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▶ Consists of (G , s, t) , where G = (V ,E ) is a simple graph
with a path joining the vertices s, t.

▶ In class, we saw that PATH was in NL
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Some History

▶ UPATH can be decided in linear time, using basic search
algorithms like BFS or DFS. However, these algorithms have
O(n) space requirements.

▶ A more space efficient algorithm was given by Savitch
[Sav70], which showed that UPATH can be decided using
O(log2(n)) space (and super polynomial time).

▶ Aleliunas, Karp, Lipton, Lovasz, and Rackoff [AKLLR79] gave
a randomized logspace algorithm for UPATH, showing
UPATH ∈ RL.

▶ Armoni, Ta-Shma, Wigderson, Zhou [ATSWZ00] later showed
UPATH ∈ L4/3, using the technique of derandomization.

▶ Trifonov[Tri05] proved that UPATH can be decided
deterministically. using O(log n log log n) space.
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Random Walks and Markov Chains

▶ Consider the following random walk on the (simple) graph G .
For any vertex u ∈ V , we move to vertex v ∈ V with
probability

Puv =

 1
d(u) , if {u, v} ∈ E

0 otherwise.

▶ In this random walk, the probability distribution of the next
state ONLY depends on the previous state (i.e., it has
short-term memory)

▶ This corresponds to a Markov Chain on the graph G , with
state space |V | and transition matrix P with transition
probabilities Puv
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▶

P =


P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
...

...
Pn1 Pn2 . . . Pnn



▶ A finite markov chain is an infinite sequence X0,X1, · · · of
random variables, on a statespace Ω such that for all
i , j , a0, a1 . . . , ak−2 ∈ Ω, we have

P(Xk = j |X0 = a0, . . .Xk−2 = ak−2,Xk−1 = i)

= P(Xk = j |Xk−1 = i) = Pij



UPATH is in L

UPATH is in RL

Random Walks and Markov Chains

Random Walks and Markov Chains

▶

P =


P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
...

...
Pn1 Pn2 . . . Pnn


▶ A finite markov chain is an infinite sequence X0,X1, · · · of

random variables, on a statespace Ω such that for all
i , j , a0, a1 . . . , ak−2 ∈ Ω, we have

P(Xk = j |X0 = a0, . . .Xk−2 = ak−2,Xk−1 = i)

= P(Xk = j |Xk−1 = i) = Pij



UPATH is in L

UPATH is in RL

Random Walks and Markov Chains

Random Walks and Markov Chains

▶ For a Markov Chain M on a finite statespace Ω, (|Ω| = n)
with transition matrix P, we say a 1× n row vector π
(transpose is a column vector in Rn) is a stationary
distribution for M if πP = π

(
π(1) · · ·π(n)

)
·


P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
...

...
Pn1 Pn2 . . . Pnn

 =
(
π(1) · · ·π(n)

)
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Random Walks and Markov Chains
▶ π(i) = d(i) is a stationary distribution for any random walk

on a graph G

(
d(1) · · · d(n)

)
·


P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
...

...
Pn1 Pn2 . . . Pnn

 =
(
d(1) · · · d(n)

)

▶ ∑
j∈V

d(j)Pji =
∑

j∈N(i)

d(j) · 1

d(j)
= |N(i)| = d(i)

▶

Y 0 = Y ,Y 1 = Y ·P = YP,Y 2 = Y 1 ·P = YP2, · · ·Y k = YPk
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Random Walks and Markov Chains
▶ A markov chain is said to be irreducible if and only for any

i , j ∈ Ω, we have that there exists t > 0 (possibly depending
on i , j) such that

P(Xt = j |X0 = i) > 0

▶ So, if we start a random walk at some i ∈ Ω, we will be at j
after t steps with some positive probability, which means
there is a path between i and j .

▶ The markov chain corresponding to a random walk on a
connected graph G is irreducible, as there is a path between
any 2 vertices.

▶ For a finite irreducible markov chain M, there is a unique
stationary distribution for M, up to a multiplicative factor.
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Random Walks and Markov Chains
▶ Suppose there are 2 stationary distributions, a and b. Note

that a(i), b(i) ̸= 0 ∀i ∈ Ω, due to irreducibility and
stationarity.

▶ Let j ∈ Ω be chosen to minimize a(i)
b(i) , i.e., j = argmini∈Ω

a(i)
b(i) ,

and define r = a(j)
b(j)

a(j) =
∑
i∈Ω

a(i)Pij =
∑
i∈Ω

a(i)

b(i)
b(i)Pij

≥
∑
i∈Ω

r · b(i)Pij

= r
∑
i∈Ω

b(i)Pij

= rb(j)

= a(j)
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Random Walks and Markov Chains
▶

a(i)

b(i)
Pij = rPij =⇒ a(i) = rb(i) IF Pij > 0

▶ By irreducibility, for any i , j there exists t such that Pt
ij > 0

a(j) =
∑
i∈Ω

a(i)Pt
ij =

∑
i∈Ω

a(i)

b(i)
b(i)Pt

ij

≥
∑
i∈Ω

r · b(i)Pt
ij

= r
∑
i∈Ω

b(i)Pt
ij

= rb(j)

= a(j)



UPATH is in L

UPATH is in RL

Random Walks and Markov Chains

Random Walks and Markov Chains
▶

a(i)

b(i)
Pij = rPij =⇒ a(i) = rb(i) IF Pij > 0

▶ By irreducibility, for any i , j there exists t such that Pt
ij > 0

a(j) =
∑
i∈Ω

a(i)Pt
ij =

∑
i∈Ω

a(i)

b(i)
b(i)Pt

ij

≥
∑
i∈Ω

r · b(i)Pt
ij

= r
∑
i∈Ω

b(i)Pt
ij

= rb(j)

= a(j)



UPATH is in L

UPATH is in RL

Random Walks and Markov Chains

Random Walks and Markov Chains

▶ It turns out that any finite irreducible markov chain actually
has a stationary distribution, given by

π(i) =
1

T+(i)

where T+(i) is the expected first return time of a random
walk starting at i .

▶ A random commute from i to j is a random walk starting at i
that ends the first time it visits i , provided that it has
travelled through j. Define Tij to be the expected number of
steps in such a random commute.

▶ For any i , j , u, v ∈ V with {u, v} ∈ E , define θijuv to be the
expected number of times the edge {u, v} (in that order) is
visited in a random commute from i to j
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Random Walks and Markov Chains
▶ θijuv = θijuv ′ , ∀v ′ ∈ N(u). This is because in any random

commute from i to j , once u is visited, any of its neighbours
are visited with equal probability. So we write θijuv = θiju

▶ θiju is actually independent of u.

∑
v∈N(u)

θijuv = d(u)θiju =
∑

v∈N(u)

θijvu

=
∑

v∈N(u)

d(v)θijv
1

d(v)
=
∑
v∈V

d(v)θijvPvu

Think of the LHS as the number of times the random
commute leaves u, which must be equal to the number of
times it enters u in any random commute from i to j .

▶ Let π′(u) = d(u)θiju Then π′ = π′P
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Random Walks and Markov Chains

▶ Tij ≤ 2|E |, for any edge {i , j} ∈ E

▶ θijij ≤ 1 for any random commute from i to j .

Tij =
∑

{u,v}∈E

(θijuv+θijvu) =
∑

{u,v}∈E

2θijij = θijij(
∑

{u,v}∈E

2) ≤ 2|E |
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Random Walks and Markov Chains

▶ Random commute times satisfy the triangle inequality, i.e.,

Tij ≤ Tik + Tkj

▶ So for any s, t that are connected by a path of length ≤ n, we
have

Tst ≤ n · 2|E | ≤ 2n3

Note that even if the graph is not connected, the above
bound holds as long as s, t are in the same component, as we
can simply take our original graph to be the connected
component containing s, t in the analysis.
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Algorithm

Algorithm for UPATH ∈ RL

▶ Algorithm: Consider a random walk starting at s that runs for
6n3 steps. Output YES if you hit t, no otherwise.

▶ Let Xst be the time taken for a random walk starting at s to
hit t. Note that E [Xst ] ≤ E [Tst ] ≤ 2n3 .

▶ P(Failure) = P(Xst > 6n3) ≤ E [Xst ]
6n3

≤ 2n3

6n3
≤ 1/3

▶ This is in logspace as it takes O(log n) bits to index any
vertex, and we don’t need to keep track of previously visited
vertices.
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▶ Let Xst be the time taken for a random walk starting at s to
hit t. Note that E [Xst ] ≤ E [Tst ] ≤ 2n3 .
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Random Walk Matrix (for d-regular graphs with self loops)

Random Walk Matrix (for d-regular graphs)

▶ Let G be a d-regular n-vertex graph.

▶ M is the adjacency matrix of G , where

Mi ,j = number of edges between i and j

▶ Define A = 1
dM. A is the random walk matrix of G .

▶ Observe that rows and colums of A sum to 1, and that A is
symmetric.
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Parameter λ(G)

Definition

Parameter λ(G )

▶ Denote by 1 the vector
(
1
n ,

1
n , ....,

1
n

)
. Denote by 1⊥ the set

of vectors perpendicular to 1.

▶ The parameter λ(A), also denoted as λ(G ), is the maximum
value of ∥Av∥2 over all vectors v ∈ 1⊥ with ∥v∥2 = 1

λ(G ) = max
v∈1⊥: ∥v∥2=1

∥Av∥2
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λ(G) = |λ2(A)|

Claim

λ(G ) is the absolute value of the second largest eigenvalue of A
(the random walk matrix of G ).
In particular, for connected graphs

1 = λ1 > λ(G ) ≥ |λ3| · · · ≥ |λn|
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Parameter λ(G)

λ(G) = |λ2(A)|

Proof
▶ Since A is a symmetric matrix, we can find an orthogonal

basis of eigenvectors v1, . . . , vn with corresponding eigenvalues
λ1, . . . , λn which we can sort to ensure
|λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

▶ Note that A1 = 1. This is because (A1)i is the dot product
i th row of A and the vector 1. Because row sum for any row is
equal to 1, we get (A1)i = 1/n

▶ Therefore, 1 is an eigenvector of A and the corresponding
eigenvalue is equal to 1.

▶ Now suppose Ax = λx . Then, Anx = λnx . Since any row in
An has sum 1, we are taking positive weight combinations of
entries in x .

▶ So, the absolute value of any entry in Anx is at most the
maximum absolute value in the vector x . Thus,
|λi | ≤ 1∀i ∈ [n], and λ1 = 1 and v1 = 1.
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Parameter λ(G)

λ(G) = |λ2(A)|

Proof

▶ Since algebraic multiplicity = geometric multiplicity for
symmetric matrices, the eigenvalue 1 has multiplicity 1.

▶ Moreover, this inequality is strict if not all entries of x are
equal. So, all the other eigenvalues have eigenvalue strictly
less than 1.

▶ Also 1⊥ = Span{v2, . . . , vn} and the value of ∥Av∥2 for
v ∈ 1⊥ is maximized when v = v2. So, if v =

∑n
i=2 civi

∥Av∥2 =

√√√√ n∑
i=2

c2i λ
2
i ≤ |λ2|

Therefore, |λ2| = G (λ)
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Lemma 1

Lemma 1

Let G be an n-vertex regular graph and p a probability distribution
over G ’s vertices, then ∥∥Atp− 1

∥∥
2
≤ λt

where λ = λ(G )
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Lemma 1

Proof

▶ We know, ∥Av∥2 ≤ λ∥v∥2 for all v ⊥ 1.

▶ Observe that if v ⊥ 1, then Av ⊥ 1 since

⟨ 1,Av ⟩ =
〈
AT1, v

〉
= ⟨ 1, v ⟩ = 0. Thus A maps the

subspace 1⊥ to itself.

▶ Also the eigen vectors that are different from 1 span this
subspace, therefore A must shrink every vector in 1⊥ by
atleast λ.

▶ At shrinks every vector in 1⊥ by a factor of atleast λt .
Therefore, we can say that λ(At) ≤ λ(A)t . (In fact, using
diagonalization we can show λ(At) = λ(A)t)
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Lemma 1

▶ Let p be some vector. We can break p into component
parallel and orthogonal to 1, i.e, p = α1+ p′. As p is a
probability distribution, we must have α = 1 since sum of
coordinates in p′ is zero.

▶ Therefore,
Atp = At(1+ p′) = 1+ Atp′

and we get∥∥Atp− 1
∥∥
2
=
∥∥Atp′

∥∥
2
≤ λt

∥∥p′∥∥
2
≤ λt

because
∥∥p′∥∥

2
≤∥p∥2 ≤∥p∥1 = 1
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Lemma 2

Lemma 2

If G is a regular connected graph with self-loops at each vertex,
then λ(G ) ≤ 1− 1

4dn2



UPATH is in L

Lemma 2

Proof

▶ Let ϵ = 1
2dn2

, let u ⊥ 1 be a unit vector and let v = Au. We
need to prove that ∥v∥2 ≤ 1− ϵ/2 and for this it suffices to
prove that 1−∥v∥22 ≥ ϵ.

This is because if ∥v∥2 > 1− ϵ/2, then
∥v∥22 > 1− ϵ =⇒ 1−∥v∥22 < ϵ

▶ Since u is a unit vector, we get 1−∥v∥22 =∥u∥22 −∥v∥22. We
claim that this is equal to

∑
i ,j Ai ,j(ui − vj)

2 where i , j ranges
from 1 to n.
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▶ This is because∑
i ,j

Ai ,j(ui − vj)
2 =

∑
i ,j

Ai ,ju
2
i − 2

∑
i ,j

Ai ,juivj +
∑
i ,j

Ai ,jv
2
j

=∥u∥22 − 2 ⟨Au, v ⟩+∥v∥22
=∥u∥22 − 2∥v∥22 +∥v∥22
=∥u∥22 −∥v∥22

∥v∥22 = ⟨ v, v ⟩ = ⟨Au, v ⟩ =
∑

i ,j Ai ,juivj
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Lemma 2

▶ Therefore, now we want to show that
∑

i ,j Ai ,j(ui − vj)
2 ≥ ϵ.

Since u is a unit vector with coordinates summing to zero,
there must exist vertices i , j such that ui > 0 and uj < 0 and
atleast one of these coordinates has absolute value ≥ 1√

n
,

which implies that ui − uj ≥ 1√
n
.

▶ Also because G is connected, there is a path between i and j
containing atmost D + 1 vertices (D is the diameter of the
graph G ). Let us rename the vertices, and assume that i = 1
and j = D + 1, and the coordinates 2, 3, . . . ,D correspond to
the vertices on this path in order.
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Then, we have

1√
n
≤ u1 − uD+1

= (u1 − v1) + (v1 − u2) + . . .+ (vD − uD+1)

≤ |u1 − v1|+ |v1 − u2|+ . . .+ |vD − uD+1|

≤
√
(u1 − v1)2 + (v1 − u2)2 + . . .+ (vD − uD+1)2

√
2D + 1

Therefore, we get

(u1 − v1)
2 + (v1 − u2)

2 + . . .+ (vD − uD+1)
2 ≥ 1

n(2D + 1)
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▶ Observe that∑
i ,j

Ai ,j(ui − vj)
2 ≥

∑
i

Ai ,i (ui − vi )
2 + Ai ,i+1(vi − ui+1)

2

≥ 1

d
(u1 − v1)

2 + (v1 − u2)
2 + . . .+ (vD − uD+1)

2

≥ 1

nd(2D + 1)

▶ Using this bound and substituting D ≤ n − 1 we get

1−∥v∥22 ≥
1

2dn2

which implies that λ(G ) ≤ 1− 1
4dn2

▶ In fact, we can show D ≤ 3n/(d + 1)
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Expander Graphs

Expander Graphs

There are two ways to define Expander graphs

▶ Algebraic definition

▶ Combinatorial definition
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Expander Graphs

Algrebraic Definition

Algrebraic Definition

▶ (n, d , λ)-expander graphs: If G is an n-vertex d-regular
graph with λ(G ) ≤ λ for some number λ < 1, then we say
that G is an (n, d , λ)-graph.

▶ A family of graphs {Gn}n∈N is an expander graph family if
there are some constants d ∈ N and λ < 1 such that for every
n, Gn is an (n, d , λ)-graph.
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Combinatorial (edge) Definition

Combinatorial (edge) Definition

▶ An n-vertex d-regular graph G = (V ,E ) is called an
(n, d , ρ)-combinatorial edge expander if for every subset S of
vertices satisfying |S | ≤ n/2,

|E (S ,S)| ≥ ρd |S |

where S denotes the complement of S and for any 2 subsets
S ,T of vertices, E (S ,T ) denotes the set of edges between S
and T
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Expander Graphs

Combinatorial (edge) Definition

Edge expander graphs
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Expander Graphs

Relation between the two definitions

Relation between the two definitions

▶ If G is an (n, d , λ)-expander graph, then it is an
(n, d , (1− λ)/2) edge expander.

▶ If G is an (n, d , ρ) edge expander, then its second largest

eigenvalue (without taking absolute values) is at most 1− ρ2

2 .
If furthermore G has all self loops, then it is an

(n, d , 1− ϵ)-expander where ϵ = min
{

2
d ,

ρ2

2

}
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Rotation Maps

▶ For a d-regular graph, we can assign a permutation of [d ] to
label the outgoing edges of a vertex.

▶ Let G be a d-regular graph on n vertices. Go to each vertex,
and label it’s outgoing edges with a permutation of [d ].
Capture this by the function Ĝ : [n]× [d ] 7→ [n]× [d ] which
maps ⟨v , i⟩ to ⟨u, j⟩ where u is the i th neighbour of v and v is
the j th neighbour of u.

▶ Observe that Ĝ is a permutation (in fact, it is an involution).
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maps ⟨v , i⟩ to ⟨u, j⟩ where u is the i th neighbour of v and v is
the j th neighbour of u.

▶ Observe that Ĝ is a permutation (in fact, it is an involution).
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Path Product

▶ Let G and G ′ be two n-vertex graphs with degrees d , d ′ and
random-walk matrices A, A′ respectively. Then we describe
the graph G ′G as the graph described by the random-walk
matrix A′A.

▶ That is, G ′G has an edge (u, v) for every length two-path
from u to v where the first step in the path is taken on an
edge of G and the second is on an edge of G ′.
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Path Product

Path Product

▶ Consider a n vertex graph G with degree d . Let A be it’s
random walk matrix. Then G k is a dk regular graph with
random walk matrix Ak .
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Path Product

Path product makes expansion better

▶ As we have seen earlier (Lemma 1) ,

λ(G k) ≤
(
λ(G )

)k
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Path Product

Computing rotation map of G k

▶ Relabel the outgoing edges by a k tuple where the tuple
represents the walk due to which this edge is present.

▶ That is, the rotation map of G k is a permutation on [n]× [dk ].
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Replacement Product

Let G and G
′
be two graphs where G is (n,D)-graph, G

′
is

(D, d)-graph. The replacement product of G and G
′
is defined as

G R○G
′
is (nD, 2d)-graph is defined as:

▶ For each vertex u of G , the graph G R○G
′
has a copy of G

′

(including edges and vertices).

▶ If u, v are two neighbouring vertices in G where ⟨ u, i ⟩ is
mapped to ⟨ v , j ⟩, then we place d parallel edges between the
i th vertex in the copy of G

′
corresponding to u and the j th

vertex in the copy of G
′
corresponding to v .
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Replacement Product

▶ Observe that replacement product ’preserves’ the connected
components in G . (assuming G

′
is connected)

▶ Two copies of G
′
are connected if and only if they are

connected in G .
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Replacement Product

Rotation map of replacement product

▶ First, observe that the rotation map will be a permutation
over

(
[n]× [D]

)
×
(
[d ]× {0, 1}

)
as G R○G

′
. For some input(

(u, v), (i , b)
)
, the rotation map function first checks if b = 0

or b = 1.

▶ If b = 0, then it treats v as a vertex of G
′
. Thus, it outputs(

u, Ĝ ′(v , i), b
)
.

▶ If b = 1, then it treats v as an edge label of G . Thus, it

outputs
(
Ĝ (u, v), i , b

)
.
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Rotation Map of replacement product

▶ In other words, b = 0 indicates an edge inside a cluster of G
′
,

while b = 1 indicates a cross edge between clusters.



UPATH is in L

Replacement Product

Expansion of a replacement product

▶ Claim: If λ(G ) ≤ 1− ϵ and λ(H) ≤ 1− δ then

λ(G R○H) ≤ 1− ϵδ2

24

▶ This shows that replacement product does not worsen the
expansion by too much.



UPATH is in L

Replacement Product

Recap

▶ Path Product - Improves expansion but increases degree

▶ Replacement Product - Decreases degree and does not worsen
expansion by too much
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UPATH ∈ L when G is an expander
▶ Let G be a d-regular graph, whose every connected

component is an expander.

▶ Observe that for such graphs, there is a number l = O(log n)
such that if s and t are connected, they are connected with a
path of length at most l . (due to Lemma 1)

▶ Put t =
log 1

n2

log λ in Lemma 1 to get ||Atp − 1|| ≤ λt ≤ 1
n2
. Put

p = êu (vector with all zeros except 1 at starting vertex u).
After t steps, the entry corresponding to final vertex v in Atp
must be non zero (otherwise

∥∥Atp − 1
∥∥
2
≥ 1

n ). Thus, there
must be some path of length t between u and v .

▶ We can now enumerate over all paths of length O(log n)
(instead of O(n)). This can be done in logspace now as the
number of walks are O(dO(log n)) = poly(n), which can be
enumerated in logspace.
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UPATH ∈ L
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Reingold’s Theorem

Motivation

▶ It is easy to check whether s and t are connected in an
expander graph. This is because if s and t are connected,
then there is a O(log n) length path between s and t.

▶ Then we can check all walks of length O(log n) from s to see
whether it hits t. Assuming that the degree of each vertex is
atmost some constant d , there will be dO(log n) walks (as
there are d choices at every vertex), which is poly(n) and
takes logspace to enumerate.

▶ So, the main idea is to convert the given graph into an
expander graph while maintaining connectivity properties.
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Reingold’s Theorem

Converting into 4-regular graph

▶ We can convert any graph into a 4-regular graph, preserving
the connectivity properties.

▶ If a vertex has degree d” < 3, we can add self loops to
increase multiplicity.

▶ If vertex has degree d ′ > 3, then we can replace the cycle by a
cycle containing d ′ vertices, each of the d ′ vertices that were
incident to the old vertices attach to one of the cycle nodes.

▶ This transformation does not change connectivity properties.
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Reingold’s Theorem

Recursive Algorithm

▶ We can convert the 4-regular graph into a d50-regular graph
by adding self loops (assuming d is even).

▶ Let H be a (d50, d/2, 0.01)-expander graph. Note that H is
the same for all problems.

▶ Let G0 be our d50-regular graph. And let us define

Gk = (Gk−1 R○H)50

.
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Reingold’s Theorem

Number of Vertices

▶ If G0 has n vertices and is d50-regular, then G0 R○H has d50n
vertices is d-regular. Therefore, G1 =

(
(G0 R○H)50

)
has d50n

vertices and is d50-regular.

▶ Therefore in general, Gk has d50kn vertices, and is d50-regular
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Reingold’s Theorem

Claim

For all ϵ < 1/20, if λ(F ) ≤ 1− ϵ, then

λ
(
(F R○H)50

)
≤ 1− 2ϵ

.

Proof:

▶ This is because if λ(F ) ≤ 1− ϵ, then

λ(F R○H) ≤ 1− ϵ(1− 0.01)2

24
≤ 1− ϵ

25

.

▶ Then λ
(
(F R○H)50

)
≤ (1− ϵ/25)50 ≤ 1− 2ϵ.
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Reingold’s Theorem

Gk is an expander graph

▶ Recall that for a D-regular graph containing self loops, every
connected component of G0 has expansion parameter of
atmost 1− 1

4Dn2
. Here D = d50.

▶ By previous claim, we get that expansion parameter of G1 is

atmost max
(
1− 1

20 , 1−
2

4Dn2

)
. Similarly, we get expansion

parameter of Gk is atmost max
(
1− 1

20 , 1−
2k

4Dn2

)
.

▶ Therefore, for k = O(log n) , we get λ(Gk) is atmost 1− 1
20 .
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Reingold’s Theorem

Analysis

▶ Here N = d50c log nn. Therefore, we get that there is a
O(log n) length path between s and t.

▶ Now we explore each path starting from s of length atmost
O(log n) to check whether it hits t. As the degree of each
vertex is d50, we get that there are atmost dO(log n)

(polynomially many) paths to explore.

▶ Assuming we know Gk , we can do this in log space as we only
have to maintain the current vertex, number of edges
traversed in current path and number of paths traversed.



UPATH is in L

Reingold’s Theorem

Analysis

▶ Here N = d50c log nn. Therefore, we get that there is a
O(log n) length path between s and t.

▶ Now we explore each path starting from s of length atmost
O(log n) to check whether it hits t. As the degree of each
vertex is d50, we get that there are atmost dO(log n)

(polynomially many) paths to explore.

▶ Assuming we know Gk , we can do this in log space as we only
have to maintain the current vertex, number of edges
traversed in current path and number of paths traversed.



UPATH is in L

Reingold’s Theorem

Analysis

▶ Here N = d50c log nn. Therefore, we get that there is a
O(log n) length path between s and t.

▶ Now we explore each path starting from s of length atmost
O(log n) to check whether it hits t. As the degree of each
vertex is d50, we get that there are atmost dO(log n)

(polynomially many) paths to explore.

▶ Assuming we know Gk , we can do this in log space as we only
have to maintain the current vertex, number of edges
traversed in current path and number of paths traversed.



UPATH is in L

Reingold’s Theorem

Analysis

▶ We don’t know Gk explicitly. So finding the neighbours of a
vertex in Gk is not trivial.

▶ Observe that we only need to be able to find the i th neighbour
of v in log space.

▶ If we can take a single step in log space, then we can take l
steps in log space by reusing the space.
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Reingold’s Theorem

Analysis

▶ Recall that Gk = (Gk−1 R○H)50, thus it suffices to show that
we can take a single step in the graph Gk−1 R○H in logspace.

▶ Suppose we are at some vertex ⟨u, v⟩ (where u is a vertex of
Gk−1 and v is a vertex in H). We want to take a step from
this vertex.
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Analysis

▶ Suppose we want to take a step on the edge labelled ⟨b, i⟩.

▶ If b = 0, then the edge is inside a copy of H, so this requires
us to access the rotation map of H, which takes O(1) space.

▶ If b = 1, then the edge is a cross edge between clusters, so
this requires us to access the rotation map of G k−1
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Reingold’s Theorem

Analysis

▶ This leads to a recursive algorithm where we need O(1) space
at every step.

▶ If sk is the space needed to compute the rotation map of G k ,
we have sk = sk−1 + O(1).

▶ Hence, sk = O(log n) as k = O(log n).



UPATH is in L

Reingold’s Theorem

Analysis

▶ This leads to a recursive algorithm where we need O(1) space
at every step.

▶ If sk is the space needed to compute the rotation map of G k ,
we have sk = sk−1 + O(1).

▶ Hence, sk = O(log n) as k = O(log n).



UPATH is in L

Reingold’s Theorem

Analysis

▶ This leads to a recursive algorithm where we need O(1) space
at every step.

▶ If sk is the space needed to compute the rotation map of G k ,
we have sk = sk−1 + O(1).

▶ Hence, sk = O(log n) as k = O(log n).



UPATH is in L
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Recap

▶ In a graph with n vertices, there is a path with length ≤ n
between any two connected vertices.

▶ The naive way to derandomize in general graphs fails since
there are dn possible walks to search, and enumerating these
walks will take O(n) space. (assuming d to be constant)

▶ Fortunately, in graphs with good expansion there is a O(log n)
length path between any two connected vertices.
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Recap

▶ This leads to a natural question - Can we transform any
graph into an expander? (that is, every connected component
of the final graph will be an expander).

▶ Graph product improves expansion, but increases degree
(which is a problem).

▶ Replacement product reduces degree, and does not worsen
expansion by too much. We can get away with this by using a
graph H with very good expansion.
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Reingold’s Theorem

Recap

▶ Finally, we use rotation maps to implicitly keep track of the
different graphs in logspace.

▶ The final algorithm is as follows:
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Reingold’s Theorem

Recap

▶ Given G , implicitly construct Gk for appropriate k (that is,
you don’t actually construct Gk but treat it’s adjacency list/
rotation map as a recursive lookup function).

▶ We start enumerating all walks of O(log n) length in Gk

implicitly, using rotation maps to ensure logspace.

▶ Effectively, this gives a complete derandomization (logspace
constructible universal exploration sequences for general
graphs).
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▶ Every permutation can be represented by a permutation
matrix, hence every rotation map can be represented by a
permutation matrix.

▶ One can algebraically represent replacement product as

A R○A
′
=

1

2
Â+

1

2
(In ⊗ A

′
)

where A and A
′
are corresponding random walk matrices.
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▶ Lemma: Let M be a random walk matrix of an (n, d , λ)
expander graph G . Let J be the random walk matrix of the n
clique with self loops, that is every entry is 1

n . Then,

M = (1− λ) J + λM
′
where

∣∣∣M ′
∣∣∣ ≤ 1 (can check that

M
′
= 1

λ

(
M − (1− λ) J

)
works).

▶ Let A be the n × n random walk matrix of G (with Â as the
nD × nD permutation matrix)

▶ Let B be the D × D random walk matrix of H, and let C be
the nD × nD random walk matrix of (G R○H)3
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nD × nD permutation matrix)

▶ Let B be the D × D random walk matrix of H, and let C be
the nD × nD random walk matrix of (G R○H)3



UPATH is in L

Extra

Extra

▶ Using the algebraic definition of replacement product, we get,

C =
(
1
2 Â+ 1

2 (In ⊗ B)
)3
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▶ Applying the lemma on B, we obtain B = (1− δ)B
′
+ δJ

where ||B ′ || ≤ 1

▶ Substituting and manipulating,

C =

(
1− δ2

8

)
C

′
+

δ2

8
(In ⊗ J) Â (In ⊗ J)

▶ One can algebraically check that

(In ⊗ J) Â (In ⊗ J) = A⊗ J

and

λ(A⊗ J) ≤ max(λ(A), 0)
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▶ Plugging this back, we obtain λ
(
(G R○H)3

)
.

▶ This implies that λ(G R○H) ≤ 1− ϵδ2

24 since λ(G 3) = λ(G )3.
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