Computational Complexity Theory

0

Lecture I: Intro; Turing machines

Department of Computer Science, Indian Institute of Science

 Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational **problems** come in various flavors:

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational **problems** come in various flavors:

a. Decision problem

Example: Is vertex t reachable from vertex s in graph G? Is n a prime number?

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational **problems** come in various flavors:

a. Decision problemb. Search problem

Example: Find a satisfying assignment for a Boolean formula. Find a prime between n and 2n.

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational **problems** come in various flavors:
 - a. Decision problem
 - b. Search problem
 - c. Counting problem
 - Example: Count the number of cycles in a graph.
 - Count the number of perfect matchings in a graph.

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational **problems** come in various flavors:
 - a. Decision problem
 - b. Search problem
 - c. Counting problem
 - d. Optimization problem

Example: Find a minimum size vertex cover in a graph

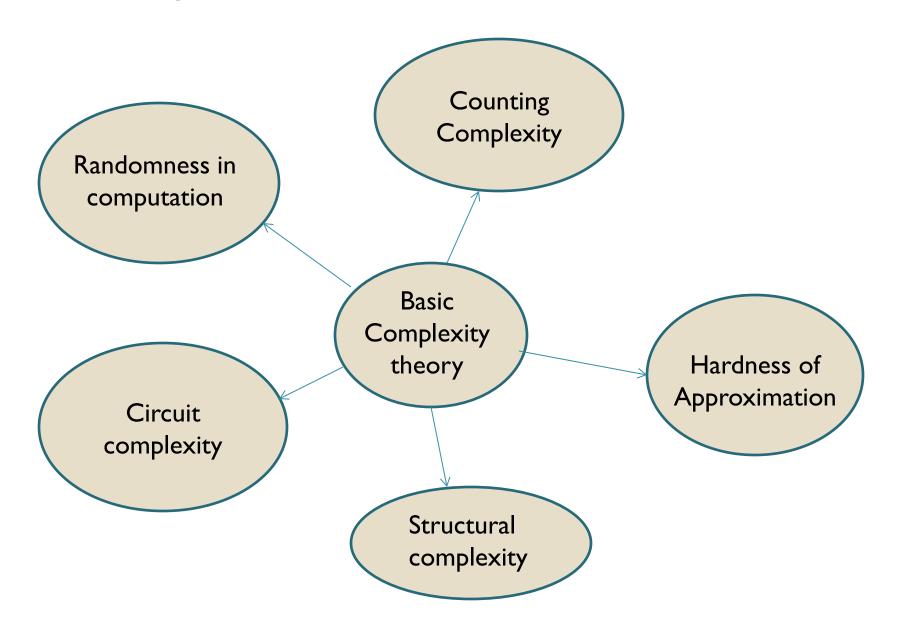
- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Algorithms are <u>methods</u> for solving problems; they are studied using formal <u>models of computation</u>, like Turing machines.
 - a memory with head (like a RAM)
 - a finite control (like a processor)

(...more later in this lecture)

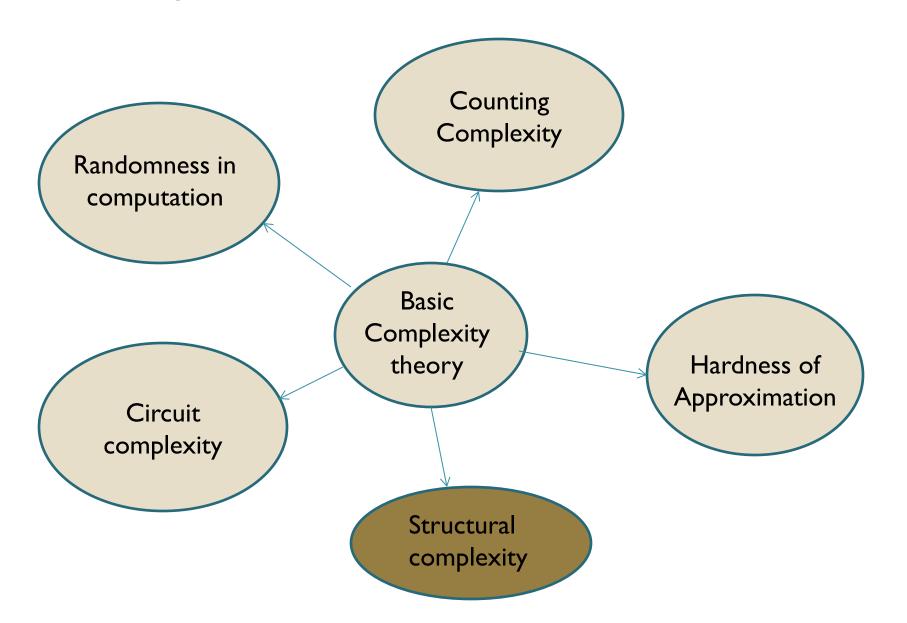
- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational resources (required by models of computation) can be:
 - Time (bit operations)
 - Space (memory cells)

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational resources (required by models of computation) can be:
 - Time (bit operations)
 - Space (memory cells)
 - Random bits (magic bits: 0 w. p $\frac{1}{2}$ and 1 w.p $\frac{1}{2}$)
 - Communication (bit exchanges)

Topics to be covered in this course



Topics to be covered in this course



Structural Complexity

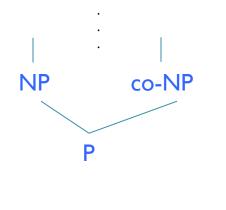
- Classes P, NP, co-NP... NP-completeness.
 - How hard is it to check satisfiability of a Boolean formula?
 - What if the formula has exactly one or no satisfying assignment?

Structural Complexity

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation.
 - How much space is required to check s-t connectivity?

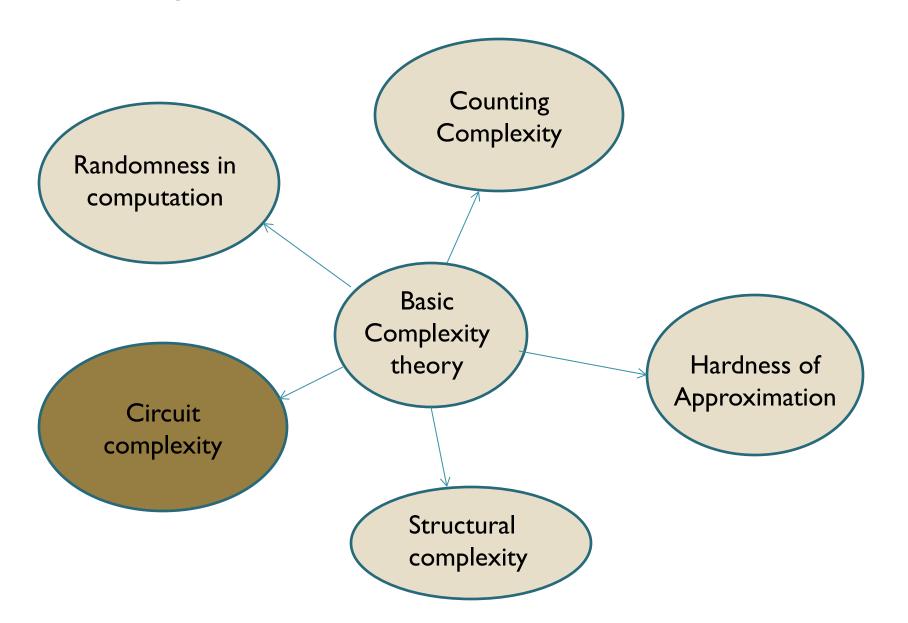
Structural Complexity

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation.
- Polynomial Hierarchy (PH).



- How hard is it to check if the largest independent set in G has size k?
- How hard is it to check if there is a circuit of size k that computes the same Boolean function as a given Boolean circuit C ?

Topics to be covered in this course



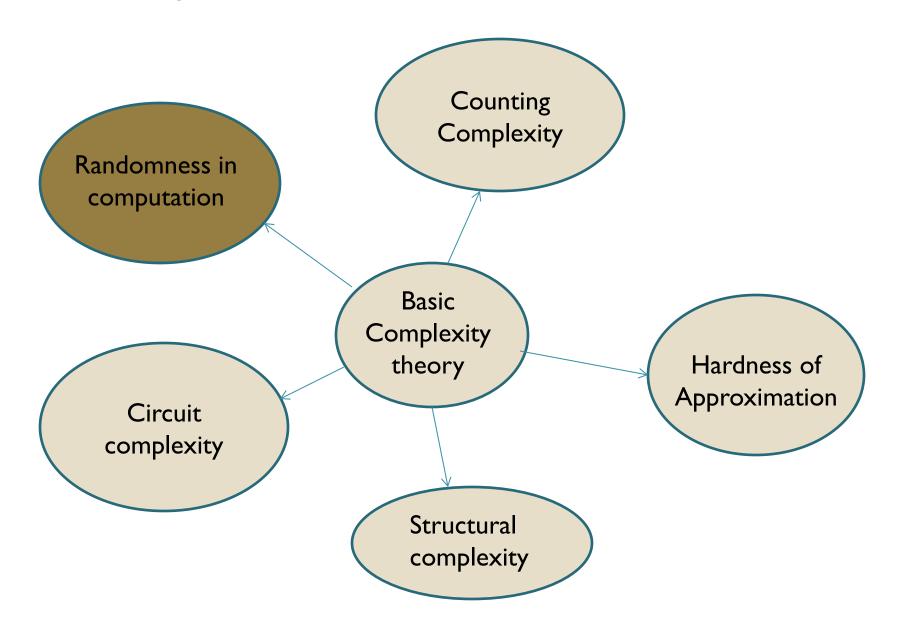
Circuit Complexity

- The internal workings of an algorithm can be viewed as a Boolean circuit -- a nice combinatorial model of computation that is closely related to Turing Machines.
- The <u>size</u>, <u>depth</u> & <u>width</u> of a circuit correspond to the <u>sequential</u>, <u>parallel</u> & <u>space</u> complexity, respectively, of the algorithm that it represents.

Circuit Complexity

- The internal workings of an algorithm can be viewed as a Boolean circuit -- a nice combinatorial model of computation that is closely related to Turing Machines.
- The <u>size</u>, <u>depth</u> & <u>width</u> of a circuit correspond to the <u>sequential</u>, <u>parallel</u> & <u>space</u> complexity, respectively, of the algorithm that it represents.
- Proving P ≠ NP reduces to showing circuit lower bounds.
 - We will see lower bounds for restricted classes of circuits.

Topics to be covered in this course



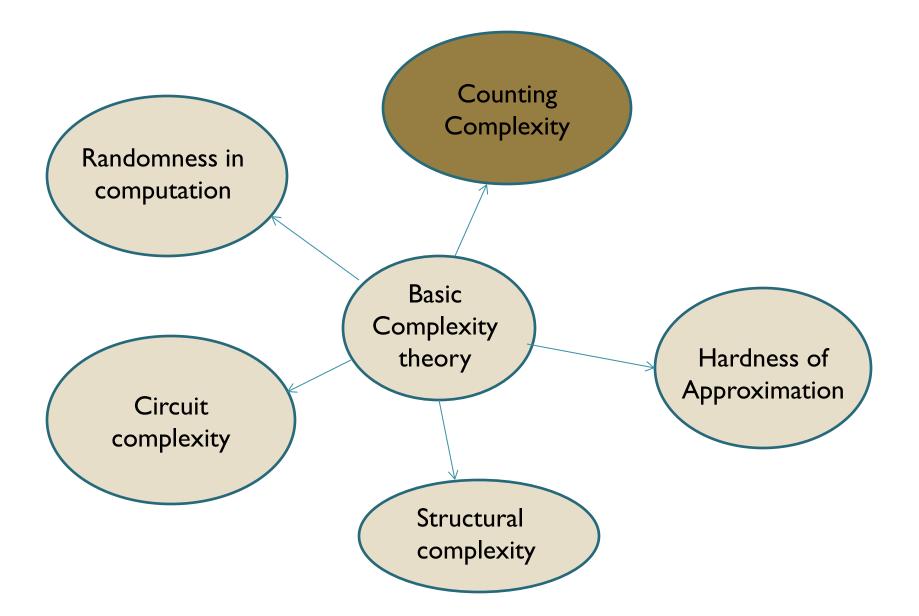
Randomness in Computation

- Probabilistic complexity classes (BPP, RP, co-RP).
 - Does randomization help in improving efficiency?
 - Quicksort has O(n log n) expected time but O(n^2) worst case time.
 - Can SAT be solved in polynomial time using randomness?

Theorem (Schoening, 1999): 3SAT can be solved in randomized $O((4/3)^n)$ time.

• Access to random bits can help improve computational efficiency... but, to what extent?

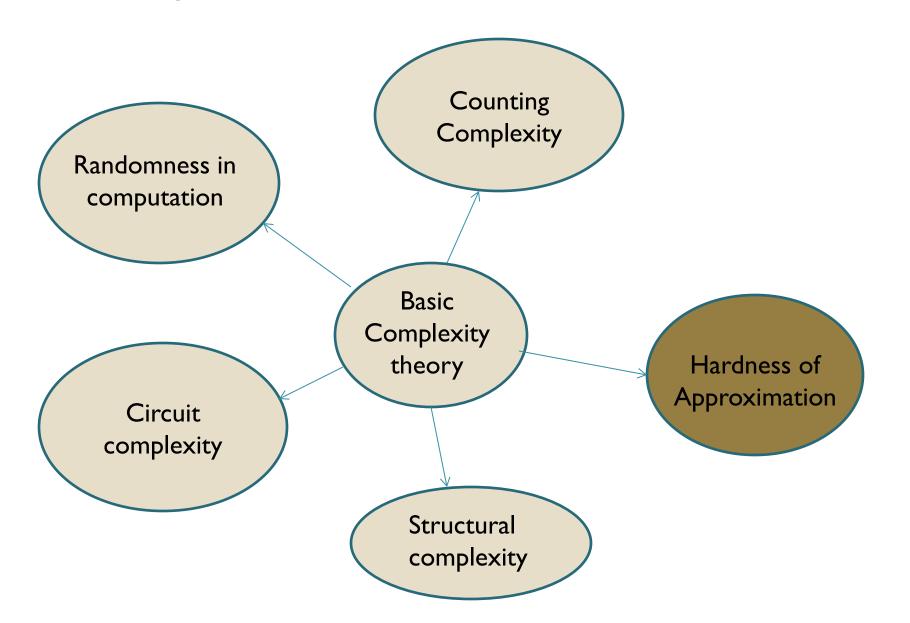
Topics to be covered in this course



Counting Complexity

- Counting complexity classes (class #P).
 - How hard is it to count the number of perfect matchings in a graph?
 - How hard is it to count the number of cycles in a graph?
 - Can we compute the number of simple paths between s and t in G efficiently?
 - Is counting much harder than the corresponding decision problem?

Topics to be covered in this course



Hardness of Approximation

• Probabilistically Checkable Proofs (PCPs).

Hardness of approximation results.

Theorem (Hastad, 1997): If there's a poly-time algorithm to compute an assignment that satisfies at least $7/8 + \varepsilon$ fraction of the clauses of an input 3SAT, for any constant $\varepsilon > 0$, then P = NP.

Course Info

- Course no.: E0 224 Credits: 3:1
- Instructor: Chandan Saha
- Lecture time: M,W 11:30-1pm. Venue: CSA 112
- Course homepage:

https://www.csa.iisc.ac.in/~chandan/courses/complexity23/home.html

Course Info

- Prerequisites: Basic familiarity with algorithms; Mathematical maturity.
- Primary reference: Computational Complexity A Modern Approach by Sanjeev Arora and Boaz Barak.
- Lectures: Slides will be posted on the course homepage.
- Number of lectures: ~27.

Course Info

Grading policy: Three assignments - 45%
Presentation <u>or</u> midsem exam - 25%
Final exam - 30%

Assignments

- First assignment: Will posted on <u>Aug 31</u>; due date will be <u>Sep 14</u>.
- Second assignment: Will posted on <u>Sep 30</u>; due date will be <u>Oct 14</u>.
- Third assignment: Will posted on <u>Oct 31</u>; due date will be <u>Nov 14</u>.
- Mode: Assignments will be posted on the course homepage. You need to e-mail me your assignment as a pdf file (use Latex).

Presentations

- A group of 2 students would present a paper/result.
- **Duration of a presentation:** 1-1.5 hr.
- Mode: In class, use slides.
- I will start giving topics to present from <u>mid-Sep</u>. All topics will be handed out by <u>mid-Oct</u>.
- You will get ~4 weeks to prepare a presentation.
- We will finish all the presentations by <u>Nov 23 (Wed)</u>.

Final exam

- Would be a <u>3 hr</u> long <u>written test</u>.
- When? First week of Dec.

First few lectures

- Lecture I: Today
- Lecture 2: <u>Saturday (Aug 5)</u>, 11:30-1, Room 112
- Lecture 3: Monday (Aug 7), 11:30-1, Room 112
- Lecture 4: Wednesday (Aug 9), 11:30-1, Room 112
- No lectures on Aug 14 (Mon) and Aug 16 (Wed).
- Lecture 5: <u>Saturday (Aug 19)</u>, 11:30-1, Room 112.

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of computation</u>. Turing machine is one such *natural* model (introduced by Alan Turing in 1936).

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of computation</u>. Turing machine is one such *natural* model (introduced by Alan Turing in 1936).
- ATM consists of:
 - Memory tape(s)
 - A finite set of rules

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of computation</u>. Turing machine is one such *natural* model (introduced by Alan Turing in 1936).
- ATM consists of:
 - Memory tape(s)
 - A finite set of rules
- Turing machines A mathematical way to describe algorithms.

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of computation</u>. Turing machine is one such *natural* model (introduced by Alan Turing in 1936).
- ATM consists of:
 - Memory tape(s)
 - A finite set of rules

(e.g. of a physical realization of a TM is a simple adder)

• Definition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that

- Definition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with *heads*;
- Fis a finite set of alphabets. (Every memory cell contains an element of F)

- Definition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with heads;
- Fis a finite set of alphabets. (Every memory cell contains an element of

has a <mark>blank</mark> symbol

- Definition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with heads:
- Fis a finite set of alphabets. (Every memory cell contains an element of [)
- Q is a finite set of states. (special states: q_{start} , q_{halt}) δ is a function from Q x Γ^{k} to Q x Γ^{k} {L,S,R}

- Definition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with heads:
- Fis a finite set of alphabets. (Every memory cell contains an element of [)
- Q is a finite set of states. (special states: q_{start} , q_{halt}) δ is a function from Q x Γ^{k} to Q x Γ^{k} x {L,S,R}

known as transition function; it captures the dynamics of M

Turing Machines: Computation

• Start configuration.

> All tapes other than the input tape contain blank symbols.

> The input tape contains the input string.

 \geq All the head positions are at the start of the tapes.

 \geq The machine is in the start state q_{start} .

Turing Machines: Computation

• Start configuration.

> All tapes other than the input tape contain blank symbols.

> The input tape contains the input string.

- \geq All the head positions are at the start of the tapes.
- \geq The machine is in the start state q_{start} .

• Computation.

> A step of computation is performed by applying δ .

• Halting.

 \geq Once the machine enters q_{halt} it stops computation.

Turing Machines: Running time

- Let f: {0,1}* → {0,1}* and T: N → N and M be a Turing machine.
- Definition. We say M computes f if on every x in {0,1}*, M halts with f(x) on its output tape beginning from the start configuration with x on its input tape.

Turing Machines: Running time

- Let f: {0,1}* → {0,1}* and T: N → N and M be a Turing machine.
- Definition. We say M computes f if on every x in {0,1}*, M halts with f(x) on its output tape beginning from the start configuration with x on its input tape.
- Definition. M computes f in T(|x|) time, if for every x in {0,1}*, M halts within T(|x|) steps of computation and outputs f(x).