
where a prover returns a satisfying
assignment for the input if it exists.

dIP?

EXPTIME

NEXPTIME

PSPACE

P#P

PH

NP co-NP

NC

P

Where is dIP?

Where is dIP?

● Claim: dIP ⊆NP

Where is dIP?

● Claim: dIP ⊆NP

Proof: Consider a dIP system with P,V. Consider a poly-time verifier M, the entire
transcript of a deterministic interaction is a certificate.

Where is dIP?

● Claim: dIP ⊆NP

Proof: Consider a dIP system with P,V. Consider a poly-time verifier M, the entire
transcript of a deterministic interaction is a certificate.

M verifies that the output of each round from the verifier matches that in the
transcript by simulating V.

Where is dIP?

● Claim: dIP ⊆NP

Proof: Consider a dIP system with P,V. Consider a poly-time verifier M, the entire
transcript of a deterministic interaction is a certificate.

M verifies that the output of each round from the verifier matches that in the
transcript by simulating V.

It does not need to simulate P, as if a certificate exists, the string must be in the
language and a prover must exist which outputs matching values in the transcript.

Where is dIP?

● Claim: dIP ⊆NP

Proof: Consider a dIP system with P,V. Consider a poly-time verifier M, the entire
transcript of a deterministic interaction is a certificate.

M verifies that the output of each round from the verifier matches that in the
transcript by simulating V.

It does not need to simulate P, as if a certificate exists, the string must be in the
language and a prover must exist which outputs matching values in the transcript.

● Lemma: dIP = NP

Where is dIP? EXPTIME

NEXPTIME

PSPACE

P#P

PH

NP=dIP co-NP

NC

P

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

● The verifier starts

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

● Some sort of “efficient” TM

Obs 4: The transcript must be “short”

● From Obs 3, if the transcript is not short, the verifier cannot be efficient.

Obs 5: Both V and P have access to the input x

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

● The verifier starts

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

● Some sort of “efficient” TM

Obs 4: The transcript must be “short”

● From Obs 3, if the transcript is not short, the verifier cannot be efficient.

Obs 5: Both V and P have access to the input x

Probabilistic poly-time?

IP: Probabilistic Verifier

Definition [GMR ‘89]: Probabilistic Verifiers and IP

For k ≥ 1, we say that a language L has in IPTIME[k] if there’s a probabilistic poly-time
TM V that has a k-round interaction with P: {0,1}* →{0,1}* that on input x

x L P Pr∈ ⇒ ∃ r[outV <V, P>(x) = 1] ≥ 2/3 (Completeness)

x L P Pr∉ ⇒ ∀ r[outV <V, P>(x) = 1] ≤ 1/3 (Soundness)

The probabilities over the random bits r of V.

The class IP is defined as IP = Uc>0 IPTIME[nc]

P:BPP::NP:IP

P:BPP::NP:IP

● Lemma: We can boost the completeness and soundness probability by

P:BPP::NP:IP

● Lemma: We can boost the completeness and soundness probability by

1 - 2-n^c and 2-n^c respectively for some constant c.

P:BPP::NP:IP

● Lemma: We can boost the completeness and soundness probability by

1 - 2-n^c and 2-n^c respectively for some constant c.

Proof: Similar to boosting a BPP machine. Polynomially(nc) many
independent repetitions of protocol.

P:BPP::NP:IP

● Lemma: We can boost the completeness and soundness probability by

1 - 2-n^c and 2-n^c respectively for some constant c.

Proof: Similar to boosting a BPP machine. Polynomially(nc) many
independent repetitions of protocol.

Additionally, we can also do all repetitions in parallel by asking multiple
questions in each round, thereby decreasing the number of rounds.

Where is IP?
EXPTIME

NEXPTIME

PSPACE

P#P

PH

NP co-NP

P

IP?

NC

BPP*

RP

ZPP

co-RP

* somewhere in Σ2 П⋂ 2

What’s in IP?

● Clearly, NP is also in IP.

As dIP is in IP

● So is BPP

The verifier is a BPP machine that ignores the prover

NP

P

NC

IP

BPP*

RP

ZPP

co-RP

* somewhere in Σ2 П⋂ 2

How Big is IP?

How Big is IP?

● Graph isomorphism known to be in NP, hence in IP. Unclear whether non-
isomorphism is in NP, but an interactive proof exists.

How Big is IP?

● Graph isomorphism known to be in NP, hence in IP. Unclear whether non-
isomorphism is in NP, but an interactive proof exists.

● Graph non-isomorphism is defined as the following language

How Big is IP?

● Graph isomorphism known to be in NP, hence in IP. Unclear whether non-
isomorphism is in NP, but an interactive proof exists.

● Graph non-isomorphism is defined as the following language

NONISO = {(G1,G2) | G1 is not isomorphic to G2}

How Big is IP?

● Graph isomorphism known to be in NP, hence in IP. Unclear whether non-
isomorphism is in NP, but an interactive proof exists.

● Graph non-isomorphism is defined as the following language

NONISO = {(G1,G2) | G1 is not isomorphic to G2}

● Lemma: NONISO IP [GMW ‘91]∈

NONISO in IP: Private Coin Protocol

Private Coin Protocol

1. V randomly picks a graph between G1 and G2, say Gi. Randomly permute
vertices of Gi to make H. Send H to P and asks if H is isomorphic to G1 or G2

2. Prover tries to figure out whether H is isomorphic to G1 or G2, sends j {1,2} to V∈

3. V accepts if j==i.

NONISO in IP: Private Coin Protocol

1

3 4

2 1

2 4

3

G1 G2

NONISO in IP: Private Coin Protocol

1

3 4

2 1

2 4

3

G1 G2

V

NONISO in IP: Private Coin Protocol

1

3 4

2 1

2 4

3

G1 G2

1

2 4

3

HV

NONISO in IP: Private Coin Protocol

1

3 4

2 1

2 4

3

G1 G2

1

2 4

3

HV

P

NONISO in IP: Private Coin Protocol

1

3 4

2 1

2 4

3

G1 G2

1

2 4

3

HV

P

V

1

NONISO in IP: Private Coin Protocol

1

3 4

2 4

2 1

3

G1 G2

NONISO in IP: Private Coin Protocol

1

3 4

2 4

2 1

3

G1 G2

V

NONISO in IP: Private Coin Protocol

1

3 4

2 4

2 1

3

G1 G2

4

3 2

1

HV

NONISO in IP: Private Coin Protocol

1

3 4

2 4

2 1

3

G1 G2

4

3 2

1

HV

P

NONISO in IP: Private Coin Protocol

1

3 4

2 4

2 1

3

G1 G2

4

3 2

1

HV

P

V

2

NONISO in IP: Private Coin Protocol

NONISO in IP: Private Coin Protocol

● If G1 and G2 are not isomorphic, then the prover should be able to compare
every permutation of H with G1 and G2 to be able to answer correctly.

NONISO in IP: Private Coin Protocol

● If G1 and G2 are not isomorphic, then the prover should be able to compare
every permutation of H with G1 and G2 to be able to answer correctly.

● The probability of acceptance when the string is in the language is 1.
(Perfect Completeness)

NONISO in IP: Private Coin Protocol

● If G1 and G2 are not isomorphic, then the prover should be able to compare
every permutation of H with G1 and G2 to be able to answer correctly.

● The probability of acceptance when the string is in the language is 1.
(Perfect Completeness)

● If they are not isomorphic, the best the prover can do is to guess at
random. So the probability of acceptance when it isn’t in the language is ½.
We can decrease this be multiple repetitions.

What’s in IP?

● Clearly, NP is also in IP.

As dIP is in IP

● So is BPP

The verifier is a BPP machine that ignores the prover

● NONISO in IP

IP

NP

P

NC

BPP*

RP

ZPP

co-RP

* somewhere in Σ2 П⋂ 2

{NONISO}

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

Obs 4: The transcript must be “short”

Obs 5: Both V and P have access to the input x

Probabilistic poly-time.

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

Obs 4: The transcript must be “short”

Obs 5: Both V and P have access to the input x

Probabilistic poly-time.

Who starts?

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

Obs 4: The transcript must be “short”

Obs 5: Both V and P have access to the input x

Probabilistic poly-time.

Probabilistic?

Who starts?

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

Obs 4: The transcript must be “short”

Obs 5: Both V and P have access to the input x

Probabilistic poly-time.

Probabilistic?

Who starts?

What about random bits of V?

AM and MA: Public and Private coins

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.

Verifier starts

Prover starts

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.

We have already seen the set lower bound protocol, which was used to show
that graph non-isomorphism is in BP.NP

Verifier starts

Prover starts

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.

We have already seen the set lower bound protocol, which was used to show
that graph non-isomorphism is in BP.NP

● Theorem: BP.NP = AM Σ⊆ 3

Verifier starts

Prover starts

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.

We have already seen the set lower bound protocol, which was used to show
that graph non-isomorphism is in BP.NP

● Theorem: BP.NP = AM Σ⊆ 3

● Theorem [Babai ‘88]: AM[k] = AM[2] for constant k

Verifier starts

Prover starts

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.

We have already seen the set lower bound protocol, which was used to show
that graph non-isomorphism is in BP.NP

● Theorem: BP.NP = AM Σ⊆ 3

● Theorem [Babai ‘88]: AM[k] = AM[2] for constant k

● Theorem [GS ‘86]: AM[k] IP[k] AM[k+2] ⊆ ⊆ for polynomial k.

Verifier starts

Prover starts

What’s in IP?
IP

{NONISO}

AM*
* Somewhere in Σ3

MA
NP

P

NC

BPP*

RP

ZPP

co-RP

* somewhere in Σ2 П⋂ 2

Theorem: IP PSPACE⊆

Theorem: IP PSPACE⊆

Proof Idea: Since we restrict certificates to be poly-size, it’s easy to see that one
can use a PSPACE machine to run through all possible transcripts to simulate a
prover and calculate exactly the acceptance probability.

Theorem: IP PSPACE⊆

Proof Idea: Since we restrict certificates to be poly-size, it’s easy to see that one
can use a PSPACE machine to run through all possible transcripts to simulate a
prover and calculate exactly the acceptance probability.

Proof: Consider a language A in IP with a verifier V. Let the transcript be exactly of
size p = poly(n) for all inputs x of size n. We will construct a PSPACE machine M
which decides A.

Theorem: IP PSPACE⊆

Theorem: IP PSPACE⊆

Definition: For any string x, we define

Pr[V accepts x] = maxP Pr[<V,P> accepts x]

If x is in A, then it is at least ⅔ and at most ⅓ if it is not.

Theorem: IP PSPACE⊆

Definition: For any string x, we define

Pr[V accepts x] = maxP Pr[<V,P> accepts x]

If x is in A, then it is at least ⅔ and at most ⅓ if it is not.

Definition: Mj = m1,...,mj is the partial transcript upto length j. mi represents
the ith message.

Theorem: IP PSPACE⊆
Definition: For any string x, we define

Pr[V accepts x] = maxP Pr[<V,P> accepts x]

If x is in A, then it is at least ⅔ and at most ⅓ if it is not.

Definition: Mj = m1,...,mj is the partial transcript upto length j. mi represents
the ith message.

Definition: <V,P>(x,r,Mj) = accept, for a random string r of length p, if there exists
mj+1,..mp such that

1. For j ≤ i < p and i is even V(x,r,Mi) = mi+1

2. For j ≤ i < p and i is odd P(x,Mi) = mi+1

3. mp is accept

Theorem: IP PSPACE⊆

Theorem: IP PSPACE⊆

Obs: Using previous definitions,

Pr[<V,P> accepts x starting at Mj] = Pr[<V,P>(x,r,Mj) = accept] (1)

Pr[V accepts x starting at Mj] = maxP Pr[<V,P> accepts x starting at Mj] (2)

Theorem: IP PSPACE⊆

Obs: Using previous definitions,

Pr[<V,P> accepts x starting at Mj] = Pr[<V,P>(x,r,Mj) = accept] (1)

Pr[V accepts x starting at Mj] = maxP Pr[<V,P> accepts x starting at Mj] (2)

The goal is now to compute the probability of V accepting x starting from M0.
If this is greater than ⅔ then x must be in A, if it less than ⅓ then it must not
be in A. We do this recursively.

Theorem: IP PSPACE⊆

NM_ j = 0 if j = p and mp = reject

 = 1 if j = p and mp = accept

 = maxm_{j+1} NM_{j+1} odd j < p

 = wt-avgm_{j+1} NM_{j+1} even j<p

wt-avgm_{j+1} NM_{j+1} = ∑m_{j+1} ((Pr[V(w,r,Mj)=mj+1]) ・ NM_{j+1})

Theorem: IP PSPACE⊆

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

Claim 2: NM_j can be calculated in PSPACE

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

Claim 2: NM_j can be calculated in PSPACE

We need to prove the following 2 claims, with that the proof is complete.

Theorem: IP PSPACE⊆

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

Proof: We prove by top down induction.

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

Proof: We prove by top down induction.

Base case: j = p. The last message must be accept or reject. Hence, the
probability of acceptance when the last message is reject is 0 and when the last
message is accept, it is 1. This is exactly how NM_j is defined.

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

Proof: We prove by top down induction.

Base case: j = p. The last message must be accept or reject. Hence, the
probability of acceptance when the last message is reject is 0 and when the last
message is accept, it is 1. This is exactly how NM_j is defined.

Inductive step: Assume the claim to be true for some j+1 ≤ p. We have 2 cases,
one when j is even and when j is odd.

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

Proof: We prove by top down induction.

Base case: j = p. The last message must be accept or reject. Hence, the
probability of acceptance when the last message is reject is 0 and when the last
message is accept, it is 1. This is exactly how NM_j is defined.

Inductive step: Assume the claim to be true for some j+1 ≤ p. We have 2 cases,
one when j is even and when j is odd.

IH: NM_{j+1} = Pr[V accepts x starting at Mj+1]

Theorem: IP PSPACE⊆

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

When j is even, the message mj+1 is from V to P. From the definition of NM_j

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

When j is even, the message mj+1 is from V to P. From the definition of NM_j

NM_j = ∑m_{j+1} ((Pr[V(w,r,Mj) = mj+1]) ・ NM_{j+1})

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

When j is even, the message mj+1 is from V to P. From the definition of NM_j

NM_j = ∑m_{j+1} ((Pr[V(w,r,Mj) = mj+1]) ・ NM_{j+1})

From the Induction hypothesis, we can conclude

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

When j is even, the message mj+1 is from V to P. From the definition of NM_j

NM_j = ∑m_{j+1} ((Pr[V(w,r,Mj) = mj+1]) ・ NM_{j+1})

From the Induction hypothesis, we can conclude

NM_j = ∑m_{j+1} ((Pr[V(w,r,Mj) = mj+1]) ・ Pr[V accepts x starting at Mj+1])

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

When j is even, the message mj+1 is from V to P. From the definition of NM_j

NM_j = ∑m_{j+1} ((Pr[V(w,r,Mj) = mj+1]) ・ NM_{j+1})

From the Induction hypothesis, we can conclude

NM_j = ∑m_{j+1} ((Pr[V(w,r,Mj) = mj+1]) ・ Pr[V accepts x starting at Mj+1])

This is the total probability partitioned over all possible messages mj+1. Hence,

Theorem: IP PSPACE⊆

Claim 1: NM_j = Pr[V accepts x starting at Mj]

When j is even, the message mj+1 is from V to P. From the definition of NM_j

NM_j = ∑m_{j+1} ((Pr[V(w,r,Mj) = mj+1]) ・ NM_{j+1})

From the Induction hypothesis, we can conclude

NM_j = ∑m_{j+1} ((Pr[V(w,r,Mj) = mj+1]) ・ Pr[V accepts x starting at Mj+1])

This is the total probability partitioned over all possible messages mj+1. Hence,

NM_j = Pr[V accepts x starting at Mj]

Theorem: IP PSPACE⊆

When j is odd, the message mj+1 is from P to V. From the definition of NM_j

NM_j = maxm_{j+1} NM_{j+1}

NM_j = maxm_{j+1} Pr[V accepts x starting at Mj+1]

 = maxm_{j+1} maxP’ Pr[<V,P’>(x,r,Mj+1) = accept]

1… ≤ maxP Pr[<V,P> accepts x starting at Mj], P can send the maximizing m*
j+1

2… ≥ maxP Pr[<V,P> accepts x starting at Mj], P cannot be better than P’

Therefore,

NM_j = Pr[V accepts x starting at Mj]

Theorem: IP PSPACE⊆

Claim 2: NM_j can be calculated in PSPACE

From the above proof, it also clear that these values can be calculated in PSPACE
recursively. The depth of the recursion would be p. M calculates NM_j for every j
and Mj.

☐

PSPACEWhere is IP?
IP

{NONISO}

AM*
* Somewhere in Σ3

MA
NP

P

NC

BPP*

RP

ZPP

co-RP

* somewhere in Σ2 П⋂ 2

co-NP IP?⊆

co-NP IP?⊆

● One way to show PH IP, is to show a PH-complete problem is in IP⊆

co-NP IP?⊆

● One way to show PH IP, is to show a PH-complete problem is in IP⊆

Doesn’t exit(as far as we know)

co-NP IP?⊆

● One way to show PH IP, is to show a PH-complete problem is in IP⊆

Doesn’t exit(as far as we know)

● Or, show every Σi-SAT is in IP

co-NP IP?⊆

● One way to show PH IP, is to show a PH-complete problem is in IP⊆

Doesn’t exit(as far as we know)

● Or, show every Σi-SAT is in IP

● We can prove P#P IP if #3SAT is in IP, would automatically imply PH is in IP ⊆
by Toda’s theorem

co-NP IP?⊆

● One way to show PH IP, is to show a PH-complete problem is in IP⊆

Doesn’t exit(as far as we know)

● Or, show every Σi-SAT is in IP

● We can prove P#P IP if #3SAT is in IP, would automatically imply PH is in IP ⊆
by Toda’s theorem

● Proven by [LFKN ‘92]

#3SAT Prerequisites

● Definition: #3SAT

#3SAT = {(ɸ,k)| where ɸ is a 3CNF with exactly k satisfying assignments}

#ɸ is the number of satisfying assignments of 3CNF ɸ

Say ɸ(x1,...xn), then

#ɸ = Σb_1 {0,1}∈ Σb_2 {0,1}∈ ...Σb_n {0,1} ∈ ɸ(b1,...bn)

ɸ(b1,...bn) = 1 if b1…bn is a satisfying assignment, 0 otherwise

We define #ɸ(a1,...ai-1) as

#ɸ(a1,...ai-1) = Σb_i∈{0,1}...Σb_n∈{0,1}ɸ(a1,...,ai-1,bi,...,bn)

#3SAT Prerequisites

Observation*: #ɸ(a1,...ai-1) = #ɸ(a1,...ai-1,0) + #ɸ(a1,...ai-1,1)

#ɸ(a1,...ai-1) = Σb_i∈{0,1}...Σb_n∈{0,1}ɸ(a1,...,ai-1,bi,...,bn)

= Σb_{i+1} {0,1}∈ ...Σb_n {0,1}∈ ɸ(a1,...,ai-1,0,...,bn) + Σb_{i+1} {0,1}∈ ...Σb_n {0,1}∈ ɸ(a1,...,ai-1,1,...,bn)

= #ɸ(a1,...ai-1,0) + #ɸ(a1,...ai-1,1)

#3SAT IP? [Attempt 1]⊆

#3SAT IP? [Attempt 1]⊆
Say the input is (ɸ,K). The verifier has to check whether ɸ indeed has K satisfying
assignments. Try to verify observation*

#3SAT IP? [Attempt 1]⊆
Say the input is (ɸ,K). The verifier has to check whether ɸ indeed has K satisfying
assignments. Try to verify observation*

1. Step 0: Verifier sends ɸ to the Prover and asks for number of satisfying
assignments to ɸ

#3SAT IP? [Attempt 1]⊆
Say the input is (ɸ,K). The verifier has to check whether ɸ indeed has K satisfying
assignments. Try to verify observation*

1. Step 0: Verifier sends ɸ to the Prover and asks for number of satisfying
assignments to ɸ

2. Step 1: Prover sends K

#3SAT IP? [Attempt 1]⊆
Say the input is (ɸ,K). The verifier has to check whether ɸ indeed has K satisfying
assignments. Try to verify observation*

1. Step 0: Verifier sends ɸ to the Prover and asks for number of satisfying
assignments to ɸ

2. Step 1: Prover sends K
3. Step 2: Verifier sets x1 to 0 in ɸ (ɸ1) and x1 to 1(ɸ2) and evaluates ɸ1 and ɸ2

and asks the verifier for #ɸ1 and #ɸ2

#3SAT IP? [Attempt 1]⊆
Say the input is (ɸ,K). The verifier has to check whether ɸ indeed has K satisfying
assignments. Try to verify observation*

1. Step 0: Verifier sends ɸ to the Prover and asks for number of satisfying
assignments to ɸ

2. Step 1: Prover sends K
3. Step 2: Verifier sets x1 to 0 in ɸ (ɸ1) and x1 to 1(ɸ2) and evaluates ɸ1 and ɸ2

and asks the verifier for #ɸ1 and #ɸ2

4. Step 3: Prover sends k1 and k2

#3SAT IP? [Attempt 1]⊆
Say the input is (ɸ,K). The verifier has to check whether ɸ indeed has K satisfying
assignments. Try to verify observation*

1. Step 0: Verifier sends ɸ to the Prover and asks for number of satisfying
assignments to ɸ

2. Step 1: Prover sends K
3. Step 2: Verifier sets x1 to 0 in ɸ (ɸ1) and x1 to 1(ɸ2) and evaluates ɸ1 and ɸ2

and asks the verifier for #ɸ1 and #ɸ2

4. Step 3: Prover sends k1 and k2

5. Step 4: Verifier verifies that K = k1 + k2

#3SAT IP? [Attempt 1]⊆
Say the input is (ɸ,K). The verifier has to check whether ɸ indeed has K satisfying
assignments. Try to verify observation*

1. Step 0: Verifier sends ɸ to the Prover and asks for number of satisfying
assignments to ɸ

2. Step 1: Prover sends K
3. Step 2: Verifier sets x1 to 0 in ɸ (ɸ1) and x1 to 1(ɸ2) and evaluates ɸ1 and ɸ2

and asks the verifier for #ɸ1 and #ɸ2

4. Step 3: Prover sends k1 and k2

5. Step 4: Verifier verifies that K = k1 + k2

6. Repeat by setting each variable xi to 0 and 1 and verifying

#3SAT IP? [Attempt 1]⊆
Say the input is (ɸ,K). The verifier has to check whether ɸ indeed has K satisfying
assignments. Try to verify observation*

1. Step 0: Verifier sends ɸ to the Prover and asks for number of satisfying assignments
to ɸ

2. Step 1: Prover sends K
3. Step 2: Verifier sets x1 to 0 in ɸ (ɸ1) and x1 to 1(ɸ2) and evaluates ɸ1 and ɸ2 and asks

the verifier for #ɸ1 and #ɸ2

4. Step 3: Prover sends k1 and k2

5. Step 4: Verifier verifies that K = k1 + k2

6. Repeat by setting each variable xi to 0 and 1 and verifying
7. Step ??: Once all variables have been set, Verifier asks the prover the number of

satisfying assignments and also verifies the answer by itself.

#3SAT IP? [Attempt 1]⊆

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn) K

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,..xn)

K

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,..xn)

K

k1

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

K

k1

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

K

k2k1

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

K

k2k1
K=k1+k2?

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn)

K

k2k1
K=k1+k2?

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn)

K

k2k1

k4 k5

K=k1+k2?

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn)

K

k2k1

k4 k5

K=k1+k2?

k1=k4+k5?

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn) ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k4 k5

K=k1+k2?

k1=k4+k5?

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn) ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k4 k6 k7k5

K=k1+k2?

k1=k4+k5?

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn) ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k4 k6 k7k5

K=k1+k2?

k1=k4+k5? k2=k6+k7?

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn) ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k4 k6 k7k5

… …
… …

K=k1+k2?

k1=k4+k5? k2=k6+k7?

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn) ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k4 k6 k7k5

… …
… …

ɸ(0,0,..0) 1

K=k1+k2?

k1=k4+k5? k2=k6+k7?

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn) ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k4 k6 k7k5

… …
… …

ɸ(0,0,..0) 1

K=k1+k2?

k1=k4+k5? k2=k6+k7?

ɸ(0,0,..0)=1 == 1

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn) ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k4 k6 k7k5

… …
… …

ɸ(0,0,..0) ɸ(0,1,..1)1 0

K=k1+k2?

k1=k4+k5? k2=k6+k7?

ɸ(0,0,..0)=1 == 1

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn) ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k4 k6 k7k5

… …
… …

ɸ(0,0,..0) ɸ(0,1,..1)1 0

K=k1+k2?

k1=k4+k5? k2=k6+k7?

ɸ(0,0,..0)=1 == 1 ɸ(0,1,..1)=0 == 0

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn) ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k4 k6 k7k5

… …
… …

ɸ(0,0,..0) ɸ(0,1,..1) ɸ(1,0,..1)1 0 1

K=k1+k2?

k1=k4+k5? k2=k6+k7?

ɸ(0,0,..0)=1 == 1 ɸ(0,1,..1)=0 == 0

#3SAT IP? [Attempt 1]⊆

ɸ(x1,..xn)

ɸ(0,0,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(0,1,..xn) ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k4 k6 k7k5

… …
… …

ɸ(0,0,..0) ɸ(0,1,..1) ɸ(1,0,..1)1 0 1

K=k1+k2?

k1=k4+k5? k2=k6+k7?

ɸ(0,0,..0)=1 == 1 ɸ(0,1,..1)=0 == 0 ɸ(1,0,..1)=0 != 1

#3SAT IP? [Attempt 1]⊆

#3SAT IP? [Attempt 1]⊆

Problem: Requires exponential rounds of interaction to enumerate over all
assignments

#3SAT IP? [Attempt 1]⊆

Problem: Requires exponential rounds of interaction to enumerate over all
assignments

Issues: We are not using the probabilistic nature of the verifier

#3SAT IP? [Attempt 1]⊆

Problem: Requires exponential rounds of interaction to enumerate over all
assignments

Issues: We are not using the probabilistic nature of the verifier

Idea: Randomly choose a path in the tree

#3SAT IP? [Attempt 2]⊆

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn) K

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

ɸ(0,..xn)

K

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

ɸ(0,..xn)

K

k1

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

K

k1

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

K

k2k1

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

K

k2k1
K=k1+k2?

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1
K=k1+k2?

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k6 k7

K=k1+k2?

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k6 k7

K=k1+k2?

k2=k6+k7?

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k6 k7

…

K=k1+k2?

k2=k6+k7?

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k6 k7

…

ɸ(1,0,..1) 1

K=k1+k2?

k2=k6+k7?

#3SAT IP? [Attempt 2]⊆

ɸ(x1,..xn)

ɸ(1,..xn)ɸ(0,..xn)

ɸ(1,0,..xn) ɸ(1,1,..xn)

K

k2k1

k6 k7

…

ɸ(1,0,..1) 1

K=k1+k2?

k2=k6+k7?

ɸ(1,0,..1)=0 != 1

#3SAT IP? [Attempt 2]⊆

#3SAT IP? [Attempt 2]⊆

● Clearly, we may accidentally accept the wrong value.

#3SAT IP? [Attempt 2]⊆

● Clearly, we may accidentally accept the wrong value.

● What if k1 was not actually the number of satisfying assignments of ɸ1 and k2
is correct and we decide to go down k2. How lucky can the prover get?

#3SAT IP? [Attempt 2]⊆

● Clearly, we may accidentally accept the wrong value.

● What if k1 was not actually the number of satisfying assignments of ɸ1 and k2
is correct and we decide to go down k2. How lucky can the prover get?

#3SAT IP? [Attempt 2]⊆

● Clearly, we may accidentally accept the wrong value.

● What if k1 was not actually the number of satisfying assignments of ɸ1 and k2
is correct and we decide to go down k2. How lucky can the prover get?

● The probability that the prover actually gets caught is 2-n. We need to catch
every wrong branch at every step.

#3SAT IP? [Attempt 2]⊆

● Clearly, we may accidentally accept the wrong value.

● What if k1 was not actually the number of satisfying assignments of ɸ1 and k2 is correct
and we decide to go down k2. How lucky can the prover get?

● The probability that the prover actually gets caught is 2-n. We need to catch every wrong
branch at every step.

● So, we always accept when the number of satisfying assignments are correct, but we
will also accept when it is incorrect with probability 1 - 2-n.

Boolean is F2

Boolean is F2

Every boolean formula can be expressed as a polynomial over elements of F2

We use the following trick:

a Λ b ab☰

a V b 1 - (1-a)(1-b) a + b - ab☰ ☰

ㄱ a (1-a)☰

 True 1☰

False 0☰

Example:

(x1V x3V ㄱ x4) (x☰ 1+ x3 - x1x3) + (1-x4) - (x1+ x3 - x1x3)(1-x4)

Boolean is F2

Boolean is F2

● We are now able to express a boolean formula ɸ as a polynomial Pɸ

Boolean is F2

● We are now able to express a boolean formula ɸ as a polynomial Pɸ

● The degree of each clause will be at most 3, as ɸ is a 3CNF, and the net
degree will be at most 3m where there are m clauses in ɸ.

Boolean is F2

● We are now able to express a boolean formula ɸ as a polynomial Pɸ

● The degree of each clause will be at most 3, as ɸ is a 3CNF, and the net
degree will be at most 3m where there are m clauses in ɸ.

● The size of the polynomial will also be bound polynomial in the size of ɸ as we
don’t need to expand the terms

Boolean is F2

We can restate our equations as follows, where Xis are now formal variables

#ɸ = Σb_1 {0,1}∈ Σb_2 {0,1}∈ ...Σb_n {0,1} ∈ Pɸ(b1,...bn)

#ɸ(X1,...Xi-1) = Σb_i {0,1}∈ ...Σb_n {0,1}∈ Pɸ(X1,...,Xi-1,bi,...,bn)

#ɸ(X1,...Xi) = #ɸ(X1,...Xi-1,0) + #ɸ(X1,...Xi-1,1)

Theorem[LFKN ‘92]: #3SAT∈IP

Theorem[LFKN ‘92]: #3SAT∈IP

Key Idea: Arithmetization

Theorem[LFKN ‘92]: #3SAT∈IP

Key Idea: Arithmetization

None of the previous definitions are impacted if we moved from F2 to Fp as
long as p is a suitably large prime

Theorem[LFKN ‘92]: #3SAT∈IP

Key Idea: Arithmetization

None of the previous definitions are impacted if we moved from F2 to Fp as
long as p is a suitably large prime

Once we do that, we can plug in any element in Fp into our polynomial

Theorem[LFKN ‘92]: #3SAT∈IP

Theorem[LFKN ‘92]: #3SAT∈IP

● How large should p be?

Theorem[LFKN ‘92]: #3SAT∈IP

● How large should p be?

The number of satisfying assignments can be at most 2n, therefore, we can chose
a prime between 2n and 22n.

Theorem[LFKN ‘92]: #3SAT∈IP

● How large should p be?

The number of satisfying assignments can be at most 2n, therefore, we can chose
a prime between 2n and 22n.

We ask the prover to provide this prime at the start of the protocol and the verifier
can verify primalty in polynomial time.

Sumcheck protocol

A generic protocol to verify equations of the form

K = Σb_1 {0,1}∈ ...Σb_n {0,1} ∈ g(X1,...Xn) … eq(1)

Where g is any polynomial of small size and which can be evaluated in polynomial
time.

Sumcheck protocol

A generic protocol to verify equations of the form

K = Σb_1 {0,1}∈ ...Σb_n {0,1} ∈ g(X1,...Xn) … eq(1)

Where g is any polynomial of small size and which can be evaluated in polynomial
time.

Obs: Pɸ is a degree 3m polynomial it’s size is of the order of the size of ɸ. It can
also be easily evaluated in the same way we evaluate formulas on
assignments. So we can use the sumcheck protocol.

Sumcheck protocol

Sumcheck protocol

Obs: h(X1) = Σb_2 {0,1}∈ ...Σb_n {0,1} ∈ g(X1,b2,...bn)

Sumcheck protocol

Obs: h(X1) = Σb_2 {0,1}∈ ...Σb_n {0,1} ∈ g(X1,b2,...bn)

Is a univariate polynomial of degree at most m in the variable X1.

Sumcheck protocol

Obs: h(X1) = Σb_2 {0,1}∈ ...Σb_n {0,1} ∈ g(X1,b2,...bn)

Is a univariate polynomial of degree at most m in the variable X1.

If eq(1) is true, then h(0) + h(1) = K

Sumcheck protocol

Obs: h(X1) = Σb_2 {0,1}∈ ...Σb_n {0,1} ∈ g(X1,b2,...bn)

Is a univariate polynomial of degree at most m in the variable X1.

If eq(1) is true, then h(0) + h(1) = K

The input to the protocol would be a polynomial g(X1,...,Xn) and K.

Sumcheck protocol

Obs: h(X1) = Σb_2 {0,1}∈ ...Σb_n {0,1} ∈ g(X1,b2,...bn)

Is a univariate polynomial of degree at most m in the variable X1.

If eq(1) is true, then h(0) + h(1) = K

The input to the protocol would be a polynomial g(X1,...,Xn) and K.

Obs: g can be evaluated in polynomial time, however h cannot even be computed
in polynomial time

Sumcheck protocol
Input: g(X1,...Xn), K

V: if n = 1, verify K = g(0) + g(1)

V: It asks the prover to send a polynomial h, as defined previously, a polynomial in X1

P: sends a polynomial s

V: verify that s(0) + s(1) = K. Selects a random element from Fp, say a. It calculates
s(a).

Recursively solve with the input as

g(a,X2,...Xn) and s(a).

Sumcheck protocol

Sumcheck protocol

g(X1,..Xn)

Sumcheck protocol

g(X1,..Xn)

Sumcheck protocol

g(X1,..Xn)

s1(X1)

Sumcheck protocol

g(X1,..Xn)

s1(X1)

Sumcheck protocol

g(X1,..Xn)

s1(X1)
s1(0)+s1(1) == K

Sumcheck protocol

g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s1(0)+s1(1) == K

Sumcheck protocol

g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s1(0)+s1(1) == K

Sumcheck protocol

g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s2(X2)

s1(0)+s1(1) == K

Sumcheck protocol

g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s2(X2)

s1(0)+s1(1) == K

Sumcheck protocol

g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s2(X2)

s1(0)+s1(1) == K

s2(0)+s2(1) == s1(a1)

Sumcheck protocol

g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s2(X2)

g(a1,a2,...Xn)

s1(0)+s1(1) == K

s2(0)+s2(1) == s1(a1)

Sumcheck protocol

g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s2(X2)

g(a1,a2,...Xn)

…

s1(0)+s1(1) == K

s2(0)+s2(1) == s1(a1)

Sumcheck protocol

g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s2(X2)

g(a1,a2,...Xn)

…

sn(Xn)

s1(0)+s1(1) == K

s2(0)+s2(1) == s1(a1)

Sumcheck protocol

g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s2(X2)

g(a1,a2,...Xn)

…

sn(Xn)

s1(0)+s1(1) == K

s2(0)+s2(1) == s1(a1)

Sumcheck protocol

g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s2(X2)

g(a1,a2,...Xn)

…

sn(Xn)

s1(0)+s1(1) == K

s2(0)+s2(1) == s1(a1)

sn(0)+sn(1) == sn-1(an-1)

Sumcheck protocol

g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s2(X2)

g(a1,a2,...Xn)

…

sn(Xn)

g(a1,a2,...an) == sn(an)

s1(0)+s1(1) == K

s2(0)+s2(1) == s1(a1)

sn(0)+sn(1) == sn-1(an-1)

Analysis of protocol

Analysis of protocol

● Sending univariate polynomials is sending d numbers where d is the degree
of the polynomial.

Analysis of protocol

● Sending univariate polynomials is sending d numbers where d is the degree
of the polynomial.

● If eq(1) is true, then the prover sends the correct polynomial h in the first
round, ie, s1 = h. So we will never reject a correct string. (Perfect
completeness)

Analysis of protocol

● Sending univariate polynomials is sending d numbers where d is the degree
of the polynomial.

● If eq(1) is true, then the prover sends the correct polynomial h in the first
round, ie, s1 = h. So we will never reject a correct string. (Perfect
completeness)

● How lucky does the prover need to be for the verifier to accept an incorrect
string?

Analysis of Error bound

Analysis of Error bound

What is the probability over a that s(a)=h(a) for 2 univariate polynomials s and h?

Analysis of Error bound

What is the probability over a that s(a)=h(a) for 2 univariate polynomials s and h?

From the Schwartz-Zippel lemma, we have a bound on this number

Analysis of Error bound

What is the probability over a that s(a)=h(a) for 2 univariate polynomials s and h?

From the Schwartz-Zippel lemma, we have a bound on this number

Pra[s(a)-h(a)=0] ≤ d/p

Analysis of Error bound

What is the probability over a that s(a)=h(a) for 2 univariate polynomials s and h?

From the Schwartz-Zippel lemma, we have a bound on this number

Pra[s(a)-h(a)=0] ≤ d/p

Where d is the degree of the difference polynomial and p is the size of the field.

Analysis of Error bound

What is the probability over a that s(a)=h(a) for 2 univariate polynomials s and h?

From the Schwartz-Zippel lemma, we have a bound on this number

Pra[s(a)-h(a)=0] ≤ d/p

Where d is the degree of the difference polynomial and p is the size of the field.

Thus, the probability that at any step, the prover is caught is at least 1-d/p.
Therefore, applying the union bound, the probability that the prover is never
caught is (d*n/p)

Analysis of Error bound

What is the probability over a that s(a)=h(a) for 2 univariate polynomials s and h?

From the Schwartz-Zippel lemma, we have a bound on this number

Pra[s(a)-h(a)=0] ≤ d/p

Where d is the degree of the difference polynomial and p is the size of the field.

Thus, the probability that at any step, the prover is caught is at least 1-d/p.
Therefore, applying the union bound, the probability that the prover is never
caught is (d*n/p)

Therefore the error probability is less than 3n2/2n which is less than ⅓ for n>9

PSPACE

P#P

PH

What’s in IP?

BPP

RP

ZPP

co-RP
P

NC

AM

MA
co-NP

IP

NP

TQBF IP?⊆

Definition: TQBF

TQBF = { Ψ = Q1x1…Qnxn ɸ(x1,...xn) | Ψ = True, Qi in { , }, boolean formula ɸ}∃ ∀

Ψ = x∀ 1, x∃ 2, x∀ 3… x∃ n ɸ(x1,...xn) TQBF iff∈

Πb_1 {0,1}∈ Σb_2 {0,1}∈ Πb_3 {0,1}∈ ...Σb_n {0,1} ∈ Pɸ(b1,...bn) = 1

Where Pɸ is the polynomial as defined before over F2

Sumcheck Protocol?

Sumcheck Protocol?

● How do we modify the sumcheck protocol for TQBF?

Sumcheck Protocol?

● How do we modify the sumcheck protocol for TQBF?

Obs 1: Add over ∃

Sumcheck Protocol?

● How do we modify the sumcheck protocol for TQBF?

Obs 1: Add over ∃

As for 3SAT, when we need a univariate polynomial over a variable quantified by , ∃
we must check the additivity, i.e, s(0)+s(1) = K

Sumcheck Protocol?

● How do we modify the sumcheck protocol for TQBF?

Obs 1: Add over ∃

As for 3SAT, when we need a univariate polynomial over a variable quantified by , ∃
we must check the additivity, i.e, s(0)+s(1) = K

Obs 2: Multiply over ∀

Sumcheck Protocol?

● How do we modify the sumcheck protocol for TQBF?

Obs 1: Add over ∃

As for 3SAT, when we need a univariate polynomial over a variable quantified by , ∃
we must check the additivity, i.e, s(0)+s(1) = K

Obs 2: Multiply over ∀

When we have a univariate polynomial over a variable quantified by , we must ∀
check multiplicity, i.e, s(0) ∙ s(1) = K

Sumcheck Protocol?

● Unlike adding polynomials, multiplying polynomials increase the degree

● If we define h(X1) as defined previously:

h(X1) = Σb_2 {0,1}∈ Πb_3={0,1}...Σb_n {0,1} ∈ Pɸ(X1,...bn)

This can have degree at most 2n. Which cannot be sent from the prover to the
verifier.

Obs:

xk = x in F2 for any k > 0

Linearization

Obs:

xk = x in F2 for any k > 0

Linearization

Obs:

xk = x in F2 for any k > 0

Any polynomial p(X1,...Xn) can be converted to a multilinear polynomial q(X1,...Xn)
where

1. The degree of any variable in any term of q is at most 1

2. p(a1,...an) = q(a1,...an) for any a1…an {0,1}∈

Linearization

Definition: Linearization operator L

Li(p) = Xi ∙ p(X1,...,Xi-1,1,Xi+1,...Xn) + (1-Xi) ∙ p(X1,...,Xi-1,0,Xi+1,...Xn)

Defines a new polynomial such that

1. Degree of Xi in Li(p) is at most 1
2. Li(p) gives the same values as p for all binary inputs

Obs: q = L1(L2(...Ln(p)...)))

Linearization

Definition: operator for polynomials∀

∀i p(X1,...Xn) = p(X1,...,Xi-1,0,Xi+1,...Xn) ∙ p(X1,...,Xi-1,1,Xi+1,...Xn)

Definition: operator for polynomials∃

∃i p(X1,...Xn) = p(X1,...,Xi-1,0,Xi+1,...Xn) + p(X1,...,Xi-1,1,Xi+1,...Xn)

Linearization

Linearization
Original polynomial:

Linearization
Original polynomial:

Πb_1 {0,1}∈ Σb_2 {0,1}∈ Πb_3 {0,1}∈ ...Σb_n {0,1} ∈ Pɸ(b1,...bn) = 1

Linearization
Original polynomial:

Πb_1 {0,1}∈ Σb_2 {0,1}∈ Πb_3 {0,1}∈ ...Σb_n {0,1} ∈ Pɸ(b1,...bn) = 1

Can be equivalently rewritten as

Linearization
Original polynomial:

Πb_1 {0,1}∈ Σb_2 {0,1}∈ Πb_3 {0,1}∈ ...Σb_n {0,1} ∈ Pɸ(b1,...bn) = 1

Can be equivalently rewritten as

∀1∃2∀3…∃nPɸ(X1,...Xn) = 1

Linearization
Original polynomial:

Πb_1 {0,1}∈ Σb_2 {0,1}∈ Πb_3 {0,1}∈ ...Σb_n {0,1} ∈ Pɸ(b1,...bn) = 1

Can be equivalently rewritten as

∀1∃2∀3…∃nPɸ(X1,...Xn) = 1

Since we only care about using {0,1} to Pɸ(X1,...Xn), we do not lose semantics by
adding linearization operators in between,

Linearization
Original polynomial:

Πb_1 {0,1}∈ Σb_2 {0,1}∈ Πb_3 {0,1}∈ ...Σb_n {0,1} ∈ Pɸ(b1,...bn) = 1

Can be equivalently rewritten as

∀1∃2∀3…∃nPɸ(X1,...Xn) = 1

Since we only care about using {0,1} to Pɸ(X1,...Xn), we do not lose semantics by
adding linearization operators in between,

∀1L1 ∃2L1L2 ∀3…∃nL1L2…LnPɸ(X1,...Xn) = 1

Linearization
Original polynomial:

Πb_1 {0,1}∈ Σb_2 {0,1}∈ Πb_3 {0,1}∈ ...Σb_n {0,1} ∈ Pɸ(b1,...bn) = 1

Can be equivalently rewritten as

∀1∃2∀3…∃nPɸ(X1,...Xn) = 1

Since we only care about using {0,1} to Pɸ(X1,...Xn), we do not lose semantics by
adding linearization operators in between,

∀1L1 ∃2L1L2 ∀3…∃nL1L2…LnPɸ(X1,...Xn) = 1

The size of this expression is increased due to the addition of the linearization
operator. The size will then be O(n+1+2+...+n+|Pɸ|), which is still poly-size

Modified Sumcheck protocol

Modified Sumcheck protocol

Consider a polynomial g(X1,...Xn), we need to check whether

Modified Sumcheck protocol

Consider a polynomial g(X1,...Xn), we need to check whether

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn) = 1

Modified Sumcheck protocol

Consider a polynomial g(X1,...Xn), we need to check whether

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn) = 1

Input: R1R2…Rtg(X1,...Xn) where R represents one of the 3 operators, t is poly(n)
and a claim C.

Modified Sumcheck protocol

Consider a polynomial g(X1,...Xn), we need to check whether

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn) = 1

Input: R1R2…Rtg(X1,...Xn) where R represents one of the 3 operators, t is poly(n)
and a claim C.

TQBF: g would be Pɸ, t would be o(n3), and C would be 1

Modified Sumcheck protocol

V: provide a polynomial equal to R2…Rtg(X1,...Xn)

P: returns a polynomial s(X1)

V: 1) If R1 = ∃1 verify that s(0) + s(1) = C

 2) If R1 = ∀1 verify that s(0) ∙ s(1) = C

 3) If R1 = L1 and verify that a ∙ s(1) + (1-a) ∙ s(0) = s(a)

If all checks pass, pick a random element a, recursively prove that the polynomial
R2…Rtg(a,...Xn) = s(a)

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)
s1(0) ∙ s1(1) == C

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s1(0) ∙ s1(1) == C

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s1(0) ∙ s1(1) == C

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

s1(0) ∙ s1(1) == C

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

s1(0) ∙ s1(1) == C

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

∃2L1L2 ∀3…∃nL1L2…Lng(a1,a2,...Xn)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

∃2L1L2 ∀3…∃nL1L2…Lng(a1,a2,...Xn)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

∃2L1L2 ∀3…∃nL1L2…Lng(a1,a2,...Xn)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

s3(X2)

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

∃2L1L2 ∀3…∃nL1L2…Lng(a1,a2,...Xn)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

s3(0) + s3(1) == s2(a2)
s3(X2)

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

∃2L1L2 ∀3…∃nL1L2…Lng(a1,a2,...Xn)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

L1L2 ∀3…∃nL1L2…Lng(a1,a2,a3,...Xn)

s3(0) + s3(1) == s2(a2)
s3(X2)

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

∃2L1L2 ∀3…∃nL1L2…Lng(a1,a2,...Xn)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

L1L2 ∀3…∃nL1L2…Lng(a1,a2,a3,...Xn)

s3(0) + s3(1) == s2(a2)
s3(X2)

…

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

∃2L1L2 ∀3…∃nL1L2…Lng(a1,a2,...Xn)

st(Xn)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

L1L2 ∀3…∃nL1L2…Lng(a1,a2,a3,...Xn)

s3(0) + s3(1) == s2(a2)
s3(X2)

…

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

∃2L1L2 ∀3…∃nL1L2…Lng(a1,a2,...Xn)

st(Xn)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

L1L2 ∀3…∃nL1L2…Lng(a1,a2,a3,...Xn)

s3(0) + s3(1) == s2(a2)
s3(X2)

…

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

∃2L1L2 ∀3…∃nL1L2…Lng(a1,a2,...Xn)

st(Xn)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

(1 - an-1) ∙ st(0) + an-1 ∙ st(1) == st(an-1)

L1L2 ∀3…∃nL1L2…Lng(a1,a2,a3,...Xn)

s3(0) + s3(1) == s2(a2)
s3(X2)

…

Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

∃2L1L2 ∀3…∃nL1L2…Lng(a1,a2,...Xn)

st(Xn)

g(a1,a2,...an) == st(an)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

(1 - an-1) ∙ st(0) + an-1 ∙ st(1) == st(an-1)

L1L2 ∀3…∃nL1L2…Lng(a1,a2,a3,...Xn)

s3(0) + s3(1) == s2(a2)
s3(X2)

…

IP = PSPACE

P#P

PH

Where’s IP?

BPP

RP

ZPP

co-RP
P

NC

AM

MA co-NP

EXPTIME

NEXPTIME

NP

MIP

MIP

● We don’t need to restrict ourselves to one prover. If we could interact with
multiple provers, we would get the class MIP[BGK ‘88]

MIP

● We don’t need to restrict ourselves to one prover. If we could interact with
multiple provers, we would get the class MIP[BGK ‘88]

● Note: Provers cannot talk to each other, they communicate only to the verifier
on the transcript which everyone can see.

MIP

● We don’t need to restrict ourselves to one prover. If we could interact with
multiple provers, we would get the class MIP[BGK ‘88]

● Note: Provers cannot talk to each other, they communicate only to the verifier
on the transcript which everyone can see.

● What power does each prover give? More Provers => More Power?

MIP

● We don’t need to restrict ourselves to one prover. If we could interact with
multiple provers, we would get the class MIP[BGK ‘88]

● Note: Provers cannot talk to each other, they communicate only to the verifier
on the transcript which everyone can see.

● What power does each prover give? More Provers => More Power?

No.

MIP

● We don’t need to restrict ourselves to one prover. If we could interact with multiple
provers, we would get the class MIP[BGK ‘88]

● Note: Provers cannot talk to each other, they communicate only to the verifier on
the transcript which everyone can see.

● What power does each prover give? More Provers => More Power?

No.

● Theorem[BFL ‘91]: MIP = MIP[2] = NEXPTIME

QIP, MIP*

QIP, MIP*

● Replacing the BPP verifier with a BQP verifier in IP gives QIP[Wat ‘99]

QIP, MIP*

● Replacing the BPP verifier with a BQP verifier in IP gives QIP[Wat ‘99]
● Theorem [JJUW ‘09]: QIP = PSPACE

QIP, MIP*

● Replacing the BPP verifier with a BQP verifier in IP gives QIP[Wat ‘99]
● Theorem [JJUW ‘09]: QIP = PSPACE

● What if we allowed provers to converse in MIP? Suppose, through arbitrary length
quantum entangled qubits. We would get the class MIP*[CHT ‘04]

QIP, MIP*

● Replacing the BPP verifier with a BQP verifier in IP gives QIP[Wat ‘99]
● Theorem [JJUW ‘09]: QIP = PSPACE

● What if we allowed provers to converse in MIP? Suppose, through arbitrary length
quantum entangled qubits. We would get the class MIP*[CHT ‘04]

● Theorem[JNVWY ‘20]: MIP* = RE

QIP, MIP*

● Replacing the BPP verifier with a BQP verifier in IP gives QIP[Wat ‘99]
● Theorem [JJUW ‘09]: QIP = PSPACE

● What if we allowed provers to converse in MIP? Suppose, through arbitrary length
quantum entangled qubits. We would get the class MIP*[CHT ‘04]

● Theorem[JNVWY ‘20]: MIP* = RE

● We would be able to solve undecidable problems like the halting problem

IP = PSPACE Timeline

1985: AM, MA defined by Babai

1986: Goldwasser and Sipser show public coin private coin equivalence

1988: AM=AM[2] by BM, MIP is defined by BGKW

1989: IP is defined by GMR

1991: ZKP(NONISO in IP) by GMW, MIP=NEXP by BFL

1992: #3SAT in IP by LFKN, IP=PSPACE by Shamir, Simpler proof by
Shen

References

[GMR ‘89] S. Goldwasser, S. Micali, and C. Rackoff. 1989. The knowledge complexity of interactive proof
systems. SIAM J. Comput. 18, 1 (Feb. 1989), 186–208. https://doi.org/10.1137/0218012

[GMW ‘91] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1991. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM 38, 3 (July 1991), 690–728.
https://doi.org/10.1145/116825.116852

[Babai ‘85] L Babai. 1985. Trading group theory for randomness. In Proceedings of the seventeenth annual
ACM symposium on Theory of computing (STOC '85). Association for Computing Machinery, New York, NY,
USA, 421–429. https://doi.org/10.1145/22145.22192

[GS ‘86] S Goldwasser and M Sipser. 1986. Private coins versus public coins in interactive proof systems. In
Proceedings of the eighteenth annual ACM symposium on Theory of computing (STOC '86). Association for
Computing Machinery, New York, NY, USA, 59–68. https://doi.org/10.1145/12130.12137

[BM ‘88] László Babai and Shlomo Moran. 1988. Arthur-Merlin games: a randomized proof system, and a
hierarchy of complexity class. J. Comput. Syst. Sci. 36, 2 (April 1988), 254–276.
https://doi.org/10.1016/0022-0000(88)90028-1

https://doi.org/10.1137/0218012
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/12130.12137
https://doi.org/10.1016/0022-0000(88)90028-1

References

[LFKN ‘92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. 1992. Algebraic methods
for interactive proof systems. J. ACM 39, 4 (Oct. 1992), 859–868. https://doi.org/10.1145/146585.146605

[Shamir ‘92] Adi Shamir. 1992. IP = PSPACE. J. ACM 39, 4 (Oct. 1992), 869–877. h
ttps://doi.org/10.1145/146585.146609

[Shen ‘92] A. Shen. 1992. IP = SPACE: simplified proof. J. ACM 39, 4 (Oct. 1992), 878–880.
https://doi.org/10.1145/146585.146613

[BGKW ‘88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. 1988. Multi-prover
interactive proofs: how to remove intractability assumptions. In Proceedings of the twentieth annual ACM
symposium on Theory of computing (STOC '88). Association for Computing Machinery, New York, NY,
USA, 113–131. https://doi.org/10.1145/62212.62223

[BFL ‘91] Babai, L., Fortnow, L. & Lund, C. Non-deterministic exponential time has two-prover interactive
protocols. Comput Complexity 1, 3–40 (1991). https://doi.org/10.1007/BF01200056

https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146613
https://doi.org/10.1145/62212.62223
https://doi.org/10.1007/BF01200056

References

[Wat ‘99] J. Watrous. PSPACE has constant-round quantum interactive proof
systems, Proceedings of IEEE FOCS'99, pp. 112-119, 1999. arXiv:cs.CC/9901015

[JJUW ‘09] R. Jain, Z. Ji, S. Upadhyay, and J. Watrous. QIP = PSPACE, J. ACM
58(6):1-27, 2011. doi:10.1145/2049697.2049704 arXiv:0907.4737.

[CHT ‘04] Cleve, R., Hoyer, P., Toner, B., & Watrous, J. (2004). Consequences and
Limits of Nonlocal Strategies. arXiv.
https://doi.org/10.48550/arXiv.quant-ph/0404076

[JNVWY ‘20] Ji, Z., Natarajan, A., Vidick, T., Wright, J., & Yuen, H. (2020).
MIP*=RE. arXiv. https://doi.org/10.48550/arXiv.2001.04383

https://doi.org/10.48550/arXiv.quant-ph/0404076
https://doi.org/10.48550/arXiv.2001.04383

Additional References

● Introduction to the Theory of Computation, by Michael Sipser

● Computational Complexity: A Modern Approach, by Sanjeev Arora and Boaz
Barak. https://theory.cs.princeton.edu/complexity/book.pdf

https://theory.cs.princeton.edu/complexity/book.pdf

IP = PSPACE = QIP

P#P

PH

TL; DR

BPP

RP

ZPP

co-RP
P

AM

MA
co-NP

EXPTIME

NEXPTIME = MIP

NP

MIP* = RE

● Randomness+Interaction is the key, alone they
are “weak”

● Supreme power is useless unless succinct

● Mapping to polynomials is a very powerful
technique

NC

	Interactive Proofs
	What are proofs? (1)
	What are proofs? (2)
	What are proofs? (5)
	What are proofs? (6)
	What are proofs? (8)
	What are interactive proofs? (1)
	What are interactive proofs? (2)
	What are interactive proofs? (4)
	What are interactive proofs? (6)
	What are interactive proofs? (7)
	What are interactive proofs? (8)
	What are interactive proofs? (9)
	Interactive Proofs and Complexity Theory: Hiding behind Ǝ (1)
	Interactive Proofs and Complexity Theory: Hiding behind Ǝ (2)
	Interactive Proofs and Complexity Theory: Hiding behind Ǝ (4)
	Interactive Proofs and Complexity Theory: Hiding behind Ǝ (5)
	Interactive Proofs and Complexity Theory: Hiding behind Ǝ (6)
	Interactive Proofs and Complexity Theory: Hiding behind Ǝ (7)
	Interactive Proofs and Complexity Theory: Hiding behind Ǝ (9)
	Interactive Proofs and Complexity Theory: Trusting Strangers (1)
	Interactive Proofs and Complexity Theory: Trusting Strangers (2)
	Interactive Proofs and Complexity Theory: Trusting Strangers (4)
	Interactive Proofs and Complexity Theory: Trusting Strangers (6)
	Interactive Proof systems: The Protocol (1)
	Interactive Proof systems: The Protocol (2)
	Interactive Proof systems (1)
	Interactive Proof systems (2)
	Interactive Proof systems (3)
	Interactive Proof systems (4)
	Interactive Proof systems (5)
	Interactive Proof systems (6)
	Interactive Proof systems (7)
	Interactive Proof systems (8)
	Interactive Proof systems (9)
	Interactive Proof systems (10)
	Interactive Proof systems (2)
	Interactive Proof systems
	Interactive Proof systems: dIP (1)
	Interactive Proof systems: dIP (2)
	Interactive Proof systems: dIP (4)
	Interactive Proof systems: dIP (6)
	Where is dIP? (1)
	Where is dIP? (2)
	Where is dIP? (3)
	Where is dIP? (2) (1)
	Where is dIP? (2) (2)
	Where is dIP? (2) (3)
	Where is dIP? (2) (4)
	Where is dIP? (2) (5)
	Where is dIP? (2) (6)
	Where is dIP? (3)
	Interactive Proof systems (3) (1)
	Interactive Proof systems (3) (2)
	IP: Probabilistic Verifier
	P:BPP::NP:IP (1)
	P:BPP::NP:IP (2)
	P:BPP::NP:IP (3)
	P:BPP::NP:IP (4)
	P:BPP::NP:IP (5)
	Where is IP?
	What’s in IP?
	How Big is IP? (1)
	How Big is IP? (3)
	How Big is IP? (4)
	How Big is IP? (6)
	How Big is IP? (7)
	NONISO in IP: Private Coin Protocol
	NONISO in IP: Private Coin Protocol (2) (1)
	NONISO in IP: Private Coin Protocol (2) (2)
	NONISO in IP: Private Coin Protocol (2) (3)
	NONISO in IP: Private Coin Protocol (2) (4)
	NONISO in IP: Private Coin Protocol (2) (5)
	NONISO in IP: Private Coin Protocol (3) (1)
	NONISO in IP: Private Coin Protocol (3) (2)
	NONISO in IP: Private Coin Protocol (3) (3)
	NONISO in IP: Private Coin Protocol (3) (4)
	NONISO in IP: Private Coin Protocol (3) (5)
	NONISO in IP: Private Coin Protocol (4) (1)
	NONISO in IP: Private Coin Protocol (4) (2)
	NONISO in IP: Private Coin Protocol (4) (5)
	NONISO in IP: Private Coin Protocol (4) (6)
	What’s in IP? (2)
	Interactive Proof systems (4) (1)
	Interactive Proof systems (4) (2)
	Interactive Proof systems (4) (3)
	Interactive Proof systems (4) (4)
	AM and MA: Public and Private coins (1)
	AM and MA: Public and Private coins (2)
	AM and MA: Public and Private coins (3)
	AM and MA: Public and Private coins (4)
	AM and MA: Public and Private coins (7)
	AM and MA: Public and Private coins (10)
	AM and MA: Public and Private coins (12)
	What’s in IP? (3)
	Theorem: IP ⊆PSPACE (1)
	Theorem: IP ⊆PSPACE (2)
	Theorem: IP ⊆PSPACE (4)
	Theorem: IP ⊆PSPACE (2) (1)
	Theorem: IP ⊆PSPACE (2) (2)
	Theorem: IP ⊆PSPACE (2) (3)
	Theorem: IP ⊆PSPACE (2) (4)
	Theorem: IP ⊆PSPACE (3) (1)
	Theorem: IP ⊆PSPACE (3) (2)
	Theorem: IP ⊆PSPACE (3) (3)
	Theorem: IP ⊆PSPACE (4)
	Theorem: IP ⊆PSPACE (5) (1)
	Theorem: IP ⊆PSPACE (5) (2)
	Theorem: IP ⊆PSPACE (5) (4)
	Theorem: IP ⊆PSPACE (5) (6)
	Theorem: IP ⊆PSPACE (6) (1)
	Theorem: IP ⊆PSPACE (6) (2)
	Theorem: IP ⊆PSPACE (6) (3)
	Theorem: IP ⊆PSPACE (6) (4)
	Theorem: IP ⊆PSPACE (6) (6)
	Theorem: IP ⊆PSPACE (6) (7)
	Theorem: IP ⊆PSPACE (7) (1)
	Theorem: IP ⊆PSPACE (7) (2)
	Theorem: IP ⊆PSPACE (7) (3)
	Theorem: IP ⊆PSPACE (7) (4)
	Theorem: IP ⊆PSPACE (7) (5)
	Theorem: IP ⊆PSPACE (7) (6)
	Theorem: IP ⊆PSPACE (7) (7)
	Theorem: IP ⊆PSPACE (7) (8)
	Theorem: IP ⊆PSPACE (8)
	Theorem: IP ⊆PSPACE (9)
	Where is IP? (2)
	co-NP⊆IP? (1)
	co-NP⊆IP? (2)
	co-NP⊆IP? (3)
	co-NP⊆IP? (4)
	co-NP⊆IP? (6)
	co-NP⊆IP? (8)
	#3SAT Prerequisites
	#3SAT Prerequisites (2)
	#3SAT ⊆IP? [Attempt 1] (1)
	#3SAT ⊆IP? [Attempt 1] (2)
	#3SAT ⊆IP? [Attempt 1] (3)
	#3SAT ⊆IP? [Attempt 1] (4)
	#3SAT ⊆IP? [Attempt 1] (5)
	#3SAT ⊆IP? [Attempt 1] (6)
	#3SAT ⊆IP? [Attempt 1] (7)
	#3SAT ⊆IP? [Attempt 1] (8)
	#3SAT ⊆IP? [Attempt 1] (9)
	#3SAT ⊆IP? [Attempt 1] (2) (1)
	#3SAT ⊆IP? [Attempt 1] (2) (2)
	#3SAT ⊆IP? [Attempt 1] (2) (3)
	#3SAT ⊆IP? [Attempt 1] (2) (4)
	#3SAT ⊆IP? [Attempt 1] (2) (5)
	#3SAT ⊆IP? [Attempt 1] (2) (6)
	#3SAT ⊆IP? [Attempt 1] (2) (7)
	#3SAT ⊆IP? [Attempt 1] (2) (8)
	#3SAT ⊆IP? [Attempt 1] (2) (9)
	#3SAT ⊆IP? [Attempt 1] (2) (10)
	#3SAT ⊆IP? [Attempt 1] (2) (11)
	#3SAT ⊆IP? [Attempt 1] (2) (12)
	#3SAT ⊆IP? [Attempt 1] (2) (13)
	#3SAT ⊆IP? [Attempt 1] (2) (14)
	#3SAT ⊆IP? [Attempt 1] (2) (15)
	#3SAT ⊆IP? [Attempt 1] (2) (16)
	#3SAT ⊆IP? [Attempt 1] (2) (17)
	#3SAT ⊆IP? [Attempt 1] (2) (18)
	#3SAT ⊆IP? [Attempt 1] (2) (19)
	#3SAT ⊆IP? [Attempt 1] (2) (20)
	#3SAT ⊆IP? [Attempt 1] (2) (21)
	#3SAT ⊆IP? [Attempt 1] (3) (1)
	#3SAT ⊆IP? [Attempt 1] (3) (2)
	#3SAT ⊆IP? [Attempt 1] (3) (4)
	#3SAT ⊆IP? [Attempt 1] (3) (6)
	#3SAT ⊆IP? [Attempt 2] (1)
	#3SAT ⊆IP? [Attempt 2] (2)
	#3SAT ⊆IP? [Attempt 2] (3)
	#3SAT ⊆IP? [Attempt 2] (4)
	#3SAT ⊆IP? [Attempt 2] (5)
	#3SAT ⊆IP? [Attempt 2] (6)
	#3SAT ⊆IP? [Attempt 2] (7)
	#3SAT ⊆IP? [Attempt 2] (8)
	#3SAT ⊆IP? [Attempt 2] (9)
	#3SAT ⊆IP? [Attempt 2] (10)
	#3SAT ⊆IP? [Attempt 2] (11)
	#3SAT ⊆IP? [Attempt 2] (12)
	#3SAT ⊆IP? [Attempt 2] (13)
	#3SAT ⊆IP? [Attempt 2] (14)
	#3SAT ⊆IP? [Attempt 2] (2) (1)
	#3SAT ⊆IP? [Attempt 2] (2) (2)
	#3SAT ⊆IP? [Attempt 2] (2) (4)
	#3SAT ⊆IP? [Attempt 2] (2) (5)
	#3SAT ⊆IP? [Attempt 2] (2) (6)
	#3SAT ⊆IP? [Attempt 2] (2) (8)
	Boolean is F2 (1)
	Boolean is F2 (2)
	Boolean is F2 (2) (1)
	Boolean is F2 (2) (2)
	Boolean is F2 (2) (4)
	Boolean is F2 (2) (6)
	Boolean is F2 (3)
	Theorem[LFKN ‘92]: #3SAT∈IP (1)
	Theorem[LFKN ‘92]: #3SAT∈IP (2)
	Theorem[LFKN ‘92]: #3SAT∈IP (4)
	Theorem[LFKN ‘92]: #3SAT∈IP (6)
	Theorem[LFKN ‘92]: #3SAT∈IP (2) (1)
	Theorem[LFKN ‘92]: #3SAT∈IP (2) (2)
	Theorem[LFKN ‘92]: #3SAT∈IP (2) (4)
	Theorem[LFKN ‘92]: #3SAT∈IP (2) (6)
	Sumcheck protocol (1)
	Sumcheck protocol (2)
	Sumcheck protocol (2) (1)
	Sumcheck protocol (2) (2)
	Sumcheck protocol (2) (3)
	Sumcheck protocol (2) (4)
	Sumcheck protocol (2) (6)
	Sumcheck protocol (2) (7)
	Sumcheck protocol (3)
	Sumcheck protocol (4) (1)
	Sumcheck protocol (4) (2)
	Sumcheck protocol (4) (3)
	Sumcheck protocol (4) (4)
	Sumcheck protocol (4) (5)
	Sumcheck protocol (4) (6)
	Sumcheck protocol (4) (7)
	Sumcheck protocol (4) (8)
	Sumcheck protocol (4) (9)
	Sumcheck protocol (4) (10)
	Sumcheck protocol (4) (11)
	Sumcheck protocol (4) (12)
	Sumcheck protocol (4) (13)
	Sumcheck protocol (4) (14)
	Sumcheck protocol (4) (15)
	Sumcheck protocol (4) (16)
	Sumcheck protocol (4) (17)
	Analysis of protocol (1)
	Analysis of protocol (2)
	Analysis of protocol (4)
	Analysis of protocol (6)
	Analysis of Error bound (1)
	Analysis of Error bound (2)
	Analysis of Error bound (3)
	Analysis of Error bound (4)
	Analysis of Error bound (5)
	Analysis of Error bound (6)
	Analysis of Error bound (7)
	What’s in IP? (4)
	TQBF ⊆IP?
	Sumcheck Protocol? (1)
	Sumcheck Protocol? (2)
	Sumcheck Protocol? (4)
	Sumcheck Protocol? (5)
	Sumcheck Protocol? (7)
	Sumcheck Protocol? (8)
	Sumcheck Protocol? (2)
	Linearization (1)
	Linearization (2)
	Linearization (3)
	Linearization (2)
	Linearization (3)
	Linearization (4) (1)
	Linearization (4) (2)
	Linearization (4) (3)
	Linearization (4) (4)
	Linearization (4) (5)
	Linearization (4) (6)
	Linearization (4) (7)
	Linearization (4) (8)
	Modified Sumcheck protocol (1)
	Modified Sumcheck protocol (2)
	Modified Sumcheck protocol (3)
	Modified Sumcheck protocol (5)
	Modified Sumcheck protocol (7)
	Modified Sumcheck protocol (2)
	Modified Sumcheck protocol (3) (2)
	Modified Sumcheck protocol (3) (3)
	Modified Sumcheck protocol (3) (4)
	Modified Sumcheck protocol (3) (5)
	Modified Sumcheck protocol (3) (6)
	Modified Sumcheck protocol (3) (7)
	Modified Sumcheck protocol (3) (8)
	Modified Sumcheck protocol (3) (9)
	Modified Sumcheck protocol (3) (10)
	Modified Sumcheck protocol (3) (11)
	Modified Sumcheck protocol (3) (12)
	Modified Sumcheck protocol (3) (13)
	Modified Sumcheck protocol (3) (14)
	Modified Sumcheck protocol (3) (15)
	Modified Sumcheck protocol (3) (16)
	Modified Sumcheck protocol (3) (17)
	Modified Sumcheck protocol (3) (18)
	Modified Sumcheck protocol (3) (19)
	Modified Sumcheck protocol (3) (20)
	Modified Sumcheck protocol (3) (21)
	Where’s IP?
	MIP (1)
	MIP (2)
	MIP (4)
	MIP (6)
	MIP (7)
	MIP (8)
	QIP, MIP* (1)
	QIP, MIP* (2)
	QIP, MIP* (3)
	QIP, MIP* (5)
	QIP, MIP* (7)
	QIP, MIP* (9)
	IP = PSPACE Timeline
	References
	References (2)
	References (3)
	Additional References
	TL; DR

