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Matching is as Easy as Matrix Inversion Brief Overview

Brief Overview

A new algorithm for finding a maximum matching is presented

The core feature of this algorithm is that the only non-trivial
computation involved is the inversion of an integer matrix

Since there are existing parallel algorithms for matrix inversion, this
shows that maximum matching is in RNC2

As this algorithm is designed with parallel computation in mind, the
core problem we must solve is that of coordinating all the parallel
processors to seek the same solution

This is done by using the isolating lemma, which can (with a high
probability) single out one matching in the graph
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Matching is as Easy as Matrix Inversion Brief Overview

The Isolating Lemma

In its most general form, the isolating lemma holds for any set system

This provides a relation between the parallel complexity of an arbitrary
search problem and the corresponding weighted decision problem

In particular, we show that Exact Matching (a problem not known to
be in P) is in RNC2

The isolating lemma can also be used to provide a simpler proof of
the Valiant-Vazirani theorem, which shows that SAT remains hard
(under randomized reductions) even if it is known that there is at
most one satisfying assignment
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Matching is as Easy as Matrix Inversion History

History

The maximum matching problem is a natural and well-studied
problem, with the very idea of considering “tractable” to mean
“poly-time solvable” first arising in the context of solving the general
matching problem

Parallel algorithms to solve the problem typically require a different,
often algebraic or probabilistic, method from solving them sequentially

A critical idea used is Tutte’s theorem (1947), which states that a
graph has a perfect matching iff a certain “Tutte” matrix of
indeterminates is non-singular
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Matching is as Easy as Matrix Inversion History

First Attempts

Lovasz was the first to use Tutte’s theorem by converting the decision
problem of checking if a graph has a perfect matching to that of
testing if a matrix of indeterminates is non-singular

This yields an RNC2 algorithm for the decision as checking if a matrix
of indeterminates is non-singular can be done in NC2

The search problem of actually finding a perfect matching is much
harder - Karp, Upfal, and Winderson were the first to provide an
RNC3 algorithm for the same, based on using the Tutte matrix to
rank and prune edges from the graph

This Paper

This algorithm directly finds a perfect matching, and is faster (RNC2)
while using O(n3.5m) processors
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The Algorithm The Isolating Lemma

The Isolating Lemma

Definition

A set system (S ,F ) consists of a finite set S of elements, S = {x1, ..., xn}
and a family F of subsets of S , i.e., F = {S1, ...,Sk}, where Si ⊆ S for
1 ≤ i ≤ k

We assume every xi appears in at least one subset
We can assign a weight wi to each element xi ∈ S , and define the weight
of a subset Sj to be

∑
xi∈Sj wi

Lemma

Let (S ,F ) be a set system with weights assigned uniformly and
independently at random from [1, 2n]. Then:

P[there is a unique minimum weight set in F ] ≥ 1

2
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The Algorithm The Isolating Lemma

Proof

Say we fix the weights for all elements except some xi . Then define
the threshold for xi to be the real number (possibly negative) αi such
that if wi ≤ αi , then xi is in some minimum weight subset, while if
wi > αi , then xi is not in any minimum weight subset

Note that if wi < αi , then xi must be in every minimum weight
subset – any ambiguity about xi only occurs if wi = αi , since then
there is some minimum weight subset containing xi and some other
minimum weight subset not containing xi

We will say that an element xi is singular if wi = αi

Note that there can only be multiple minimum weight subsets if there
is at least one singular element
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The Algorithm The Isolating Lemma

Key Observation

Notice now that αi was defined without reference to wi , so it follows
that αi and wi are independent (as random variables)

Thus, as wi is distributed uniformly over [1, 2n], we get that

P[xi is singular, i.e., wi = αi ] ≤
1

2n

Then by the union bound over the n elements, we have:

P[at least one element is singular] ≤ 1

2

This completes the proof of the lemma by the previous observation
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The Algorithm The Matching Algorithm - Bipartite Graphs

The Matching Algorithm - Bipartite Graphs

First, we will consider the simpler case of bipartite graphs

The input will be a bipartite graph G = (U,V ,E ), and the goal is to
find a perfect matching in G

We can view the set of edges E along with the collection of perfect
matchings (which are subsets of E ) as a set system

We randomly assign each edge with a weight in [1, 2m], where
m = |E |, so that by the isolating lemma, there is a unique perfect
matching with minimum weight

We design our parallel algorithm to seek this perfect matching

Let D be the biadjacency matrix of G and generate B from D by
replacing every dij = 1 with bij = 2wij , where wij is the weight for the
edge (ui , vj)
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The Algorithm The Matching Algorithm - Bipartite Graphs

The Matching Algorithm - Bipartite Graphs

Lemma

Say the minimum weight perfect matching is unique. Call it M and let its
weight be w. Then |B| ≠ 0 and moreover the highest power of 2 dividing
|B| is 2w

First, note that any perfect matching corresponds to some
permutation σ ∈ Sn, so we can define the value of a perfect matching
by the following:

value(σ) =
n∏

i=1

biσ(i)

Then note that value(σ) ̸= 0 iff σ corresponds to a perfect matching
(since σ corresponds to a perfect matching iff (ui , vσ(i)) is an edge for
1 ≤ i ≤ n)
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The Algorithm The Matching Algorithm - Bipartite Graphs

Proof of the Lemma

Now note the well-known expansion for the determinant,

|B| =
∑
σ∈Sn

sign(σ)× value(σ)

Let σM be the permutation for the minimum weight perfect
matching, so value(σ) = 2w

For any other matching, the corresponding weight w ′ > w , so that
the permutation corresponding to it has a value that is a higher power
of 2

Thus, 2w must be the highest power of 2 that divides |B|
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The Algorithm The Matching Algorithm - Bipartite Graphs

Another Lemma

Lemma

Let M be the unique minimum weight perfect matching and let its weight

be w. Then the edge (ui , vj) is in M iff
|Bij |2wij

2w is odd

Notice that (from the determinant expansion):

|Bij |2wij =
∑

σ∈Sn:σ(i)=j

sign(σ)× value(σ)

If (ui , vj) ∈ M, then note that one permutation in the above, σM , has
value 2w , and everything else has a value that is 0 or a higher power
of 2, so |Bij |2wij is an odd multiple of 2w

On the other hand, if (ui , vj) /∈ M, then every permutation above
must have a value that is 0 or a higher power of 2, and thus 2w+1

must divide |Bij |2wij
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The Algorithm The Matching Algorithm - Bipartite Graphs

Description of the Algorithm

Now the algorithm to find a perfect matching is fairly simple, once we
have generated the random weights and created B

1 Compute |B|, and thus obtain w

2 Compute adj(B), since its (i , j)th entry is the minor |Bij |

3 For each edge (ui , vj) in parallel, compute
|Bij |2wij

2w ; if this quantity is
odd, then include it in the matching (the output)

This algorithm will find a perfect matching (if it exists) with a
probability of at least 1/2 (note that checking if the output is a
perfect matching is trivial)

The only non-trivial step here is the computation of the determinant
and adjoint of an integer matrix, which is equivalent to finding the
inverse of the matrix
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The Algorithm The General Matching Algorithm

Tutte’s Theorem

Generalizing this algorithm to general graphs is not very difficult; it only
requires us to work with the Tutte matrix instead

Definition

Note that given a graph G = (V ,E ), its adjacency matrix is an n × n
symmetric matrix D with dij = 1 if (vi , vj) ∈ E , and dij = 0 otherwise.
The Tutte matrix is then a skew-symmetric matrix A obtained from D as
follows: if dij = dji = 1, with j < i , then replace them with xij and −xij , so
that entries above the diagonal are positive, while leaving 0s unchanged.

Theorem

Let G = (V ,E ) be a graph with Tutte matrix A. Then |A| ≠ 0 iff G has a
perfect matching
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perfect matching

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 17 / 59



The Algorithm The General Matching Algorithm

Tutte’s Theorem

Generalizing this algorithm to general graphs is not very difficult; it only
requires us to work with the Tutte matrix instead

Definition

Note that given a graph G = (V ,E ), its adjacency matrix is an n × n
symmetric matrix D with dij = 1 if (vi , vj) ∈ E , and dij = 0 otherwise.
The Tutte matrix is then a skew-symmetric matrix A obtained from D as
follows: if dij = dji = 1, with j < i , then replace them with xij and −xij , so
that entries above the diagonal are positive, while leaving 0s unchanged.

Theorem

Let G = (V ,E ) be a graph with Tutte matrix A. Then |A| ≠ 0 iff G has a
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The Algorithm The General Matching Algorithm

Generalizing the Algorithm

First obtain a matrix B from the Tutte matrix by substituting the
indeterminate xij with 2wij , where wij is the (random) weight assigned
to the edge (vi , vj)

The algorithm stated before then generates a perfect matching when
applied to the matrix B (this follows from the previous lemmas which
can be extended)

However, these proofs (which involve looking at Tutte matrices) have
been skipped here for the sake of brevity

The only non-trivial step is equivalent to matrix inversion, for which
Pan’s randomized algorithm can be used which uses O(n3.5m)
processors and O(log2 n) time to invert a n × n matrix with m-bit
integer entries
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Related Problems and Applications Parallel Algorithms for Related Problems

Minimum Weight Perfect Matching

Given a graph G = (V ,E ) along with edge weights w(e) given in
unary, this algorithm can be extended to find a minimum weight
perfect matching

First, by scaling up every weight by a factor of mn, we ensure that
the minimum weight perfect matching is lighter by at least mn

Then we use a generalization of the isolating lemma by assigning a
weight of mnw(e) + r(e), where r(e) is chosen uniformly and
independently at random from [1, 2m]

We can then apply the algorithm stated above, requiring O(n3.5mW )
processors, where W is the weight of the heaviest edge - so this
problem is in RNC2 as well if the weights are given in unary

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 19 / 59



Related Problems and Applications Parallel Algorithms for Related Problems

Minimum Weight Perfect Matching

Given a graph G = (V ,E ) along with edge weights w(e) given in
unary, this algorithm can be extended to find a minimum weight
perfect matching

First, by scaling up every weight by a factor of mn, we ensure that
the minimum weight perfect matching is lighter by at least mn

Then we use a generalization of the isolating lemma by assigning a
weight of mnw(e) + r(e), where r(e) is chosen uniformly and
independently at random from [1, 2m]

We can then apply the algorithm stated above, requiring O(n3.5mW )
processors, where W is the weight of the heaviest edge - so this
problem is in RNC2 as well if the weights are given in unary

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 19 / 59



Related Problems and Applications Parallel Algorithms for Related Problems

Minimum Weight Perfect Matching

Given a graph G = (V ,E ) along with edge weights w(e) given in
unary, this algorithm can be extended to find a minimum weight
perfect matching

First, by scaling up every weight by a factor of mn, we ensure that
the minimum weight perfect matching is lighter by at least mn

Then we use a generalization of the isolating lemma by assigning a
weight of mnw(e) + r(e), where r(e) is chosen uniformly and
independently at random from [1, 2m]

We can then apply the algorithm stated above, requiring O(n3.5mW )
processors, where W is the weight of the heaviest edge - so this
problem is in RNC2 as well if the weights are given in unary

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 19 / 59



Related Problems and Applications Parallel Algorithms for Related Problems

Minimum Weight Perfect Matching

Given a graph G = (V ,E ) along with edge weights w(e) given in
unary, this algorithm can be extended to find a minimum weight
perfect matching

First, by scaling up every weight by a factor of mn, we ensure that
the minimum weight perfect matching is lighter by at least mn

Then we use a generalization of the isolating lemma by assigning a
weight of mnw(e) + r(e), where r(e) is chosen uniformly and
independently at random from [1, 2m]

We can then apply the algorithm stated above, requiring O(n3.5mW )
processors, where W is the weight of the heaviest edge - so this
problem is in RNC2 as well if the weights are given in unary

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 19 / 59



Related Problems and Applications Parallel Algorithms for Related Problems

Vertex Weighted Matching

Note that the problem of finding a maximum matching is easily
converted to one of finding a minimum weight perfect matching by
extending the graph to a complete graph and providing a weight of 1
all new edges and 0 to existing edges

In the vertex-weighted matching problem, a graph G = (V ,E ) is
given along with (positive) vertex weights, and the goal is to find a
matching with the highest total vertex weight

Note that the desired matching must be a maximum matching

Define V ′ ⊆ V to be a matching set if V ′ is the set of vertices
matched by any maximum matching

The problem then reduces to one of finding the heaviest matching
set, along with finding a perfect matching in the set of vertices within
the matching set
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Related Problems and Applications Parallel Algorithms for Related Problems

Vertex Weighted Matching

For this, sort the vertices by decreasing weight, and use this to induce
a lexicographic order on the matching sets

Any matching set is represented by a binary string, where the i th

entry is 1 iff the i th heaviest vertex is in the matching set

Lemma

The heaviest matching set is the lexicographically largest one

Say this were not the case, so L (the lexicographically largest
matching set) and H (the heaviest matching set) differ at some point,
the earliest of which is, say, u

Clearly u is matched in L but not H, so consider the symmetric
difference of L and H, which must have an alternating even length
path to some vertex v
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Related Problems and Applications Parallel Algorithms for Related Problems

Vertex Weighted Matching

The symmetric difference of H with this path then contains u instead
of v and remains a matching, but this new matching must be heavier
as u is heavier than v - a contradiction

Finding the lexicographically largest matching set is known to be in
RNC2, and since we have shown that finding a perfect matching
within this matching set is also in RNC2, it follows that the vertex
weighted matching problem is also in RNC2
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Related Problems and Applications Applications of Isolating Lemma

Parallel Complexity of Search vs Decision Problems

Many search problems are reducible to their corresponding decision
problem via self-reducibility, but this reduction is not easy to
paralellize

Self-reduction typically leads to the lexicographically first solution,
and for many problems finding such a solution is known to be
P-complete in spite of efficient parallel algorithms existing for the
unrestricted search problem

This was first studied by Karp, Upfal and Wigdersion, who gave an
RNC2 procedure for the search problem by using oracle access to the
ranking function

Here, we reduce the general search problem to a weighted decision
problem, with polynomially bounded weights
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Related Problems and Applications Applications of Isolating Lemma

Parallel Complexity of Search vs Decision Problems

Theorem

Let (S ,F ) be a set system and O be an oracle for the weighted decision
problem of checking if there a set in F with a weight less than k when
every element of S is assigned a polynomially bounded weight. Then there
is an RNC1 procedure using the oracle O to find a set in F .

The procedure is similar to the perfect matching algorithm

First, we find the minimum weight for any set in F via binary search,
which takes O(log n) calls to O

We can then determine if some element is in the minimum weight set
by increasing its weight and checking if the minimum weight set
increased in weight (with one call to O)
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Related Problems and Applications Applications of Isolating Lemma

Parallel Complexity of Search vs Decision Problems

The above process can clearly be done in parallel

Note that the isolating lemma would be used to ensure (with high
probability) that the minimum weight set in F is unique

Using this, we find an RNC2 procedure for the exact matching
problem, which is not known to be solvable in deterministic
polynomial time

In the exact matching problem, a graph G = (V ,E ) is given, with a
subset E ′ ⊆ E of red edges, and the goal is to find a perfect
matching with exactly k red edges, for some positive integer k
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Related Problems and Applications Applications of Isolating Lemma

Exact Matching

The set system contains all the perfect matchings with exactly k red
edges

If we assign weights randomly to the edges and assume that there is a
unique minimum weight perfect matching with exactly k red edges,
then we can use the following NC2 procedure (due to Lovasz) to find
that perfect matching

Take the Tutte matrix and replace the indeterminates of the non-red
edges with 2w , where w is the weight of the corresponding edge, and
the indeterminates of the red edges with 2wy , where y is another
indeterminate

The resulting matrix, say B, is then skew symmetric, so
|B| = (pf (B))2, where pf (B) represents the Pfaffian of B
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Related Problems and Applications Applications of Isolating Lemma

Exact Matching

Note that the Pfaffian is given by the formula:

pf (B) =
1

2
n
2
n
2 !

∑
σ∈Sn

sign(σ)

n
2∏

i=1

aσ(2i−1)σ(2i)

Compute the determinant using the parallel determinant algorithm,
and then compute its square root via interpolation

Then the power of 2 in the coefficient of yk will be the weight of the
minimum weight perfect matching with exactly k edges

This yields an RNC2 procedure for the exact matching problem
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Related Problems and Applications Applications of Isolating Lemma

Valiant Vazirani Theorem

The isolating lemma can also be used to provide a much simpler proof
for (a variant of) the Valiant Vazirani theorem, which showed that
USAT is NP-Hard under randomized reductions (i.e., USAT can be
reduced to SAT)

We instead consider the CLIQUE, which is very closely related to SAT
(i.e., they are easily inter-reducible)

CLIQUE is the problem if finding if there is a clique of size k given a
graph G = (V ,E ), while UCLIQUE is the same with the knowledge
that there is at most one such clique

UCLIQUE is similarly related to USAT
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Related Problems and Applications Applications of Isolating Lemma

Valiant Vazirani Theorem

The reduction from CLIQUE to UCLIQUE is as follows:

First, we assign random weights w(v) to every vertex v ∈ V
uniformly and independently from [1, 2n], so that by the isolating
lemma, the maximum weight clique (of size k) will be unique with a
probability of at least 1/2

The transformed graph G ′ is generated by transforming every vertex
v ∈ V into a clique of 2nk + w(v), and then for every edge
(u, v) ∈ E , every vertex in the clique corresponding to u is joined to
every vertex in the clique corresponding to v

Finally, choose a random integer r ∈ [1, 2nk], and let k ′ = 2nk2 + r ,
giving us the transformed problem (G ′, k ′)
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Related Problems and Applications Applications of Isolating Lemma

Valiant Vazirani Theorem

Then the following will hold:

1 (G , k) /∈ CLIQUE =⇒ (G ′, k ′) /∈ UCLIQUE

2 (G , k) ∈ CLIQUE =⇒ P[(G ′, k ′) ∈ UCLIQUE] ≥ 1
4nk

Note that any clique of size m in G with weight w becomes a clique
(in G ′) of size 2nkm + w , and w ∈ [m, 2nm]. Thus, if m < k then
the resulting clique has size at most 2n(k2 − 1) < 2nk2, and the first
claim follows

With a probability of at least 1/2, the maximum weight clique (of size
k) is unique, with a weight w∗ (say). Then exactly one clique in G ′

can have a size of 2nk2 + w∗, since cliques in G ′ corresponding to
sizes other than k are transformed into cliques of sizes less than 2nk2

or more than 2nk(k + 1), and only one clique in G has weight w∗
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Discussion

Discussion

The main difficulty in solving combinatorial problems in parallel is
that one must coordinate all the processors to find the same solution,
while dealing with the fact that searching for solutions with special
properties is often P-complete

The isolating lemma uses randomization to get around this, but it
remains unclear if such an approach could be used to find a random
perfect matching, which can help resolve problems such as finding the
permanent of a 0/1 matrix

An interesting problem to study is how imperfectness in the random
source would affect our results; this is usually modelled via an
adversarial random source that is effectively a random die with m + k
faces, where the first m faces are labelled 1 to m while the adversary
chooses labels for the rest of the faces

Finally, it is as yet unknown if the perfect matching problem is in NC
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Bipartite Perfect Matching is in Quasi-NC Results So Far

Results So Far

There are NC algorithms for special classes of graphs:

K3,3− free graphs(Vazirani[Vaz89])

Graphs with poly-many PM’s(Grigoriev & Karpinski[GK87], Agrawal,
Hoang, & Thierauf[AHT07])

Bipartite d-regular graphs (Lav, Pippenger, & Valiant [LPV81])

Planar bipartite graphs (Datta, Kulkarni, &Roy [DKR10] and Tewari
& Vinodchandran [TV12])

This Paper

Bipartite PM and Search-PM are in quasi-NC.
Uniform circuits of depth O(log2 n) and size 2O(log2 n).
RNC 2 algorithm for bipartite PM using O(log2 n) bits.
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Bipartite Perfect Matching is in Quasi-NC Short Overview of Main Ideas

Short Overview of Main Ideas

For any two PM of G , the edges where they differ form disjoint cycles.

For a cycle C , its circulation is defined to be the difference of weights
of two PMs whose symmetric difference is C.

Datta et al. [DKR10] showed that a weight assignment which ensures
nonzero circulation for every cycle is isolating.

Not obvious if ∃ such a weight assignment with small weights.
Instead, we use a weight function that has nonzero circulations only
for small cycles.

Subgraph G ′ ⊆ G which is the union of minimum weight PMs in G .
In the bipartite case, graph G ′ is significantly smaller than G .

We show that G ′ does not contain any cycle with a nonzero
circulation. This means that G ′ does not contain any small cycles.
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Bipartite Perfect Matching is in Quasi-NC Short Overview of Main Ideas

Short Overview of Main Ideas

Next, we show that for a graph which has no cycles of length < r , the
number of cycles of length < 2r is polynomially bounded. This motivates
the following strategy which works in log n rounds:

in the i−th round, assign weights which ensure nonzero circulations
for all cycles with length < 2i .

Since the graph obtained after (i − 1)− th rounds has no cycles of
length 2i−1, the number of cycles of length 2i is small.

In log n rounds, we get a unique minimum weight perfect matching.
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Preliminaries An RNC Algorithm for Search-PM

An RNC Algorithm for Search-PM

Isolating Weight Function

A weight function w is isolating if G has a unique minimum weight PM
with respect to w .

If G has a PM & w is isolating, then det(A) ̸= 0.As, 2w(M) corresponding
to the minimum weight PM cannot be canceled with other terms, which
are strictly higher powers of 2.

Isolation Lemma [MVV87]

Let w be a weight assignment chosen uniformly and independently at
random from [2|E |]. Then w is isolating with probability ≥ 1/2.

If w is isolating, then computing det(Aw ) gives the answer.This can be
done in NC 2 (Berkowiz[Ber84]).

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 36 / 59



Preliminaries An RNC Algorithm for Search-PM

An RNC Algorithm for Search-PM

Isolating Weight Function

A weight function w is isolating if G has a unique minimum weight PM
with respect to w .

If G has a PM & w is isolating, then det(A) ̸= 0.

As, 2w(M) corresponding
to the minimum weight PM cannot be canceled with other terms, which
are strictly higher powers of 2.

Isolation Lemma [MVV87]

Let w be a weight assignment chosen uniformly and independently at
random from [2|E |]. Then w is isolating with probability ≥ 1/2.

If w is isolating, then computing det(Aw ) gives the answer.This can be
done in NC 2 (Berkowiz[Ber84]).

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 36 / 59



Preliminaries An RNC Algorithm for Search-PM

An RNC Algorithm for Search-PM

Isolating Weight Function

A weight function w is isolating if G has a unique minimum weight PM
with respect to w .

If G has a PM & w is isolating, then det(A) ̸= 0.As, 2w(M) corresponding
to the minimum weight PM cannot be canceled with other terms, which
are strictly higher powers of 2.

Isolation Lemma [MVV87]

Let w be a weight assignment chosen uniformly and independently at
random from [2|E |]. Then w is isolating with probability ≥ 1/2.

If w is isolating, then computing det(Aw ) gives the answer.This can be
done in NC 2 (Berkowiz[Ber84]).

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 36 / 59



Preliminaries An RNC Algorithm for Search-PM

An RNC Algorithm for Search-PM

Isolating Weight Function

A weight function w is isolating if G has a unique minimum weight PM
with respect to w .

If G has a PM & w is isolating, then det(A) ̸= 0.As, 2w(M) corresponding
to the minimum weight PM cannot be canceled with other terms, which
are strictly higher powers of 2.

Isolation Lemma [MVV87]

Let w be a weight assignment chosen uniformly and independently at
random from [2|E |]. Then w is isolating with probability ≥ 1/2.

If w is isolating, then computing det(Aw ) gives the answer.This can be
done in NC 2 (Berkowiz[Ber84]).

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 36 / 59



Preliminaries An RNC Algorithm for Search-PM

An RNC Algorithm for Search-PM

Isolating Weight Function

A weight function w is isolating if G has a unique minimum weight PM
with respect to w .

If G has a PM & w is isolating, then det(A) ̸= 0.As, 2w(M) corresponding
to the minimum weight PM cannot be canceled with other terms, which
are strictly higher powers of 2.

Isolation Lemma [MVV87]

Let w be a weight assignment chosen uniformly and independently at
random from [2|E |]. Then w is isolating with probability ≥ 1/2.

If w is isolating, then computing det(Aw ) gives the answer.

This can be
done in NC 2 (Berkowiz[Ber84]).

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 36 / 59



Preliminaries An RNC Algorithm for Search-PM

An RNC Algorithm for Search-PM

Isolating Weight Function

A weight function w is isolating if G has a unique minimum weight PM
with respect to w .

If G has a PM & w is isolating, then det(A) ̸= 0.As, 2w(M) corresponding
to the minimum weight PM cannot be canceled with other terms, which
are strictly higher powers of 2.

Isolation Lemma [MVV87]

Let w be a weight assignment chosen uniformly and independently at
random from [2|E |]. Then w is isolating with probability ≥ 1/2.

If w is isolating, then computing det(Aw ) gives the answer.This can be
done in NC 2 (Berkowiz[Ber84]).

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 36 / 59



Preliminaries Matching Polytope

Perfect Matching Polytope

PM(G ) of G (V ,E ), |E | = m is a polytope in the edge space, i.e.,
PM(G ) ⊆ Rm.

For PM M of G , incidence vector xM ∈ Rm is given by

xMe =

{
1, if e ∈ M,

0, otherwise.

PM(G ) := conv{xM |M is a PM in G}
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Perfect Matching Polytope

PM(G ) of G (V ,E ), |E | = m is a polytope in the edge space, i.e.,
PM(G ) ⊆ Rm.
For PM M of G , incidence vector xM ∈ Rm is given by

xMe =

{
1, if e ∈ M,

0, otherwise.

PM(G ) := conv{xM |M is a PM in G}

Natural extension of weight function w to Rm:

w(x) =
∑
e∈E

w(e)xe
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Perfect Matching Polytope

PM(G ) of G (V ,E ), |E | = m is a polytope in the edge space, i.e.,
PM(G ) ⊆ Rm.
For PM M of G , incidence vector xM ∈ Rm is given by

xMe =

{
1, if e ∈ M,

0, otherwise.

PM(G ) := conv{xM |M is a PM in G}

For any matching M, we have w(M) = w(xM)
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Perfect Matching Polytope

PM(G ) of G (V ,E ), |E | = m is a polytope in the edge space, i.e.,
PM(G ) ⊆ Rm.
For PM M of G , incidence vector xM ∈ Rm is given by

xMe =

{
1, if e ∈ M,

0, otherwise.

PM(G ) := conv{xM |M is a PM in G}

Let M∗ be a PM in G of minimum weight. Then,

w(M∗) = min{w(x)|x ∈ PM(G )}

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 37 / 59



Preliminaries Matching Polytope

Perfect Matching Polytope

xMe =

{
1, if e ∈ M,

0, otherwise.

PM(G ) := conv{xM |M is a PM in G}

Lemma

G be a bipartite graph & x ∈ Rm. x ∈ PM(G ) if and only if∑
e∈δ(v)

xe = 1 v ∈ V , (1)

xe ≥ 0 e ∈ E , (2)

where δ(v) denotes the set of edges incident on the vertex v.
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Preliminaries Nice Cycles and Circulations

Derandomise This

G (V ,E ) has a PM.

Nice cycle can be obtained from symmetric difference of 2 PMs.

Lemma

([DKR10]).Let G be a graph with a PM, & let w be a weight function
such that all nice cycles in G have nonzero circulation. Then the minimum
PM is unique. That is, w is isolating.
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Preliminaries Nice Cycles and Circulations

Derandomise This

G (V ,E ) has a PM.
Nice cycle can be obtained from symmetric difference of 2 PMs.
Note that a nice cycle is always an even cycle.

Lemma

([DKR10]).Let G be a graph with a PM, & let w be a weight function
such that all nice cycles in G have nonzero circulation. Then the minimum
PM is unique. That is, w is isolating.
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Preliminaries Nice Cycles and Circulations

Derandomise This

G (V ,E ) has a PM.
Nice cycle can be obtained from symmetric difference of 2 PMs.

Circulation cw (C )

For an even length cycle C = (v1, v2, · · · , vk)

cw (C ) := |w(v1, v2)− w(v2, v3) + w(v3, v4)− · · · − w(vk , v1)|

Lemma

([DKR10]).Let G be a graph with a PM, & let w be a weight function
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Preliminaries Nice Cycles and Circulations

Forcing Nonzero Circulation

Lemma

([CRS95]).For any s ∈ N one can construct a set of O(n2s) weight
assignments with weights bounded by O(n2s), such that for any set of s
cycles, one of the weight assignments gives nonzero circulation to each of
the s cycles. link

Proof.

Let {ei}i∈[m] enumerates E . Define, w(ei ) = 2i−1∀i ∈ [m].
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([CRS95]).For any s ∈ N one can construct a set of O(n2s) weight
assignments with weights bounded by O(n2s), such that for any set of s
cycles, one of the weight assignments gives nonzero circulation to each of
the s cycles. link

Proof.

Let {ei}i∈[m] enumerates E . Define, w(ei ) = 2i−1∀i ∈ [m].
Then clearly every cycle has a nonzero circulation. However, we want to
achieve this with small weights.
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Forcing Nonzero Circulation

Lemma

([CRS95]).For any s ∈ N one can construct a set of O(n2s) weight
assignments with weights bounded by O(n2s), such that for any set of s
cycles, one of the weight assignments gives nonzero circulation to each of
the s cycles. link

Proof.

Let {ei}i∈[m] enumerates E . Define, w(ei ) = 2i−1∀i ∈ [m].
Consider weight functions {w (mod j)|2 ≤ j ≤ t}.
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Preliminaries Nice Cycles and Circulations

Forcing Nonzero Circulation

Lemma

([CRS95]).For any s ∈ N one can construct a set of O(n2s) weight
assignments with weights bounded by O(n2s), such that for any set of s
cycles, one of the weight assignments gives nonzero circulation to each of
the s cycles. link

Proof.

Let {ei}i∈[m] enumerates E . Define, w(ei ) = 2i−1∀i ∈ [m].
Consider weight functions {w (mod j)|2 ≤ j ≤ t}.
We want to show that for any fixed set of s cycles {C1,C2, · · · ,Cs}, one
of these assignments will work, when t is chosen large enough.
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Forcing Nonzero Circulation

Lemma

([CRS95]).For any s ∈ N one can construct a set of O(n2s) weight
assignments with weights bounded by O(n2s), such that for any set of s
cycles, one of the weight assignments gives nonzero circulation to each of
the s cycles. link

Proof.

∃j ≤ t∀i ≤ s : cw (mod j)(Cj) ̸= 0
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Forcing Nonzero Circulation

Lemma

([CRS95]).For any s ∈ N one can construct a set of O(n2s) weight
assignments with weights bounded by O(n2s), such that for any set of s
cycles, one of the weight assignments gives nonzero circulation to each of
the s cycles. link

Proof.

∃j ≤ t∀i ≤ s : cw (mod j)(Cj) ̸= 0

∃j ≤ t :
s∏

i=1

cw (Ci ) ̸≡ 0 (mod j)
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Forcing Nonzero Circulation

Lemma

([CRS95]).For any s ∈ N one can construct a set of O(n2s) weight
assignments with weights bounded by O(n2s), such that for any set of s
cycles, one of the weight assignments gives nonzero circulation to each of
the s cycles. link

Proof.

∃j ≤ t∀i ≤ s : cw (mod j)(Cj) ̸= 0

lcm(2, 3, · · · , t) ∤
s∏

i=1

cw (Ci )
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Preliminaries Nice Cycles and Circulations

Forcing Nonzero Circulation

Lemma

([CRS95]).For any s ∈ N one can construct a set of O(n2s) weight
assignments with weights bounded by O(n2s), such that for any set of s
cycles, one of the weight assignments gives nonzero circulation to each of
the s cycles. link

Proof.

lcm(2, 3, · · · , t) ∤
s∏

i=1

cw (Ci )

Set lcm(2, 3, · · · , t) >
∏s

i=1 cw (Ci ). We know∏s
i=1 cw (Ci ) < 2n

2s&lcm(2, 3, · · · , t) > 2t for t ≥ 7. Choosing t = n2s
suffices.
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Isolation in Bipartite Graphs Union of Minimum Weight Perfect Matchings

Union of Minimum Weight Perfect Matchings

Lemma

Let C be a cycle in G such that cw (C ) ̸= 0. E1 be the union of all
minimum weight PMs in G. G1(V ,E1) does not contain C.

Proof.

Let x1, x2, · · · , xk be all the minimum weight PMs,i.e., corners of PM(G )
corresponding to weight q.

x =
x1, x2, · · · , xk

k

w(x) = q. Consider cycle C (e1, e2, · · · , ep) with cw (C ) ̸= 0. Suppose to
the contrary {e1, e2, · · · , ep} ∈ E1.
We show that when we move from point x along the cycle C , we reach a
point in the PM polytope with a weight < q.
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Isolation in Bipartite Graphs Union of Minimum Weight Perfect Matchings

Define y ∈ Rm :

ye =

{
xe + (−1)iε, ife = ei , for some i ∈ [p],

xe , otherwise

x-y has nonzero coordinates only on C , where its entries are alternating ε
and −ε.

w(x-y) = w(x)− w(y) = ±ε · cw (C ) ̸= 0

Choose ε > 0 such that

w(y) < w(x) = q

ye ≥ 0∀e ∈ E

Now we show that y ∈ PM(G ).But, as w(y) < q there must be a corner
point of PM(G ), corresponding to a PM in G with weight < q. This
would give us a contradiction, completing the proof.
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Isolation in Bipartite Graphs Union of Minimum Weight Perfect Matchings

Lemma

G be a bipartite graph & x ∈ Rm. x ∈ PM(G ) if and only if∑
e∈δ(v)

xe = 1 v ∈ V , (3)

xe ≥ 0 e ∈ E , (4)

where δ(v) denotes the set of edges incident on the vertex v.

As ye ≥ 0∀e ∈ E , the inequality (4) is satisfied. To show (3) is also
satisfied, consider v ∈ V :

1 v /∈ C . Then ye = xe∀e ∈ δ(v).

2 v ∈ C . Let ej , ej+1 ∈ C incident on v .yej = xej + (−1)jε and

yej+1 = xej+1 + (−1)j+1ε. ∀ other edges e ∈ δ(v), ye = xe .
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Isolation in Bipartite Graphs Union of Minimum Weight Perfect Matchings

Corollary

Every PM in G (V ,E1) has the same weight – the minimum weight of any
PM in G.

Let C = (v0, v1, · · · , vl−1) be a cycle of length l ≤ r ′. Given a cycle
of length ≤ 2r , choose 4 vertices as shown.

This is the only such cycle given u0, · · · , u3. If there is another such
cycle C ′ then

C ′ forms a cycle of length at most r . Contradiction.
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Isolation in Bipartite Graphs Constructing the Weight assignment

Constructing the Weight assignment

Definition

wi : weight function such that cycles in Gi of length ≤ 2i+2 have > 0
circulations.

Gi+1 : union of minimum weight PMs in Gi due to weight wi .

Define,
w = w0B

k−1 + w1B
k−2 + · · ·+ wk−1B0

The precedence decreases from w0 to wk1.

As a consequence, the PMs left in Gi have a strictly smaller weight
with respect to w than the ones in Gi1 that did not make it to Gi .
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Isolation in Bipartite Graphs Constructing the Weight assignment

Constructing the Weight assignment

Lemma

∀i ∈ [k] let M1 be PM’s in Gi and M2 be a PM Gi−1 which is not in Gi .
Then w(M1) < w(M2).

Proof.

M1,M2 are PM in Gi−1. Hence, ∀j < i − 1, wj(M1) = wj(M2). From
Corollary 3.3 it follows that wi−1(M1) < wi−1(M2). Hence,
w(M1) < w(M2).

Corollary

The weight assignment w is isolating for G0.
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Isolation in Bipartite Graphs Constructing the Weight assignment

Decision Problem

Lemma

In quasi-NC 1, one can construct a set of O(n6 log n) integer weight
functions on [n/2]× [n/2], where weights have O(log2 n) bits, such that for
any bipartite graph with n nodes, one of the weight functions is isolating.

One can decide the existence of a perfect matching in a bipartite graph in
quasi-NC2 as follows:

If the graph has a PM, then one of the weight functions isolates a
PM. For this weight function det(A) will be nonzero. When there is
no PM, then det(A) will be zero for any weight function.

Weights have O(log2 n) bits, determinant entries have
quasi-polynomial bits.

As we need to compute 2O(log2 n)-many determinants in parallel, our
algorithm is in quasi-NC 2 with circuit size 2O(log2 n).
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Isolation in Bipartite Graphs Constructing the Weight assignment

Search Problem

For a weight function w which is isolating, the algorithm outputs the
unique minimum weight PM M. If we have a weight function w0

which is not isolating, still det(A) might be non-zero with respect to
w0.

In this case, the algorithm computes a set of edges M0 that might or
might not be a perfect matching. However, it is easy to verify if M0 is
indeed a perfect matching, and in this case,we will output M0.

As the algorithm involves computation of similar determinants as in
the decision algorithm, it is in quasi-NC2 with circuit size 2O(log2 n).
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Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

For any two PM of G , the edges where they differ form disjoint cycles.

For a cycle C , its circulation is defined to be the difference of weights
of two PMs whose symmetric difference is C.

Datta et al. [DKR10] showed that a weight assignment which ensures
nonzero circulation for every cycle is isolating.

It is not clear if ∃ such a weight assignment with small weights.
Instead, we use a weight function that has nonzero circulations only
for small cycles.

Then, we consider the subgraph G ′ of G which is the union of
minimum weight PMs in G . In the bipartite case, graph G ′ is
significantly smaller than the original graph G .

In particular, we showed that G ′ does not contain any cycle with a
nonzero circulation. This meant that G ′ does not contain any small
cycles.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 48 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

For any two PM of G , the edges where they differ form disjoint cycles.

For a cycle C , its circulation is defined to be the difference of weights
of two PMs whose symmetric difference is C.

Datta et al. [DKR10] showed that a weight assignment which ensures
nonzero circulation for every cycle is isolating.

It is not clear if ∃ such a weight assignment with small weights.
Instead, we use a weight function that has nonzero circulations only
for small cycles.

Then, we consider the subgraph G ′ of G which is the union of
minimum weight PMs in G . In the bipartite case, graph G ′ is
significantly smaller than the original graph G .

In particular, we showed that G ′ does not contain any cycle with a
nonzero circulation. This meant that G ′ does not contain any small
cycles.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 48 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

For a cycle C , its circulation is defined to be the difference of weights
of two PMs whose symmetric difference is C.

Datta et al. [DKR10] showed that a weight assignment which ensures
nonzero circulation for every cycle is isolating.

It is not clear if ∃ such a weight assignment with small weights.
Instead, we use a weight function that has nonzero circulations only
for small cycles.

Then, we consider the subgraph G ′ of G which is the union of
minimum weight PMs in G . In the bipartite case, graph G ′ is
significantly smaller than the original graph G .

In particular, we showed that G ′ does not contain any cycle with a
nonzero circulation. This meant that G ′ does not contain any small
cycles.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 48 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

For a cycle C , its circulation is defined to be the difference of weights
of two PMs whose symmetric difference is C.

Datta et al. [DKR10] showed that a weight assignment which ensures
nonzero circulation for every cycle is isolating.

It is not clear if ∃ such a weight assignment with small weights.
Instead, we use a weight function that has nonzero circulations only
for small cycles.

Then, we consider the subgraph G ′ of G which is the union of
minimum weight PMs in G . In the bipartite case, graph G ′ is
significantly smaller than the original graph G .

In particular, we showed that G ′ does not contain any cycle with a
nonzero circulation. This meant that G ′ does not contain any small
cycles.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 48 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

For a cycle C , its circulation is defined to be the difference of weights
of two PMs whose symmetric difference is C.

Datta et al. [DKR10] showed that a weight assignment which ensures
nonzero circulation for every cycle is isolating.

It is not clear if ∃ such a weight assignment with small weights.
Instead, we use a weight function that has nonzero circulations only
for small cycles.

Then, we consider the subgraph G ′ of G which is the union of
minimum weight PMs in G . In the bipartite case, graph G ′ is
significantly smaller than the original graph G .

In particular, we showed that G ′ does not contain any cycle with a
nonzero circulation. This meant that G ′ does not contain any small
cycles.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 48 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

For a cycle C , its circulation is defined to be the difference of weights
of two PMs whose symmetric difference is C.

Datta et al. [DKR10] showed that a weight assignment which ensures
nonzero circulation for every cycle is isolating.

It is not clear if ∃ such a weight assignment with small weights.
Instead, we use a weight function that has nonzero circulations only
for small cycles.

Then, we consider the subgraph G ′ of G which is the union of
minimum weight PMs in G . In the bipartite case, graph G ′ is
significantly smaller than the original graph G .

In particular, we showed that G ′ does not contain any cycle with a
nonzero circulation. This meant that G ′ does not contain any small
cycles.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 48 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

For a cycle C , its circulation is defined to be the difference of weights
of two PMs whose symmetric difference is C.

Datta et al. [DKR10] showed that a weight assignment which ensures
nonzero circulation for every cycle is isolating.

It is not clear if ∃ such a weight assignment with small weights.
Instead, we use a weight function that has nonzero circulations only
for small cycles.

Then, we consider the subgraph G ′ of G which is the union of
minimum weight PMs in G . In the bipartite case, graph G ′ is
significantly smaller than the original graph G .

In particular, we showed that G ′ does not contain any cycle with a
nonzero circulation. This meant that G ′ does not contain any small
cycles.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 48 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

For a cycle C , its circulation is defined to be the difference of weights
of two PMs whose symmetric difference is C.

Datta et al. [DKR10] showed that a weight assignment which ensures
nonzero circulation for every cycle is isolating.

It is not clear if ∃ such a weight assignment with small weights.
Instead, we use a weight function that has nonzero circulations only
for small cycles.

Then, we consider the subgraph G ′ of G which is the union of
minimum weight PMs in G . In the bipartite case, graph G ′ is
significantly smaller than the original graph G .

In particular, we showed that G ′ does not contain any cycle with a
nonzero circulation. This meant that G ′ does not contain any small
cycles.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 48 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

Next, we showed that for a graph which has no cycles of length < r , the
number of cycles of length < 2r is polynomially bounded. This motivated
the following strategy which works in log n rounds:

in the i−th round, assign weights which ensure nonzero circulations
for all cycles with length < 2i .

Since the graph obtained after (i − 1)− th rounds has no cycles of
length 2i−1, the number of cycles of length 2i is small.

In log n rounds, we get a unique minimum weight perfect matching.

Instead of quasi-NC, we can get an RNC-circuit but with only
O(log2 n) random bits.

For complete derandomization, it would suffice to bring the number
of random bits down to O(log n). Then there are only polynomially
many random strings which can all be tested in NC.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 49 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

Next, we showed that for a graph which has no cycles of length < r , the
number of cycles of length < 2r is polynomially bounded. This motivated
the following strategy which works in log n rounds:

in the i−th round, assign weights which ensure nonzero circulations
for all cycles with length < 2i .

Since the graph obtained after (i − 1)− th rounds has no cycles of
length 2i−1, the number of cycles of length 2i is small.

In log n rounds, we get a unique minimum weight perfect matching.

Instead of quasi-NC, we can get an RNC-circuit but with only
O(log2 n) random bits.

For complete derandomization, it would suffice to bring the number
of random bits down to O(log n). Then there are only polynomially
many random strings which can all be tested in NC.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 49 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

Next, we showed that for a graph which has no cycles of length < r , the
number of cycles of length < 2r is polynomially bounded. This motivated
the following strategy which works in log n rounds:

in the i−th round, assign weights which ensure nonzero circulations
for all cycles with length < 2i .

Since the graph obtained after (i − 1)− th rounds has no cycles of
length 2i−1, the number of cycles of length 2i is small.

In log n rounds, we get a unique minimum weight perfect matching.

Instead of quasi-NC, we can get an RNC-circuit but with only
O(log2 n) random bits.

For complete derandomization, it would suffice to bring the number
of random bits down to O(log n). Then there are only polynomially
many random strings which can all be tested in NC.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 49 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

Next, we showed that for a graph which has no cycles of length < r , the
number of cycles of length < 2r is polynomially bounded. This motivated
the following strategy which works in log n rounds:

in the i−th round, assign weights which ensure nonzero circulations
for all cycles with length < 2i .

Since the graph obtained after (i − 1)− th rounds has no cycles of
length 2i−1, the number of cycles of length 2i is small.

In log n rounds, we get a unique minimum weight perfect matching.

Instead of quasi-NC, we can get an RNC-circuit but with only
O(log2 n) random bits.

For complete derandomization, it would suffice to bring the number
of random bits down to O(log n). Then there are only polynomially
many random strings which can all be tested in NC.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 49 / 59



Isolation in Bipartite Graphs Constructing the Weight assignment

Recap

Next, we showed that for a graph which has no cycles of length < r , the
number of cycles of length < 2r is polynomially bounded. This motivated
the following strategy which works in log n rounds:

in the i−th round, assign weights which ensure nonzero circulations
for all cycles with length < 2i .

Since the graph obtained after (i − 1)− th rounds has no cycles of
length 2i−1, the number of cycles of length 2i is small.

In log n rounds, we get a unique minimum weight perfect matching.

Instead of quasi-NC, we can get an RNC-circuit but with only
O(log2 n) random bits.

For complete derandomization, it would suffice to bring the number
of random bits down to O(log n). Then there are only polynomially
many random strings which can all be tested in NC.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 49 / 59



An RNC Algorithm with few Random bits

RNC 2 Algorithms with Few Random Bits
Decision Version
Search Version
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An RNC Algorithm with few Random bits Decision Version

Decision Version

Theorem

For bipartite graphs, there is an RNC 2-algorithm for PM which uses
O(log2 n) random bits.

We needed quasi-polynomially large circuits for two reasons:

1 we need to try quasi-polynomially many different weight assignments.

2 each weight assignment has quasi-polynomially large weights.

We show how to come down to polynomial bounds in both cases by using
randomization.
To solve the first problem, we modify Lemma 2.3 to get a random weight
assignment which works with high probability. link
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An RNC Algorithm with few Random bits Decision Version

The Modified Lemma

Let G be a graph with n nodes and s ≥ 1.

Lemma

There is a random weight assignment w which uses O(log ns) random bits
and assigns weights bounded by O(n3s log ns), i.e., with O(log ns) bits,
such that for any set of s cycles, w gives nonzero circulation to each of
the s cycles with probability at least 1− 1/n.

Proof.

w(ei ) = 2i−1.Give exponential weights modulo small prime numbers.
Choose a random number p among the first t primes.We want to show
that with high probability

∏s
i=1 cw (Ci ) ̸≡ 0 (mod p).

Product is bounded by 2n
2s , so it has at most n2s prime factors. Choose

t = n3s.Then, the random prime works with probability ≥ (1− 1/n).
Now tth prime ≤ 2t log t = O(n3s log ns), by which the weights are
bounded by, hence have O(log ns) bits.
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An RNC Algorithm with few Random bits Decision Version

We choose each of the weight functions w0,w1, · · · ,wk1

independently. Probability that all of them provide non-zero
circulation on their respective cycles ≥ 1− k/n ≥ 1− log n/n by
union bound.

Define A ∈ Rn/2×n/2 as

A(i , j) =

{∏k−1
i=0 x

wi (e)
i , if e = (ui , vj) ∈ E

0, otherwise

det(A) =
∑

M PM in G

sgn(M)
k−1∏
i=0

x
wi (M)
i

Lemma

det(A) ̸= 0 if and only if G has a PM.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 53 / 59



An RNC Algorithm with few Random bits Decision Version

We choose each of the weight functions w0,w1, · · · ,wk1

independently. Probability that all of them provide non-zero
circulation on their respective cycles ≥ 1− k/n ≥ 1− log n/n by
union bound.

Define A ∈ Rn/2×n/2 as

A(i , j) =

{∏k−1
i=0 x

wi (e)
i , if e = (ui , vj) ∈ E

0, otherwise

det(A) =
∑

M PM in G

sgn(M)
k−1∏
i=0

x
wi (M)
i

Lemma

det(A) ̸= 0 if and only if G has a PM.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 53 / 59



An RNC Algorithm with few Random bits Decision Version

We choose each of the weight functions w0,w1, · · · ,wk1

independently. Probability that all of them provide non-zero
circulation on their respective cycles ≥ 1− k/n ≥ 1− log n/n by
union bound.

Define A ∈ Rn/2×n/2 as

A(i , j) =

{∏k−1
i=0 x

wi (e)
i , if e = (ui , vj) ∈ E

0, otherwise

det(A) =
∑

M PM in G

sgn(M)
k−1∏
i=0

x
wi (M)
i

Lemma

det(A) ̸= 0 if and only if G has a PM.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 53 / 59



An RNC Algorithm with few Random bits Decision Version

We choose each of the weight functions w0,w1, · · · ,wk1

independently. Probability that all of them provide non-zero
circulation on their respective cycles ≥ 1− k/n ≥ 1− log n/n by
union bound.

Define A ∈ Rn/2×n/2 as

A(i , j) =

{∏k−1
i=0 x

wi (e)
i , if e = (ui , vj) ∈ E

0, otherwise

det(A) =
∑

M PM in G

sgn(M)
k−1∏
i=0

x
wi (M)
i

Lemma

det(A) ̸= 0 if and only if G has a PM.

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 53 / 59



An RNC Algorithm with few Random bits Decision Version

Complexity

Number of random bits:

For a weight assignment wi , we need O(log ns) random bits, where
s = n4. Number of random bits required for all wi ’s together is
O(k log n) = O(log2 n). Finally, we need to plug in O(log n) random bits
for each xi . This again requires O(log2 n) random bits.

Complexity

Weight construction involves taking exponential weights modulo small
primes. Primality testing can be done by the brute force algorithm in NC 2,
as the numbers involved have O(logn) bits. Thus, the weight assignments
can be constructed in NC 2. Moreover, the determinant with polynomially
bounded entries can be computed in NC 2[Ber84].

In summary, we get an RNC 2-algorithm that uses O(log2 n) random bits.
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An RNC Algorithm with few Random bits Search Version

Search Version

Theorem

For bipartite graphs, there is an RNC 3-algorithm for Search-PM which
uses O(log2 n) random bits.

Let G (V ,E ) be bipartite. Construct weight assignments as before.
Let M∗ be the unique minimum weight PM in G with respect to the
combined weight function w .

The bottleneck is its not obvious how to create the graphs
G1,G2, · · · ,Gk using O(log n2) random bits.

We construct sequence of graphs {Hr}i∈[k] such that Hr ⊆ Gr and
contains M∗,∀r ∈ [k].

Once we have Hk = Gk we are done.
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An RNC Algorithm with few Random bits Search Version

Search Version

H0 = G . Suppose we have constructed Hr (V ,Er ).

An edge will appear in
Hr+1 only if participates in a matching M with wr (M) = wr (M

∗). Thus
Hr+1 ⊆ Gr+1.
For e ∈ Er , define Ae ∈ Rn/2×n/2 as

Ae(i , j) =

{
X

w(e′)
r , if e ′ = (ui , vj) ∈ Er − N(e)

0, otherwise

where

X
w(e)
r =

k−1∏
i=r

x
wi (e)
i

det(Ae) =
∑

M PM in Hr
e∈M

sgn(M)X
w(e)
r

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 56 / 59



An RNC Algorithm with few Random bits Search Version

Search Version

H0 = G . Suppose we have constructed Hr (V ,Er ). An edge will appear in
Hr+1 only if participates in a matching M with wr (M) = wr (M

∗). Thus
Hr+1 ⊆ Gr+1.

For e ∈ Er , define Ae ∈ Rn/2×n/2 as

Ae(i , j) =

{
X

w(e′)
r , if e ′ = (ui , vj) ∈ Er − N(e)

0, otherwise

where

X
w(e)
r =

k−1∏
i=r

x
wi (e)
i

det(Ae) =
∑

M PM in Hr
e∈M

sgn(M)X
w(e)
r

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 56 / 59



An RNC Algorithm with few Random bits Search Version

Search Version

H0 = G . Suppose we have constructed Hr (V ,Er ). An edge will appear in
Hr+1 only if participates in a matching M with wr (M) = wr (M

∗). Thus
Hr+1 ⊆ Gr+1.
For e ∈ Er , define Ae ∈ Rn/2×n/2 as

Ae(i , j) =

{
X

w(e′)
r , if e ′ = (ui , vj) ∈ Er − N(e)

0, otherwise

where

X
w(e)
r =

k−1∏
i=r

x
wi (e)
i

det(Ae) =
∑

M PM in Hr
e∈M

sgn(M)X
w(e)
r

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 56 / 59



An RNC Algorithm with few Random bits Search Version

Search Version

H0 = G . Suppose we have constructed Hr (V ,Er ). An edge will appear in
Hr+1 only if participates in a matching M with wr (M) = wr (M

∗). Thus
Hr+1 ⊆ Gr+1.
For e ∈ Er , define Ae ∈ Rn/2×n/2 as

Ae(i , j) =

{
X

w(e′)
r , if e ′ = (ui , vj) ∈ Er − N(e)

0, otherwise

where

X
w(e)
r =

k−1∏
i=r

x
wi (e)
i

det(Ae) =
∑

M PM in Hr
e∈M

sgn(M)X
w(e)
r

Prathik, Prayas & Sreenivas Parallel Algorithms for Perfect Matchings 17-November-2022 56 / 59



An RNC Algorithm with few Random bits Search Version

Search Version

Consider the coefficient ce of x
wr (M∗)
r in det(Ae),

ce =
∑

M PM in Hr
wr (M)=wr (M∗),e∈M

sgn(M)X
w(e)
r+1

Define Hr+1 to be the union of all edges e for which the polynomial
ce ̸= 0.

For any edge e ∈ M , the polynomial ce will contain the term X
w(e)
r+1 .

As the matching M is isolated in Hr with respect to the weight vector
(wr+1, · · · ,wk1), the polynomial ce is nonzero.

In NC 2 , we can construct the weight assignments and compute the
determinants in each round. As we have k = O(log n) rounds, the overall
complexity becomes NC 3.
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Extension and Related Problems Bipartite Planar Graphs

Bipartite Planar Graphs

State-of-art: [MN,95],[DKR,10]→ NC 2, [MV,00]→ NC 3

Using above techniques, we can devise an alternate NC 3 algorithm.

Key Idea: #PerfectMatchings of minimum weight can be counted using
Pfaffian orientation.

Algorithm:

In ith round, compute Gi explicitly.

Count #MinWtPerfectMatchings in Gi−1

For each edge e, check if deletion reduces the above number.

Run the above step for n6 possibilities of wi−1; One of them ensures
that there are no cycles of length ≤ 2i+1 in Gi .

Finding shortest cycle is in NC 2.

Total Complexity: NC 3 for log n rounds.
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Conclusion

Conclusion

The major open question remains whether one can do isolation with
polynomially bounded weights.

Our construction requires quasi-polynomial weights because it takes
log n rounds to reach a unique PM and the graphs obtained in the
successive rounds cannot be constructed.

For non-bipartite graphs, our approach fails in its first step: There
can be matchings other than min-weight matchings when we go from
Gi to Gi+1.

Svensson and Tarnawski [ST,17] generalized Quasi-NC 3 for General
graphs.
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