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About the course 

 Computational complexity attempts to classify 
computational problems based on the amount of 
resources required by algorithms to solve them. 

 Computational problems come in various flavors:  

                    a. Decision problem 

                    b. Search problem 

                    c. Counting problem 

                    d. Optimization problem  

  Example:  Find a minimum size vertex cover in a graph 



About the course 

 Computational complexity attempts to classify 
computational problems based on the amount of 
resources required by algorithms to solve them. 

 Algorithms are methods for solving problems; they 
are studied using formal models of computation, like 
Turing machines.      
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 Computational complexity attempts to classify 
computational problems based on the amount of 
resources required by algorithms to solve them. 

 Computational resources (required by models of 
computation) can be: 

                     • Time  (bit operations) 
• Space  (memory cells) 
• Random bits (magic bits:  0 w. p ½ and 1 w.p ½ ) 
• Communication  (bit exchanges) 
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Structural Complexity 

 Classes P,  NP,  co-NP… NP-completeness. 

 • How hard is it to check satisfiability of a Boolean formula?  
• What if the formula has exactly one or no satisfying assignment? 



Structural Complexity 

 Classes P,  NP,  co-NP… NP-completeness. 

 Space bounded computation. 

 

 
• How much space is required to check s-t connectivity? 



Structural Complexity 

 Classes P,  NP,  co-NP… NP-completeness. 

 Space bounded computation. 

 Polynomial Hierarchy (PH). 

 

 
co-NP NP 

P 

. 

. 

. 
• How hard is it to check if the largest 

independent set in G has size k ? 
 

• How hard is it to check if there is a 
circuit of size k that computes the same 
Boolean function as a given Boolean 
circuit C ? 
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Circuit Complexity 

 The internal workings of an algorithm can be 
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closely related to Turing Machines.  

 The size, depth & width of a circuit correspond 
to the sequential, parallel & space complexity, 
respectively, of the algorithm that it represents.  

 

 

 



Circuit Complexity 

 The internal workings of an algorithm can be 
viewed as a Boolean circuit -- a nice 
combinatorial model of computation that is 
closely related to Turing Machines.  

 The size, depth & width of a circuit correspond 
to the sequential, parallel & space complexity, 
respectively, of the algorithm that it represents.  

 Proving P ≠ NP reduces to showing circuit 
lower bounds. 

 

 

 

• We will see lower bounds for restricted classes of circuits. 
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Randomness in Computation 

 Probabilistic complexity classes (BPP, RP, co-RP). 

 
• Does randomization help in improving efficiency? 
• Quicksort has O(n log n) expected time but O(n^2) worst 

case time. 
• Can SAT be solved in polynomial time using randomness? 

 
 
 
 

• Access to random bits can help improve computational 
efficiency… but, to what extent? 
 
 
 

Theorem (Schoening, 1999):  3SAT can be solved in  
randomized O((4/3)n) time. 
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Counting Complexity 

 Counting complexity classes (class #P). 

 

 
• How hard is it to count the number of perfect matchings 

in a graph? 
 

• How hard is it to count the number of cycles in a graph? 
 

• Can we compute the number of simple paths between s 
and t in G efficiently? 
 

• Is counting much harder than the corresponding decision 
problem? 
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Hardness of Approximation 

 Probabilistically Checkable Proofs (PCPs). 

 

 
 Hardness of approximation results. 

Theorem (Hastad, 1997):  If there’s a poly-time algorithm  
to compute an assignment that satisfies at least 7/8 + 𝛆 
fraction of the clauses of an input 3SAT, for any constant  𝛆 > 0, then P = NP. 



Course Info 

 Course no.:  E0 224         Credits:   3:1  

 Instructor:  Chandan Saha 

 Lecture time:  M, W 11:30-1pm.  Venue:  CSA 112 

 

 Course homepage: 

   https://www.csa.iisc.ac.in/~chandan/courses/complexity23/home.html 

 

 

 
 



Course Info 

 Prerequisites:  Basic familiarity with algorithms;  

            Mathematical maturity. 

 

 Primary reference: Computational Complexity – A 
Modern Approach by Sanjeev Arora and Boaz Barak. 

 

 Lectures:  Slides will be posted on the course 
homepage.  

 Number of lectures:  ~27.  

 

 



Course Info 

 

 Grading policy:  Three assignments - 45% 

    Presentation or midsem exam - 25%  

     Final exam - 30% 
 

 

 
 



Assignments 

 First assignment: Will posted on Aug 31; due date 
will be Sep 14. 

 Second assignment: Will posted on Sep 30; due 
date will be Oct 14. 

 Third assignment: Will posted on Oct 31; due date 
will be Nov 14. 

 Mode:  Assignments will be posted on the course 
homepage. You need to e-mail me your assignment as 
a pdf file (use Latex). 

 

 



Presentations 

 A group of 2 students would present a paper/result. 

 Duration of a presentation:  1-1.5 hr. 

 Mode: In class, use slides. 

 

 I will start giving topics to present from mid-Sep.  All 
topics will be handed out by mid-Oct. 

 You will get ~4 weeks to prepare a presentation. 

 We will finish all the presentations by Nov 23 (Wed). 
 

 

 



Final exam 

 Would be a 3 hr long written test. 

   

 When? First week of Dec. 
 

 

 

 
 



First few lectures 

 Lecture 1:  Today 

 Lecture 2:  Saturday (Aug 5), 11:30-1, Room 112 

 Lecture 3:  Monday (Aug 7), 11:30-1, Room 112 

 Lecture 4:  Wednesday (Aug 9), 11:30-1, Room 112 

 

 No lectures on Aug 14 (Mon) and Aug 16 (Wed). 

 

 Lecture 5: Saturday (Aug 19), 11:30-1, Room 112. 
 

 

 



Let’s begin… 
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 An algorithm is a set of instructions or rules. 

 To understand the performance of an algorithm we 
need a model of computation. Turing machine is one 
such natural model (introduced by Alan Turing in 1936).  
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    (e.g. of a physical realization of a TM is a simple adder) 

• Memory tape(s) 
• A finite set of rules 
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known as transition function; it captures the 
dynamics of M 



Turing Machines:  Computation 

 Start configuration. 

 All tapes other than the input tape contain blank symbols. 

 The input tape contains the input string. 

 All the head positions are at the start of the tapes. 

 The machine is in the start state qstart . 



Turing Machines:  Computation 

 Start configuration. 

 All tapes other than the input tape contain blank symbols. 

 The input tape contains the input string. 

 All the head positions are at the start of the tapes. 

 The machine is in the start state qstart . 
 

 Computation. 

 A step of computation is performed by applying δ. 
 

 Halting. 

 Once the machine enters qhalt it stops computation. 

 



Turing Machines:  Running time 

 Let f:  {0,1}*      {0,1}* and T:  and M be a 
Turing machine. 
 

 Definition.  We say M computes f if on every x in 
{0,1}*, M halts with f(x) on its output tape beginning 
from the start configuration with x on its input tape. 
 



Turing Machines:  Running time 

 Let f:  {0,1}*      {0,1}* and T:  and M be a 
Turing machine. 
 

 Definition.  We say M computes f if on every x in 
{0,1}*, M halts with f(x) on its output tape beginning 
from the start configuration with x on its input tape. 
 

 Definition. M computes f in T(|x|) time, if for every x 
in {0,1}*, M halts within T(|x|) steps of computation 
and outputs f(x).  

 


