E0 224: Computational Complexity Theory Indian Institute of Science Assignment 2

Due date: Oct 20, 2023 Total marks: 50

- 1. (3 marks) Define polyL to be $\cup_{c>0} \mathsf{SPACE}(\log^c n)$. Steve's Class SC is defined to be the set of languages that can be decided by deterministic machines that run in polynomial time and $\log^c n$ space for some c>0. It is an open problem whether PATH $\in \mathsf{SC}$. Why does Savitch's theorem not resolve this question? Is SC the same as $\mathsf{polyL} \cap \mathsf{P}$.
- 2. (7 marks) Prove that in the read-once certificate definition of NL, if we allow the verifier machine to move its head back and forth on the certificate then the class being defined changes to NP.
- 3. (6 marks) If $S = \{S_1, S_2, ..., S_m\}$ is a collection of subsets of a finite set U, the VC dimension of S, denoted VC(S), is the size of the largest set $X \subseteq U$ such that for every $X' \subseteq X$, there is an i for which $S_i \cap X = X'$. (We say that X is shattered by S.)

A Boolean circuit C succinctly represents collections S if S_i consists of exactly those elements $x \in U$ for which C(i, x) = 1. Finally,

VC-DIMENSION = $\{ \langle C, k \rangle : C \text{ represents a collection } S \text{ such that } VC(S) \geq k \}.$

Show that VC-DIMENSION $\in \Sigma_3$.

- 4. (9 marks) Prove that a language L is in NC^1 if and only if L is decided by a q(n)-size circuit family $\{C_n\}_{n\in\mathbb{N}}$, where q is a polynomial function and C_n is a Boolean formula for every $n\in\mathbb{N}$.
- 5. (10 marks) Linear programming (LP) is the problem of checking the feasibility of a system of linear inequality constraints over rationals. Prove that every language in P is logspace-reducible to LP. (In other words, LP is P-complete, and so, if LP is in P-complete, and so, if LP is in P-complete, and so if P-complete, and P-complete, an
- 6. (6+9 marks) Prove that logspace uniform NC^1 is contained in L. Prove that $NL \subseteq NC$.