UPATH is in L

Anish Hebbar, Shravan Mehra, Prashant Gokhale

November 25, 2022

▶ Consists of (G, s, t), where G = (V, E) is a simple graph with a path joining the vertices s, t.

► Consists of (G, s, t), where G = (V, E) is a simple graph with a path joining the vertices s, t.

► Consists of (G, s, t), where G = (V, E) is a simple graph with a path joining the vertices s, t.

► In class, we saw that *PATH* was in *NL*

▶ UPATH can be decided in linear time, using basic search algorithms like BFS or DFS. However, these algorithms have O(n) space requirements.

- ▶ UPATH can be decided in linear time, using basic search algorithms like BFS or DFS. However, these algorithms have O(n) space requirements.
- A more space efficient algorithm was given by Savitch [Sav70], which showed that *UPATH* can be decided using $O(\log^2(n))$ space (and super polynomial time).

- ▶ UPATH can be decided in linear time, using basic search algorithms like BFS or DFS. However, these algorithms have O(n) space requirements.
- ► A more space efficient algorithm was given by Savitch [Sav70], which showed that *UPATH* can be decided using $O(\log^2(n))$ space (and super polynomial time).
- ► Aleliunas, Karp, Lipton, Lovasz, and Rackoff [AKLLR79] gave a randomized logspace algorithm for UPATH, showing UPATH ∈ RL.

- ▶ UPATH can be decided in linear time, using basic search algorithms like BFS or DFS. However, these algorithms have O(n) space requirements.
- A more space efficient algorithm was given by Savitch [Sav70], which showed that *UPATH* can be decided using $O(\log^2(n))$ space (and super polynomial time).
- ► Aleliunas, Karp, Lipton, Lovasz, and Rackoff [AKLLR79] gave a randomized logspace algorithm for UPATH, showing UPATH ∈ RL.
- ▶ Armoni, Ta-Shma, Wigderson, Zhou [ATSWZ00] later showed $UPATH \in L^{4/3}$, using the technique of derandomization.

- ► UPATH can be decided in linear time, using basic search algorithms like BFS or DFS. However, these algorithms have O(n) space requirements.
- ► A more space efficient algorithm was given by Savitch [Sav70], which showed that *UPATH* can be decided using $O(\log^2(n))$ space (and super polynomial time).
- ► Aleliunas, Karp, Lipton, Lovasz, and Rackoff [AKLLR79] gave a randomized logspace algorithm for UPATH, showing UPATH ∈ RL.
- Armoni, Ta-Shma, Wigderson, Zhou [ATSWZ00] later showed $UPATH \in L^{4/3}$, using the technique of derandomization.
- ► Trifonov[Tri05] proved that *UPATH* can be decided deterministically. using *O*(log *n* log log *n*) space.

UPATH is in RL

 $\mathtt{UPATH} \in \textbf{RL}$

► Consider the following random walk on the (simple) graph G. For any vertex $u \in V$, we move to vertex $v \in V$ with probability

$$P_{uv} = \begin{cases} rac{1}{d(u)}, & ext{if } \{u, v\} \in E \\ 0 & ext{otherwise.} \end{cases}$$

► Consider the following random walk on the (simple) graph G. For any vertex $u \in V$, we move to vertex $v \in V$ with probability

$$P_{uv} = \begin{cases} \frac{1}{d(u)}, & \text{if } \{u, v\} \in E\\ 0 & \text{otherwise.} \end{cases}$$

► In this random walk, the probability distribution of the next state ONLY depends on the previous state (i.e., it has short-term memory)

► Consider the following random walk on the (simple) graph G. For any vertex $u \in V$, we move to vertex $v \in V$ with probability

$$P_{uv} = \begin{cases} rac{1}{d(u)}, & ext{if } \{u, v\} \in E \\ 0 & ext{otherwise.} \end{cases}$$

- ► In this random walk, the probability distribution of the next state ONLY depends on the previous state (i.e., it has short-term memory)
- ▶ This corresponds to a Markov Chain on the graph G, with state space |V| and transition matrix P with transition probabilities P_{uv}

$$P = \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{pmatrix}$$

▶

$$P = \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{pmatrix}$$

▶ A finite markov chain is an infinite sequence X_0, X_1, \cdots of random variables, on a statespace Ω such that for all $i, j, a_0, a_1 \ldots, a_{k-2} \in \Omega$, we have

$$P(X_k = j | X_0 = a_0, ..., X_{k-2} = a_{k-2}, X_{k-1} = i)$$

= $P(X_k = j | X_{k-1} = i) = P_{ij}$

For a Markov Chain M on a finite statespace Ω , $(|\Omega| = n)$ with transition matrix P, we say a $1 \times n$ row vector π (transpose is a column vector in \mathbb{R}^n) is a stationary distribution for M if $\pi P = \pi$

$$(\pi(1)\cdots\pi(n)) \cdot \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{pmatrix} = (\pi(1)\cdots\pi(n))$$

• $\pi(i) = d(i)$ is a stationary distribution for any random walk on a graph G

$$(d(1)\cdots d(n)) \cdot \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{pmatrix} = (d(1)\cdots d(n))$$

 \blacktriangleright $\pi(i) = d(i)$ is a stationary distribution for any random walk on a graph G

$$(d(1)\cdots d(n)) \cdot \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{pmatrix} = (d(1)\cdots d(n))$$

$$\sum_{j \in V} d(j) P_{ji} = \sum_{j \in N(i)} d(j) \cdot \frac{1}{d(j)} = |N(i)| = d(i)$$

 \blacktriangleright $\pi(i) = d(i)$ is a stationary distribution for any random walk on a graph G

$$(d(1)\cdots d(n)) \cdot \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{pmatrix} = (d(1)\cdots d(n))$$

$$\sum_{j\in V} d(j)P_{ji} = \sum_{j\in N(i)} d(j) \cdot \frac{1}{d(j)} = |N(i)| = d(i)$$

$$Y^0 = Y, Y^1 = Y \cdot P = YP, Y^2 = Y^1 \cdot P = YP^2, \dots Y^k = YP^k$$

▶ A markov chain is said to be irreducible if and only for any $i, j \in \Omega$, we have that there exists t > 0 (possibly depending on i, j) such that

$$P(X_t = j | X_0 = i) > 0$$

▶ A markov chain is said to be irreducible if and only for any $i, j \in \Omega$, we have that there exists t > 0 (possibly depending on i, j) such that

$$P(X_t = j | X_0 = i) > 0$$

▶ So, if we start a random walk at some $i \in \Omega$, we will be at j after t steps with some *positive probability*, which means there is a path between i and j.

▶ A markov chain is said to be irreducible if and only for any $i, j \in \Omega$, we have that there exists t > 0 (possibly depending on i, j) such that

$$P(X_t = j | X_0 = i) > 0$$

- ▶ So, if we start a random walk at some $i \in \Omega$, we will be at j after t steps with some *positive probability*, which means there is a path between i and j.
- ► The markov chain corresponding to a random walk on a connected graph *G* is irreducible, as there is a path between any 2 vertices.

▶ A markov chain is said to be irreducible if and only for any $i, j \in \Omega$, we have that there exists t > 0 (possibly depending on i, j) such that

$$P(X_t = j | X_0 = i) > 0$$

- ▶ So, if we start a random walk at some $i \in \Omega$, we will be at j after t steps with some *positive probability*, which means there is a path between i and j.
- ► The markov chain corresponding to a random walk on a connected graph *G* is irreducible, as there is a path between any 2 vertices.
- ► For a finite irreducible markov chain *M*, there is a **unique** stationary distribution for *M*, up to a multiplicative factor.

▶ Suppose there are 2 stationary distributions, a and b. Note that $a(i), b(i) \neq 0 \ \forall i \in \Omega$, due to irreducibility and stationarity.

- ▶ Suppose there are 2 stationary distributions, a and b. Note that $a(i), b(i) \neq 0 \ \forall i \in \Omega$, due to irreducibility and stationarity.
- Let $j \in \Omega$ be chosen to minimize $\frac{a(i)}{b(i)}$, i.e., $j = argmin_{i \in \Omega} \frac{a(i)}{b(i)}$, and define $r = \frac{a(j)}{b(i)}$

- ▶ Suppose there are 2 stationary distributions, a and b. Note that $a(i), b(i) \neq 0 \ \forall i \in \Omega$, due to irreducibility and stationarity.
- Let $j \in \Omega$ be chosen to minimize $\frac{a(i)}{b(i)}$, i.e., $j = argmin_{i \in \Omega} \frac{a(i)}{b(i)}$, and define $r = \frac{a(j)}{b(i)}$

$$a(j) = \sum_{i \in \Omega} a(i)P_{ij} = \sum_{i \in \Omega} \frac{a(i)}{b(i)}b(i)P_{ij}$$

$$\geq \sum_{i \in \Omega} r \cdot b(i)P_{ij}$$

$$= r\sum_{i \in \Omega} b(i)P_{ij}$$

$$= rb(j)$$

$$= a(j)$$

$$\frac{a(i)}{b(i)}P_{ij} = rP_{ij} \implies a(i) = rb(i) \text{ IF } P_{ij} > 0$$

$$\frac{a(i)}{b(i)}P_{ij} = rP_{ij} \implies a(i) = rb(i) \text{ IF } P_{ij} > 0$$

▶ By irreducibility, for any i,j there exists t such that $P_{ii}^t > 0$

$$a(j) = \sum_{i \in \Omega} a(i) P_{ij}^{t} = \sum_{i \in \Omega} \frac{a(i)}{b(i)} b(i) P_{ij}^{t}$$

$$\geq \sum_{i \in \Omega} r \cdot b(i) P_{ij}^{t}$$

$$= r \sum_{i \in \Omega} b(i) P_{ij}^{t}$$

$$= rb(j)$$

$$= a(j)$$

► It turns out that any finite irreducible markov chain actually has a stationary distribution, given by

$$\pi(i) = \frac{1}{T^+(i)}$$

where $T^+(i)$ is the expected first return time of a random walk starting at i.

► It turns out that any finite irreducible markov chain actually has a stationary distribution, given by

$$\pi(i) = \frac{1}{T^+(i)}$$

where $T^+(i)$ is the expected first return time of a random walk starting at i.

▶ A random commute from i to j is a random walk starting at i that ends the first time it visits i, provided that it has travelled through j. Define T_{ij} to be the expected number of steps in such a random commute.

► It turns out that any finite irreducible markov chain actually has a stationary distribution, given by

$$\pi(i) = \frac{1}{T^+(i)}$$

where $T^+(i)$ is the expected first return time of a random walk starting at i.

- ▶ A random commute from i to j is a random walk starting at i that ends the first time it visits i, provided that it has travelled through j. Define T_{ij} to be the expected number of steps in such a random commute.
- ► For any $i, j, u, v \in V$ with $\{u, v\} \in E$, define θ_{ijuv} to be the expected number of times the edge $\{u, v\}$ (in that order) is visited in a random commute from i to j

▶ $\theta_{ijuv} = \theta_{ijuv'}$, $\forall v' \in N(u)$. This is because in any random commute from i to j, once u is visited, any of its neighbours are visited with equal probability. So we write $\theta_{ijuv} = \theta_{iju}$

UPATH is in I

Random Walks and Markov Chains

- ▶ $\theta_{ijuv} = \theta_{ijuv'}$, $\forall v' \in N(u)$. This is because in any random commute from i to j, once u is visited, any of its neighbours are visited with equal probability. So we write $\theta_{ijuv} = \theta_{iju}$
- $ightharpoonup heta_{iju}$ is actually independent of u.

$$\sum_{v \in N(u)} \theta_{ijuv} = d(u)\theta_{iju} = \sum_{v \in N(u)} \theta_{ijvu}$$

$$= \sum_{v \in N(u)} d(v)\theta_{ijv} \frac{1}{d(v)} = \sum_{v \in V} d(v)\theta_{ijv} P_{vu}$$

Think of the LHS as the number of times the random commute leaves u, which must be equal to the number of times it enters u in any random commute from i to j.

- ▶ $\theta_{ijuv} = \theta_{ijuv'}$, $\forall v' \in N(u)$. This is because in any random commute from i to j, once u is visited, any of its neighbours are visited with equal probability. So we write $\theta_{ijuv} = \theta_{iju}$
- $ightharpoonup heta_{iju}$ is actually independent of u.

$$\begin{split} \sum_{v \in N(u)} \theta_{ijuv} &= d(u)\theta_{iju} = \sum_{v \in N(u)} \theta_{ijvu} \\ &= \sum_{v \in N(u)} d(v)\theta_{ijv} \frac{1}{d(v)} = \sum_{v \in V} d(v)\theta_{ijv} P_{vu} \end{split}$$

Think of the LHS as the number of times the random commute leaves u, which must be equal to the number of times it enters u in any random commute from i to j.

► Let
$$\pi'(u) = d(u)\theta_{iiii}$$
 Then $\pi' = \pi'P$

▶ $T_{ij} \le 2|E|$, for any edge $\{i, j\} \in E$

- ► $T_{ij} \le 2|E|$, for any edge $\{i, j\} \in E$
- ▶ $\theta_{ijij} \leq 1$ for any random commute from i to j.

$$T_{ij} = \sum_{\{u,v\} \in E} (\theta_{ijuv} + \theta_{ijvu}) = \sum_{\{u,v\} \in E} 2\theta_{ijij} = \theta_{ijij} (\sum_{\{u,v\} \in E} 2) \le 2|E|$$

Random Walks and Markov Chains

► Random commute times satisfy the triangle inequality, i.e.,

$$T_{ij} \leq T_{ik} + T_{kj}$$

Random Walks and Markov Chains

► Random commute times satisfy the triangle inequality, i.e.,

$$T_{ij} \leq T_{ik} + T_{kj}$$

▶ So for any s, t that are connected by a path of length $\leq n$, we have

$$T_{st} \leq n \cdot 2|E| \leq 2n^3$$

Random Walks and Markov Chains

► Random commute times satisfy the triangle inequality, i.e.,

$$T_{ij} \leq T_{ik} + T_{kj}$$

▶ So for any s, t that are connected by a path of length $\leq n$, we have

$$T_{st} \leq n \cdot 2|E| \leq 2n^3$$

Note that even if the graph is not connected, the above bound holds as long as s, t are in the same component, as we can simply take our original graph to be the connected component containing s, t in the analysis.

▶ Algorithm: Consider a random walk starting at s that runs for $6n^3$ steps. Output YES if you hit t, no otherwise.

- ▶ Algorithm: Consider a random walk starting at s that runs for $6n^3$ steps. Output YES if you hit t, no otherwise.
- ► Let X_{st} be the time taken for a random walk starting at s to hit t. Note that $E[X_{st}] < E[T_{st}] < 2n^3$.

- ▶ Algorithm: Consider a random walk starting at s that runs for $6n^3$ steps. Output YES if you hit t, no otherwise.
- ▶ Let X_{st} be the time taken for a random walk starting at s to hit t. Note that $E[X_{st}] \le E[T_{st}] \le 2n^3$.
- ► $P(Failure) = P(X_{st} > 6n^3) \le \frac{E[X_{st}]}{6n^3} \le \frac{2n^3}{6n^3} \le 1/3$

- Algorithm: Consider a random walk starting at s that runs for $6n^3$ steps. Output YES if you hit t, no otherwise.
- ▶ Let X_{st} be the time taken for a random walk starting at s to hit t. Note that $E[X_{st}] < E[T_{st}] < 2n^3$.
- ► $P(Failure) = P(X_{st} > 6n^3) \le \frac{E[X_{st}]}{6n^3} \le \frac{2n^3}{6n^3} \le 1/3$
- ► This is in logspace as it takes $O(\log n)$ bits to index any vertex, and we don't need to keep track of previously visited vertices.

Random Walk Matrix (for *d*-regular graphs)

- ▶ Let G be a d-regular n-vertex graph.
- ightharpoonup M is the adjacency matrix of G, where

 $M_{i,j} = \text{number of edges between } i \text{ and } j$

Random Walk Matrix (for d-regular graphs)

- ▶ Let G be a d-regular n-vertex graph.
- ightharpoonup M is the adjacency matrix of G, where

$$M_{i,j} = \text{number of edges between } i \text{ and } j$$

▶ Define $A = \frac{1}{d}M$. A is the random walk matrix of G.

Random Walk Matrix (for d-regular graphs)

- ▶ Let G be a d-regular n-vertex graph.
- ightharpoonup M is the adjacency matrix of G, where

$$M_{i,j} = \text{number of edges between } i \text{ and } j$$

- ▶ Define $A = \frac{1}{d}M$. A is the random walk matrix of G.
- ▶ Observe that rows and colums of *A* sum to 1, and that *A* is symmetric.

Parameter $\lambda(G)$

▶ Denote by **1** the vector $\left(\frac{1}{n}, \frac{1}{n},, \frac{1}{n}\right)$. Denote by **1**[⊥] the set of vectors perpendicular to **1**.

Parameter $\lambda(G)$

- ▶ Denote by **1** the vector $\left(\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right)$. Denote by **1**[⊥] the set of vectors perpendicular to **1**.
- ▶ The parameter $\lambda(A)$, also denoted as $\lambda(G)$, is the maximum value of $\|A\mathbf{v}\|_2$ over all vectors $\mathbf{v} \in \mathbf{1}^{\perp}$ with $\|\mathbf{v}\|_2 = 1$

$$\lambda(G) = \max_{\mathbf{v} \in \mathbf{1}^{\perp} : \|\mathbf{v}\|_{2} = 1} \|A\mathbf{v}\|_{2}$$

Claim

 $\lambda(G)$ is the absolute value of the second largest eigenvalue of A (the random walk matrix of G). In particular, for connected graphs

$$1 = \lambda_1 > \lambda(G) \ge |\lambda_3| \cdots \ge |\lambda_n|$$

Since A is a symmetric matrix, we can find an orthogonal basis of eigenvectors v_1, \ldots, v_n with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ which we can sort to ensure $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$.

- ▶ Since A is a symmetric matrix, we can find an orthogonal basis of eigenvectors v_1, \ldots, v_n with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ which we can sort to ensure $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$.
- Note that $A\mathbf{1} = \mathbf{1}$. This is because $(A\mathbf{1})_i$ is the dot product i^{th} row of A and the vector $\mathbf{1}$. Because row sum for any row is equal to 1, we get $(A\mathbf{1})_i = 1/n$

- ▶ Since A is a symmetric matrix, we can find an orthogonal basis of eigenvectors v_1, \ldots, v_n with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ which we can sort to ensure $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$.
- Note that $A\mathbf{1} = \mathbf{1}$. This is because $(A\mathbf{1})_i$ is the dot product i^{th} row of A and the vector $\mathbf{1}$. Because row sum for any row is equal to 1, we get $(A\mathbf{1})_i = 1/n$
- ► Therefore, **1** is an *eigenvector* of *A* and the corresponding eigenvalue is equal to 1.

- ▶ Since A is a symmetric matrix, we can find an orthogonal basis of eigenvectors v_1, \ldots, v_n with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ which we can sort to ensure $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$.
- Note that $A\mathbf{1} = \mathbf{1}$. This is because $(A\mathbf{1})_i$ is the dot product i^{th} row of A and the vector $\mathbf{1}$. Because row sum for any row is equal to 1, we get $(A\mathbf{1})_i = 1/n$
- ► Therefore, **1** is an *eigenvector* of *A* and the corresponding eigenvalue is equal to 1.
- Now suppose $Ax = \lambda x$. Then, $A^n x = \lambda^n x$. Since any row in A^n has sum 1, we are taking positive weight combinations of entries in x.

- ▶ Since A is a symmetric matrix, we can find an orthogonal basis of eigenvectors v_1, \ldots, v_n with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ which we can sort to ensure $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$.
- Note that $A\mathbf{1} = \mathbf{1}$. This is because $(A\mathbf{1})_i$ is the dot product i^{th} row of A and the vector $\mathbf{1}$. Because row sum for any row is equal to 1, we get $(A\mathbf{1})_i = 1/n$
- equal to 1, we get (A1)_i = 1/n
 ► Therefore, 1 is an eigenvector of A and the corresponding eigenvalue is equal to 1.
- Now suppose $Ax = \lambda x$. Then, $A^n x = \lambda^n x$. Since any row in A^n has sum 1, we are taking positive weight combinations of entries in x.
- So, the absolute value of any entry in A^nx is at most the maximum absolute value in the vector x. Thus, $|\lambda_i| \le 1 \, \forall i \in [n]$, and $\lambda_1 = 1$ and $v_1 = 1$.

```
UPATH is in L 

\vdash Parameter \lambda(G) 

\vdash \lambda(G) = |\lambda_2(A)|
```

► Since algebraic multiplicity = geometric multiplicity for symmetric matrices, the eigenvalue 1 has multiplicity 1.

- ► Since algebraic multiplicity = geometric multiplicity for symmetric matrices, the eigenvalue 1 has multiplicity 1.
- ► Moreover, this inequality is strict if not all entries of x are equal. So, all the other eigenvalues have eigenvalue strictly less than 1.

- ► Since algebraic multiplicity = geometric multiplicity for symmetric matrices, the eigenvalue 1 has multiplicity 1.
- ► Moreover, this inequality is strict if not all entries of x are equal. So, all the other eigenvalues have eigenvalue strictly less than 1.
- ▶ Also $\mathbf{1}^{\perp} = \operatorname{Span}\{v_2, \dots, v_n\}$ and the value of $||Av||_2$ for $v \in \mathbf{1}^{\perp}$ is maximized when $v = v_2$. So, if $v = \sum_{i=2}^{n} c_i v_i$

$$||Av||_2 = \sqrt{\sum_{i=2}^n c_i^2 \lambda_i^2} \le |\lambda_2|$$

Therefore, $|\lambda_2| = G(\lambda)$

Lemma 1

Let G be an n-vertex regular graph and ${\bf p}$ a probability distribution over G's vertices, then

$$\left\|A^t\mathbf{p} - \mathbf{1}\right\|_2 \le \lambda^t$$

where $\lambda = \lambda(G)$

 $\blacktriangleright \ \ \text{We know,} \ \|A\mathbf{v}\|_2 \leq \lambda \|\mathbf{v}\|_2 \ \text{for all} \ \mathbf{v} \perp \mathbf{1}.$

- ► We know, $||A\mathbf{v}||_2 \le \lambda ||\mathbf{v}||_2$ for all $\mathbf{v} \perp \mathbf{1}$.
- ▶ Observe that if $\mathbf{v} \perp \mathbf{1}$, then $A\mathbf{v} \perp \mathbf{1}$ since $\langle \mathbf{1}, A\mathbf{v} \rangle = \langle A^T \mathbf{1}, \mathbf{v} \rangle = \langle 1, \mathbf{v} \rangle = 0$. Thus A maps the subspace $\mathbf{1}^{\perp}$ to itself.

- ► We know, $||A\mathbf{v}||_2 \le \lambda ||\mathbf{v}||_2$ for all $\mathbf{v} \perp \mathbf{1}$.
- ▶ Observe that if $\mathbf{v} \perp \mathbf{1}$, then $A\mathbf{v} \perp \mathbf{1}$ since $\langle \mathbf{1}, A\mathbf{v} \rangle = \langle A^T \mathbf{1}, \mathbf{v} \rangle = \langle 1, \mathbf{v} \rangle = 0$. Thus A maps the subspace $\mathbf{1}^{\perp}$ to itself.
- ▶ Also the eigen vectors that are different from $\mathbf{1}$ span this subspace, therefore A must shrink every vector in $\mathbf{1}^{\perp}$ by atleast λ .

- ► We know, $||A\mathbf{v}||_2 \le \lambda ||\mathbf{v}||_2$ for all $\mathbf{v} \perp \mathbf{1}$.
- ▶ Observe that if $\mathbf{v} \perp \mathbf{1}$, then $A\mathbf{v} \perp \mathbf{1}$ since $\langle \mathbf{1}, A\mathbf{v} \rangle = \langle A^T \mathbf{1}, \mathbf{v} \rangle = \langle 1, \mathbf{v} \rangle = 0$. Thus A maps the subspace $\mathbf{1}^{\perp}$ to itself.
- Also the eigen vectors that are different from $\mathbf{1}$ span this subspace, therefore A must shrink every vector in $\mathbf{1}^{\perp}$ by atleast λ .
- ▶ A^t shrinks every vector in $\mathbf{1}^{\perp}$ by a factor of atleast λ^t . Therefore, we can say that $\lambda(A^t) \leq \lambda(A)^t$. (In fact, using diagonalization we can show $\lambda(A^t) = \lambda(A)^t$)

▶ Let **p** be some vector. We can break **p** into component parallel and orthogonal to **1**, i.e, $\mathbf{p} = \alpha \mathbf{1} + \mathbf{p}'$. As **p** is a probability distribution, we must have $\alpha = 1$ since sum of coordinates in \mathbf{p}' is zero.

- Let **p** be some vector. We can break **p** into component parallel and orthogonal to **1**, i.e, $\mathbf{p} = \alpha \mathbf{1} + \mathbf{p}'$. As **p** is a probability distribution, we must have $\alpha = 1$ since sum of coordinates in \mathbf{p}' is zero.
- ► Therefore,

$$A^t \mathbf{p} = A^t (\mathbf{1} + \mathbf{p}') = \mathbf{1} + A^t \mathbf{p}'$$

and we get

$$\|A^t \mathbf{p} - \mathbf{1}\|_2 = \|A^t \mathbf{p}'\|_2 \le \lambda^t \|\mathbf{p}'\|_2 \le \lambda^t$$

because $||p'||_2 \le ||p||_2 \le ||p||_1 = 1$

UPATH is in L

Lemma 2

If G is a regular connected graph with self-loops at each vertex, then $\lambda(\mathit{G}) \leq 1 - \frac{1}{4dn^2}$

Let $\epsilon = \frac{1}{2dn^2}$, let $\mathbf{u} \perp \mathbf{1}$ be a unit vector and let $\mathbf{v} = A\mathbf{u}$. We need to prove that $\|\mathbf{v}\|_2 \leq 1 - \epsilon/2$ and for this it suffices to prove that $1 - \|\mathbf{v}\|_2^2 \geq \epsilon$.

Let $\epsilon = \frac{1}{2dn^2}$, let $\mathbf{u} \perp \mathbf{1}$ be a unit vector and let $\mathbf{v} = A\mathbf{u}$. We need to prove that $\|\mathbf{v}\|_2 \leq 1 - \epsilon/2$ and for this it suffices to prove that $1 - \|\mathbf{v}\|_2^2 \geq \epsilon$. This is because if $\|\mathbf{v}\|_2 > 1 - \epsilon/2$, then $\|\mathbf{v}\|_2^2 > 1 - \epsilon \implies 1 - \|\mathbf{v}\|_2^2 < \epsilon$

- Let $\epsilon = \frac{1}{2dn^2}$, let $\mathbf{u} \perp \mathbf{1}$ be a unit vector and let $\mathbf{v} = A\mathbf{u}$. We need to prove that $\|\mathbf{v}\|_2 \leq 1 \epsilon/2$ and for this it suffices to prove that $1 \|\mathbf{v}\|_2^2 \geq \epsilon$.

 This is because if $\|\mathbf{v}\|_2 > 1 \epsilon/2$, then $\|\mathbf{v}\|_2^2 > 1 \epsilon \implies 1 \|\mathbf{v}\|_2^2 < \epsilon$
- ▶ Since **u** is a unit vector, we get $1 \|\mathbf{v}\|_2^2 = \|\mathbf{u}\|_2^2 \|\mathbf{v}\|_2^2$. We claim that this is equal to $\sum_{i,j} A_{i,j} (\mathbf{u}_i \mathbf{v}_j)^2$ where i,j ranges from 1 to n.

► This is because

$$\sum_{i,j} A_{i,j} (\mathbf{u}_i - \mathbf{v}_j)^2 = \sum_{i,j} A_{i,j} \mathbf{u}_i^2 - 2 \sum_{i,j} A_{i,j} \mathbf{u}_i \mathbf{v}_j + \sum_{i,j} A_{i,j} \mathbf{v}_j^2$$

$$= \|\mathbf{u}\|_2^2 - 2 \langle A\mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|_2^2$$

$$= \|\mathbf{u}\|_2^2 - 2\|\mathbf{v}\|_2^2 + \|\mathbf{v}\|_2^2$$

$$= \|\mathbf{u}\|_2^2 - \|\mathbf{v}\|_2^2$$

$$\|\mathbf{v}\|_2^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \langle A\mathbf{u}, \mathbf{v} \rangle = \sum_{i,j} A_{i,j} \mathbf{u}_i \mathbf{v}_j$$

Therefore, now we want to show that $\sum_{i,j} A_{i,j} (\mathbf{u}_i - \mathbf{v}_j)^2 \ge \epsilon$. Since \mathbf{u} is a unit vector with coordinates summing to zero, there must exist vertices i,j such that $\mathbf{u}_i > 0$ and $\mathbf{u}_j < 0$ and atleast one of these coordinates has absolute value $\ge \frac{1}{\sqrt{n}}$, which implies that $\mathbf{u}_i - \mathbf{u}_j \ge \frac{1}{\sqrt{n}}$.

- Therefore, now we want to show that $\sum_{i,j} A_{i,j} (\mathbf{u}_i \mathbf{v}_j)^2 \ge \epsilon$. Since \mathbf{u} is a unit vector with coordinates summing to zero, there must exist vertices i,j such that $\mathbf{u}_i > 0$ and $\mathbf{u}_j < 0$ and atleast one of these coordinates has absolute value $\ge \frac{1}{\sqrt{n}}$, which implies that $\mathbf{u}_i \mathbf{u}_j \ge \frac{1}{\sqrt{n}}$.
- Also because G is connected, there is a path between i and j containing atmost D+1 vertices (D is the diameter of the graph G). Let us rename the vertices, and assume that i=1 and j=D+1, and the coordinates $2,3,\ldots,D$ correspond to the vertices on this path in order.

Then, we have

$$\begin{split} \frac{1}{\sqrt{n}} & \leq \mathbf{u}_1 - \mathbf{u}_{D+1} \\ & = (\mathbf{u}_1 - \mathbf{v}_1) + (\mathbf{v}_1 - \mathbf{u}_2) + \ldots + (\mathbf{v}_D - \mathbf{u}_{D+1}) \\ & \leq |\mathbf{u}_1 - \mathbf{v}_1| + |\mathbf{v}_1 - \mathbf{u}_2| + \ldots + |\mathbf{v}_D - \mathbf{u}_{D+1}| \\ & \leq \sqrt{(\mathbf{u}_1 - \mathbf{v}_1)^2 + (\mathbf{v}_1 - \mathbf{u}_2)^2 + \ldots + (\mathbf{v}_D - \mathbf{u}_{D+1})^2} \sqrt{2D + 1} \end{split}$$

Then, we have

$$\begin{split} \frac{1}{\sqrt{n}} & \leq \textbf{u}_1 - \textbf{u}_{D+1} \\ & = (\textbf{u}_1 - \textbf{v}_1) + (\textbf{v}_1 - \textbf{u}_2) + \ldots + (\textbf{v}_D - \textbf{u}_{D+1}) \\ & \leq |\textbf{u}_1 - \textbf{v}_1| + |\textbf{v}_1 - \textbf{u}_2| + \ldots + |\textbf{v}_D - \textbf{u}_{D+1}| \\ & \leq \sqrt{(\textbf{u}_1 - \textbf{v}_1)^2 + (\textbf{v}_1 - \textbf{u}_2)^2 + \ldots + (\textbf{v}_D - \textbf{u}_{D+1})^2} \sqrt{2D + 1} \end{split}$$

Therefore, we get

$$(\mathbf{u}_1 - \mathbf{v}_1)^2 + (\mathbf{v}_1 - \mathbf{u}_2)^2 + \ldots + (\mathbf{v}_D - \mathbf{u}_{D+1})^2 \ge \frac{1}{n(2D+1)}$$

Observe that

$$\sum \Delta \cdot \cdot (\mathbf{u}) =$$

$$\sum_{i,j} A_{i,j} (\mathbf{u}_i - \mathbf{v}_j)^2 \geq \sum_i A_{i,i} (\mathbf{u}_i - \mathbf{v}_i)^2 + A_{i,i+1} (\mathbf{v}_i - \mathbf{u}_{i+1})^2$$

$$\sum_{i,j} 1 (u_i - u_j)^2 + (u_j - u_j)^2 + \dots + (u_j - u_j)^2$$

$$\geq rac{1}{d}(\mathbf{u}_1-\mathbf{v}_1)^2+(\mathbf{v}_1-\mathbf{u}_2)^2+\ldots+(\mathbf{v}_D-\mathbf{u}_{D+1})^2$$

$$\frac{d}{dt} = \frac{1}{t^2 + t^2}$$

 $\geq \frac{1}{nd(2D+1)}$

$$\geq \frac{1}{nd(2D+1)}$$

► Observe that

$$egin{split} \sum_{i,j} A_{i,j} (\mathbf{u}_i - \mathbf{v}_j)^2 & \geq \sum_i A_{i,i} (\mathbf{u}_i - \mathbf{v}_i)^2 + A_{i,i+1} (\mathbf{v}_i - \mathbf{u}_{i+1})^2 \ & \geq rac{1}{d} (\mathbf{u}_1 - \mathbf{v}_1)^2 + (\mathbf{v}_1 - \mathbf{u}_2)^2 + \ldots + (\mathbf{v}_D - \mathbf{u}_{D+1})^2 \end{split}$$

▶ Using this bound and substituting
$$D \le n-1$$
 we get

 $\geq \frac{1}{nd(2D+1)}$

Using this bound and substituting $D \leq H - 1$ we go

$$1-\|\mathbf{v}\|_2^2 \geq \frac{1}{2dn^2}$$

which implies that $\lambda(\mathit{G}) \leq 1 - \frac{1}{4\mathit{dn}^2}$

Observe that

$$\sum_{i} A_{i,j}(\mathbf{u}_i -$$

$$egin{aligned} \sum_{i,j} A_{i,j} (\mathbf{u}_i - \mathbf{v}_j)^2 &\geq \sum_i A_{i,i} (\mathbf{u}_i - \mathbf{v}_i)^2 + A_{i,i+1} (\mathbf{v}_i - \mathbf{u}_{i+1})^2 \ &\geq rac{1}{d} (\mathbf{u}_1 - \mathbf{v}_1)^2 + (\mathbf{v}_1 - \mathbf{u}_2)^2 + \ldots + (\mathbf{v}_D - \mathbf{u}_{D+1})^2 \end{aligned}$$

 $\geq \frac{1}{nd(2D+1)}$

▶ Using this bound and substituting
$$D \le n-1$$
 we get
$$1-\|\mathbf{v}\|_2^2 \ge \frac{1}{2dn^2}$$

which implies that $\lambda(G) \leq 1 - \frac{1}{4dn^2}$

Expander Graphs

There are two ways to define Expander graphs

- ► Algebraic definition
- ► Combinatorial definition

Algrebraic Definition

▶ (n, d, λ) -expander graphs: If G is an n-vertex d-regular graph with $\lambda(G) \leq \lambda$ for some number $\lambda < 1$, then we say that G is an (n, d, λ) -graph.

Algrebraic Definition

- ▶ (n, d, λ) -expander graphs: If G is an n-vertex d-regular graph with $\lambda(G) \leq \lambda$ for some number $\lambda < 1$, then we say that G is an (n, d, λ) -graph.
- ▶ A family of graphs $\{G_n\}_{n\in N}$ is an expander graph family if there are some constants $d\in \mathbb{N}$ and $\lambda<1$ such that for every n, G_n is an (n,d,λ) -graph.

Combinatorial (edge) Definition

▶ An *n*-vertex *d*-regular graph G = (V, E) is called an (n, d, ρ) -combinatorial edge expander if for every subset S of vertices satisfying $|S| \le n/2$,

$$|E(S,\overline{S})| \ge \rho d|S|$$

where \overline{S} denotes the complement of S and for any 2 subsets S,T of vertices, E(S,T) denotes the set of edges between S and T

Edge expander graphs

UPATH is in L

Relation between the two definitions

▶ If G is an (n, d, λ) -expander graph, then it is an $(n, d, (1 - \lambda)/2)$ edge expander.

UPATH is in I

Relation between the two definitions

- ▶ If G is an (n, d, λ) -expander graph, then it is an $(n, d, (1 \lambda)/2)$ edge expander.
- ▶ If G is an (n,d,ρ) edge expander, then its second largest eigenvalue (without taking absolute values) is at most $1-\frac{\rho^2}{2}$. If furthermore G has all self loops, then it is an $(n,d,1-\epsilon)$ -expander where $\epsilon=\min\left\{\frac{2}{d},\frac{\rho^2}{2}\right\}$

Rotation Maps

► For a *d*-regular graph, we can assign a permutation of [*d*] to label the outgoing edges of a vertex.

Rotation Maps

- ► For a *d*-regular graph, we can assign a permutation of [*d*] to label the outgoing edges of a vertex.
- Let G be a d-regular graph on n vertices. Go to each vertex, and label it's outgoing edges with a permutation of [d]. Capture this by the function $\hat{G}:[n]\times[d]\mapsto[n]\times[d]$ which maps $\langle v,i\rangle$ to $\langle u,j\rangle$ where u is the i^{th} neighbour of v and v is the i^{th} neighbour of u.

Rotation Maps

- ► For a *d*-regular graph, we can assign a permutation of [*d*] to label the outgoing edges of a vertex.
- Let G be a d-regular graph on n vertices. Go to each vertex, and label it's outgoing edges with a permutation of [d]. Capture this by the function $\hat{G}:[n]\times[d]\mapsto[n]\times[d]$ which maps $\langle v,i\rangle$ to $\langle u,j\rangle$ where u is the i^{th} neighbour of v and v is the i^{th} neighbour of u.
- lacktriangle Observe that \hat{G} is a permutation (in fact, it is an involution).

▶ Let G and G' be two n-vertex graphs with degrees d, d' and random-walk matrices A, A' respectively. Then we describe the graph G'G as the graph described by the random-walk matrix A'A.

- ▶ Let G and G' be two n-vertex graphs with degrees d, d' and random-walk matrices A, A' respectively. Then we describe the graph G'G as the graph described by the random-walk matrix A'A.
- ▶ That is, G'G has an edge (u, v) for every length two-path from u to v where the first step in the path is taken on an edge of G and the second is on an edge of G'.

► Consider a n vertex graph G with degree d. Let A be it's random walk matrix. Then G^k is a d^k regular graph with random walk matrix A^k .

Path product makes expansion better

► As we have seen earlier (Lemma 1) ,

$$\lambda(G^k) \leq (\lambda(G))^k$$

Computing rotation map of G^k

► Relabel the outgoing edges by a *k* tuple where the tuple represents the walk due to which this edge is present.

Computing rotation map of G^k

- ► Relabel the outgoing edges by a *k* tuple where the tuple represents the walk due to which this edge is present.
- ▶ That is, the rotation map of G^k is a permutation on $[n] \times [d^k]$.

Let G and G' be two graphs where G is (n, D)-graph, G' is (D, d)-graph. The replacement product of G and G' is defined as $G(\mathbb{R})G'$ is (nD, 2d)-graph is defined as:

Let G and G' be two graphs where G is (n, D)-graph, G' is (D, d)-graph. The replacement product of G and G' is defined as $G \otimes G'$ is (nD, 2d)-graph is defined as:

For each vertex u of G, the graph $G \otimes G'$ has a copy of G' (including edges and vertices).

Let G and G' be two graphs where G is (n, D)-graph, G' is (D, d)-graph. The replacement product of G and G' is defined as $G(\mathbb{R})G'$ is (nD, 2d)-graph is defined as:

- ► For each vertex u of G, the graph $G \otimes G'$ has a copy of G' (including edges and vertices).
- ▶ If u, v are two neighbouring vertices in G where $\langle u, i \rangle$ is mapped to $\langle v, j \rangle$, then we place d parallel edges between the i^{th} vertex in the copy of G' corresponding to u and the j^{th} vertex in the copy of G' corresponding to v.

G': $(D, d, 1-\epsilon')$ -graph

 $G \otimes G'$: $(nD, 2d, 1-\epsilon\epsilon'^2/24)$ -graph

ightharpoonup Observe that replacement product 'preserves' the connected components in G. (assuming G' is connected)

- ▶ Observe that replacement product 'preserves' the connected components in G. (assuming G' is connected)
- ► Two copies of *G* are connected if and only if they are connected in *G*.

Rotation map of replacement product

First, observe that the rotation map will be a permutation over $([n] \times [D]) \times ([d] \times \{0,1\})$ as $G \otimes G'$. For some input ((u,v),(i,b)), the rotation map function first checks if b=0 or b=1.

Rotation map of replacement product

- First, observe that the rotation map will be a permutation over $([n] \times [D]) \times ([d] \times \{0,1\})$ as $G \otimes G'$. For some input ((u,v),(i,b)), the rotation map function first checks if b=0 or b=1.
- ▶ If b = 0, then it treats v as a vertex of G'. Thus, it outputs $\left(u, \hat{G}'(v, i), b\right)$.

Rotation map of replacement product

- First, observe that the rotation map will be a permutation over $([n] \times [D]) \times ([d] \times \{0,1\})$ as $G \otimes G'$. For some input ((u,v),(i,b)), the rotation map function first checks if b=0 or b=1.
- ▶ If b = 0, then it treats v as a vertex of G'. Thus, it outputs $\left(u, \hat{G}'(v, i), b\right)$.
- ▶ If b = 1, then it treats v as an edge label of G. Thus, it outputs $(\hat{G}(u, v), i, b)$.

Rotation Map of replacement product

▶ In other words, b = 0 indicates an edge inside a cluster of G', while b = 1 indicates a cross edge between clusters.

Expansion of a replacement product

- ▶ Claim: If $\lambda(G) \le 1 \epsilon$ and $\lambda(H) \le 1 \delta$ then $\lambda(G \ \ \ \ \ \ \ \ \ \ \ \ \) \le 1 \frac{\epsilon \delta^2}{24}$
- ► This shows that replacement product does not worsen the expansion by too much.

Recap

► Path Product - Improves expansion but increases degree

Recap

- ▶ Path Product Improves expansion but increases degree
- ► Replacement Product Decreases degree and does not worsen expansion by too much

$UPATH \in L$ when G is an expander

► Let *G* be a *d*-regular graph, whose every connected component is an expander.

$UPATH \in L$ when G is an expander

- ► Let *G* be a *d*-regular graph, whose every connected component is an expander.
- ▶ Observe that for such graphs, there is a number $I = O(\log n)$ such that if s and t are connected, they are connected with a path of length at most I. (due to Lemma 1)

$UPATH \in L$ when G is an expander

- ► Let *G* be a *d*-regular graph, whose every connected component is an expander.
- ▶ Observe that for such graphs, there is a number $l = O(\log n)$ such that if s and t are connected, they are connected with a path of length at most l. (due to Lemma 1)
- Put $t = \frac{\log \frac{1}{n^2}}{\log \lambda}$ in Lemma 1 to get $||A^t p 1|| \le \lambda^t \le \frac{1}{n^2}$. Put $p = \hat{e_u}$ (vector with all zeros except 1 at starting vertex u). After t steps, the entry corresponding to final vertex v in $A^t p$ must be non zero (otherwise $||A^t p 1||_2 \ge \frac{1}{n}$). Thus, there must be some path of length t between u and v.

$UPATH \in L$ when G is an expander

- ► Let *G* be a *d*-regular graph, whose every connected component is an expander.
- ▶ Observe that for such graphs, there is a number $I = O(\log n)$ such that if s and t are connected, they are connected with a path of length at most I. (due to Lemma 1)
- Put $t = \frac{\log \frac{1}{n^2}}{\log \lambda}$ in Lemma 1 to get $||A^t p 1|| \le \lambda^t \le \frac{1}{n^2}$. Put $p = \hat{e_u}$ (vector with all zeros except 1 at starting vertex u). After t steps, the entry corresponding to final vertex v in $A^t p$ must be non zero (otherwise $||A^t p 1||_2 \ge \frac{1}{n}$). Thus, there must be some path of length t between u and v.
- ▶ We can now enumerate over all paths of length $O(\log n)$ (instead of O(n)). This can be done in logspace now as the number of walks are $O(d^{O(\log n)}) = poly(n)$, which can be enumerated in logspace.

Reingold's Theorem [2005]

 $\mathtt{UPATH} \in \boldsymbol{L}$

Motivation

▶ It is easy to check whether s and t are connected in an expander graph. This is because if s and t are connected, then there is a $O(\log n)$ length path between s and t.

Motivation

- ▶ It is easy to check whether s and t are connected in an expander graph. This is because if s and t are connected, then there is a $O(\log n)$ length path between s and t.
- ▶ Then we can check all walks of length $O(\log n)$ from s to see whether it hits t. Assuming that the degree of each vertex is atmost some constant d, there will be $d^{O(\log n)}$ walks (as there are d choices at every vertex), which is poly(n) and takes logspace to enumerate.

Motivation

- ▶ It is easy to check whether s and t are connected in an expander graph. This is because if s and t are connected, then there is a $O(\log n)$ length path between s and t.
- ▶ Then we can check all walks of length $O(\log n)$ from s to see whether it hits t. Assuming that the degree of each vertex is atmost some constant d, there will be $d^{O(\log n)}$ walks (as there are d choices at every vertex), which is poly(n) and takes logspace to enumerate.
- ► So, the main idea is to convert the given graph into an expander graph while maintaining connectivity properties.

► We can convert any graph into a 4-regular graph, preserving the connectivity properties.

- ► We can convert any graph into a 4-regular graph, preserving the connectivity properties.
- ▶ If a vertex has degree d'' < 3, we can add self loops to increase multiplicity.

- ► We can convert any graph into a 4-regular graph, preserving the connectivity properties.
- ► If a vertex has degree d" < 3, we can add self loops to increase multiplicity.
- ▶ If vertex has degree d' > 3, then we can replace the cycle by a cycle containing d' vertices, each of the d' vertices that were incident to the old vertices attach to one of the cycle nodes.

- ► We can convert any graph into a 4-regular graph, preserving the connectivity properties.
- ► If a vertex has degree d" < 3, we can add self loops to increase multiplicity.
- ▶ If vertex has degree d' > 3, then we can replace the cycle by a cycle containing d' vertices, each of the d' vertices that were incident to the old vertices attach to one of the cycle nodes.
- ► This transformation does not change connectivity properties.

Recursive Algorithm

▶ We can convert the 4-regular graph into a d^{50} -regular graph by adding self loops (assuming d is even).

Recursive Algorithm

- ▶ We can convert the 4-regular graph into a d^{50} -regular graph by adding self loops (assuming d is even).
- ▶ Let H be a $(d^{50}, d/2, 0.01)$ -expander graph. Note that H is the same for all problems.

Recursive Algorithm

- ▶ We can convert the 4-regular graph into a d^{50} -regular graph by adding self loops (assuming d is even).
- ▶ Let H be a $(d^{50}, d/2, 0.01)$ -expander graph. Note that H is the same for all problems.
- ▶ Let G_0 be our d^{50} -regular graph. And let us define

$$G_k = (G_{k-1} \widehat{\mathbb{R}} H)^{50}$$

Number of Vertices

▶ If G_0 has n vertices and is d^{50} -regular, then $G_0 \textcircled{R} H$ has $d^{50} n$ vertices is d-regular. Therefore, $G_1 = ((G_0 \textcircled{R} H)^{50})$ has $d^{50} n$ vertices and is d^{50} -regular.

Number of Vertices

- ▶ If G_0 has n vertices and is d^{50} -regular, then $G_0 \otimes H$ has $d^{50}n$ vertices is d-regular. Therefore, $G_1 = ((G_0 \otimes H)^{50})$ has $d^{50}n$ vertices and is d^{50} -regular.
- ▶ Therefore in general, G_k has $d^{50k}n$ vertices, and is d^{50} -regular

Claim

For all
$$\epsilon < 1/20$$
, if $\lambda(F) \le 1 - \epsilon$, then

$$\lambda\left((F \widehat{\mathbb{R}} H)^{50}\right) \leq 1 - 2\epsilon$$

.

Claim

For all $\epsilon < 1/20$, if $\lambda(F) \leq 1 - \epsilon$, then

$$\lambda\left((F\widehat{\mathbb{R}}H)^{50}\right) \le 1 - 2\epsilon$$

- . Proof:
 - ▶ This is because if $\lambda(F) \leq 1 \epsilon$, then

$$\lambda(F(R)H) \le 1 - \frac{\epsilon(1 - 0.01)^2}{24} \le 1 - \frac{\epsilon}{25}$$

► Then $\lambda\left((F(\mathbb{R})H)^{50}\right) \leq (1 - \epsilon/25)^{50} \leq 1 - 2\epsilon$.

G_k is an expander graph

▶ Recall that for a *D*-regular graph containing self loops, every connected component of G_0 has expansion parameter of atmost $1 - \frac{1}{4Dn^2}$. Here $D = d^{50}$.

G_k is an expander graph

- ▶ Recall that for a *D*-regular graph containing self loops, every connected component of G_0 has expansion parameter of atmost $1 \frac{1}{4Dr^2}$. Here $D = d^{50}$.
- ▶ By previous claim, we get that expansion parameter of G_1 is atmost max $\left(1-\frac{1}{20},1-\frac{2}{4Dn^2}\right)$. Similarly, we get expansion parameter of G_k is atmost max $\left(1-\frac{1}{20},1-\frac{2^k}{4Dn^2}\right)$.

G_k is an expander graph

- ▶ Recall that for a *D*-regular graph containing self loops, every connected component of G_0 has expansion parameter of atmost $1 \frac{1}{4Dr^2}$. Here $D = d^{50}$.
- ▶ By previous claim, we get that expansion parameter of G_1 is atmost max $\left(1-\frac{1}{20},1-\frac{2}{4Dn^2}\right)$. Similarly, we get expansion parameter of G_k is atmost max $\left(1-\frac{1}{20},1-\frac{2^k}{4Dn^2}\right)$.
- ▶ Therefore, for $k = O(\log n)$, we get $\lambda(G_k)$ is atmost $1 \frac{1}{20}$.

► Here $N = d^{50c \log n} n$. Therefore, we get that there is a $O(\log n)$ length path between s and t.

- ► Here $N = d^{50c \log n} n$. Therefore, we get that there is a $O(\log n)$ length path between s and t.
- Now we explore each path starting from s of length atmost $O(\log n)$ to check whether it hits t. As the degree of each vertex is d^{50} , we get that there are atmost $d^{O(\log n)}$ (polynomially many) paths to explore.

- ► Here $N = d^{50c \log n} n$. Therefore, we get that there is a $O(\log n)$ length path between s and t.
- Now we explore each path starting from s of length atmost $O(\log n)$ to check whether it hits t. As the degree of each vertex is d^{50} , we get that there are atmost $d^{O(\log n)}$ (polynomially many) paths to explore.
- Assuming we know G_k , we can do this in log space as we only have to maintain the current vertex, number of edges traversed in current path and number of paths traversed.

▶ We don't know G_k explicitly. So finding the neighbours of a vertex in G_k is not trivial.

- ▶ We don't know G_k explicitly. So finding the neighbours of a vertex in G_k is not trivial.
- ▶ Observe that we only need to be able to find the i^{th} neighbour of v in log space.

- ▶ We don't know G_k explicitly. So finding the neighbours of a vertex in G_k is not trivial.
- ▶ Observe that we only need to be able to find the i^{th} neighbour of v in log space.
- ▶ If we can take a single step in log space, then we can take *I* steps in log space by reusing the space.

▶ Recall that $G_k = (G_{k-1} \widehat{\mathbb{R}} H)^{50}$, thus it suffices to show that we can take a single step in the graph $G_{k-1} \widehat{\mathbb{R}} H$ in logspace.

- ▶ Recall that $G_k = (G_{k-1} \mathbb{R} H)^{50}$, thus it suffices to show that we can take a single step in the graph $G_{k-1} \mathbb{R} H$ in logspace.
- ▶ Suppose we are at some vertex $\langle u, v \rangle$ (where u is a vertex of G_{k-1} and v is a vertex in H). We want to take a step from this vertex.

▶ Suppose we want to take a step on the edge labelled $\langle b,i \rangle$.

- ▶ Suppose we want to take a step on the edge labelled $\langle b, i \rangle$.
- ▶ If b = 0, then the edge is inside a copy of H, so this requires us to access the rotation map of H, which takes O(1) space.

- ▶ Suppose we want to take a step on the edge labelled $\langle b, i \rangle$.
- ▶ If b = 0, then the edge is inside a copy of H, so this requires us to access the rotation map of H, which takes O(1) space.
- ▶ If b = 1, then the edge is a cross edge between clusters, so this requires us to access the rotation map of G^{k-1}

▶ This leads to a recursive algorithm where we need O(1) space at every step.

- ▶ This leads to a recursive algorithm where we need O(1) space at every step.
- ▶ If s_k is the space needed to compute the rotation map of G^k , we have $s_k = s_{k-1} + O(1)$.

- ▶ This leads to a recursive algorithm where we need O(1) space at every step.
- ▶ If s_k is the space needed to compute the rotation map of G^k , we have $s_k = s_{k-1} + O(1)$.
- ► Hence, $s_k = O(\log n)$ as $k = O(\log n)$.

Recap

▶ In a graph with n vertices, there is a path with length $\leq n$ between any two connected vertices.

- ▶ In a graph with n vertices, there is a path with length $\leq n$ between any two connected vertices.
- ▶ The naive way to derandomize in general graphs fails since there are d^n possible walks to search, and enumerating these walks will take O(n) space. (assuming d to be constant)

- ▶ In a graph with n vertices, there is a path with length $\leq n$ between any two connected vertices.
- ▶ The naive way to derandomize in general graphs fails since there are d^n possible walks to search, and enumerating these walks will take O(n) space. (assuming d to be constant)
- Fortunately, in graphs with good expansion there is a $O(\log n)$ length path between any two connected vertices.

► This leads to a natural question - Can we transform *any* graph into an expander? (that is, every connected component of the final graph will be an expander).

- ► This leads to a natural question Can we transform *any* graph into an expander? (that is, every connected component of the final graph will be an expander).
- ► Graph product improves expansion, but increases degree (which is a problem).

- ► This leads to a natural question Can we transform *any* graph into an expander? (that is, every connected component of the final graph will be an expander).
- ► Graph product improves expansion, but increases degree (which is a problem).
- ▶ Replacement product reduces degree, and does not worsen expansion by too much. We can get away with this by using a graph H with very good expansion.

- ► Finally, we use rotation maps to implicitly keep track of the different graphs in logspace.
- ► The final algorithm is as follows:

- ▶ Given G, implicitly construct G_k for appropriate k (that is, you don't actually construct G_k but treat it's adjacency list/rotation map as a recursive lookup function).
- ▶ We start enumerating all walks of $O(\log n)$ length in G_k implicitly, using rotation maps to ensure logspace.
- Effectively, this gives a complete derandomization (logspace constructible universal exploration sequences for general graphs).

Every permutation can be represented by a permutation matrix, hence every rotation map can be represented by a permutation matrix.

- Every permutation can be represented by a permutation matrix, hence every rotation map can be represented by a permutation matrix.
- ► One can algebraically represent replacement product as

$$A\widehat{\mathbb{R}}A'=\frac{1}{2}\hat{A}+\frac{1}{2}(I_n\otimes A')$$

where A and $A^{'}$ are corresponding random walk matrices.

Lemma: Let M be a random walk matrix of an (n, d, λ) expander graph G. Let J be the random walk matrix of the n clique with self loops, that is every entry is $\frac{1}{n}$. Then,

$$M = (1 - \lambda) J + \lambda M'$$
 where $|M'| \le 1$ (can check that $M' = \frac{1}{2} (M - (1 - \lambda)) J$) weaks)

$$M' = \frac{1}{\lambda} (M - (1 - \lambda) J)$$
 works).

- ▶ Lemma: Let M be a random walk matrix of an (n, d, λ) expander graph G. Let J be the random walk matrix of the nclique with self loops, that is every entry is $\frac{1}{n}$. Then,
 - $M = (1 \lambda) \, J + \lambda M^{'}$ where $\left| M^{'}
 ight| \leq 1$ (can check that
 - $M' = \frac{1}{2} (M (1 \lambda) J)$ works).
- ▶ Let A be the $n \times n$ random walk matrix of G (with \hat{A} as the $nD \times nD$ permutation matrix)

- ▶ Lemma: Let M be a random walk matrix of an (n, d, λ) expander graph G. Let J be the random walk matrix of the n clique with self loops, that is every entry is $\frac{1}{n}$. Then,
 - $M = (1 \lambda) J + \lambda M'$ where $\left| M' \right| \le 1$ (can check that $M' = \frac{1}{7} (M (1 \lambda) J)$ works).
- ▶ Let A be the $n \times n$ random walk matrix of G (with \hat{A} as the $nD \times nD$ permutation matrix)
- ▶ Let B be the $D \times D$ random walk matrix of H, and let C be the $nD \times nD$ random walk matrix of $(G \mathbb{R})^3$

► Using the algebraic definition of replacement product, we get,
$$C = \left(\frac{1}{2}\hat{A} + \frac{1}{2}(I \otimes R)\right)^3$$

$$C = \left(\frac{1}{2}\hat{A} + \frac{1}{2}\left(I_n \otimes B\right)\right)^3$$

▶ Applying the lemma on B, we obtain $B = (1 - \delta) B' + \delta J$ where $||B'|| \leq 1$

- ▶ Applying the lemma on B, we obtain $B = (1 \delta) B' + \delta J$ where $||B'|| \le 1$
- Substituting and manipulating,

$$C = \left(1 - \frac{\delta^2}{8}\right)C' + \frac{\delta^2}{8}\left(I_n \otimes J\right)\hat{A}\left(I_n \otimes J\right)$$

- Applying the lemma on B, we obtain $B = (1 \delta) B' + \delta J$ where $||B'|| \le 1$
- ► Substituting and manipulating,

$$C = \left(1 - \frac{\delta^2}{8}\right)C' + \frac{\delta^2}{8}\left(I_n \otimes J\right)\hat{A}\left(I_n \otimes J\right)$$

One can algebraically check that

$$(I_n \otimes J) \, \hat{A} \, (I_n \otimes J) = A \otimes J$$

and

$$\lambda(A \otimes J) \leq \max(\lambda(A), 0)$$

UPATH is in L ∟_{Extra}

Extra

▶ Plugging this back, we obtain $\lambda \left((G \mathbb{R} H)^3 \right)$.

▶ Plugging this back, we obtain
$$\lambda \left((G \mathbb{R} H)^3 \right)$$
.

▶ This implies that $\lambda(G \mathbb{R} H) \leq 1 - \frac{\epsilon \delta^2}{24}$ since $\lambda(G^3) = \lambda(G)^3$.