
Computational Complexity Theory

Lecture 1: Intro; Turing machines

Department of Computer Science,
Indian Institute of Science

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 Example: Is vertex t reachable from vertex s in graph G?

 Is n a prime number?

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 b. Search problem

 Example: Find a satisfying assignment for a Boolean formula.

 Find a prime between n and 2n.

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 b. Search problem

 c. Counting problem

 Example: Count the number of cycles in a graph.

 Count the number of perfect matchings in a graph.

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational problems come in various flavors:

 a. Decision problem

 b. Search problem

 c. Counting problem

 d. Optimization problem

 Example: Find a minimum size vertex cover in a graph

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Algorithms are methods for solving problems; they
are studied using formal models of computation, like
Turing machines.

 • a memory with head (like a RAM)
• a finite control (like a processor)

 (…more later in this lecture)

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational resources (required by models of
computation) can be:

 • Time (bit operations)
• Space (memory cells)

About the course

 Computational complexity attempts to classify
computational problems based on the amount of
resources required by algorithms to solve them.

 Computational resources (required by models of
computation) can be:

 • Time (bit operations)
• Space (memory cells)
• Random bits (magic bits: 0 w. p ½ and 1 w.p ½)
• Communication (bit exchanges)

Basic
Complexity

theory

Structural
complexity

Circuit
complexity

Randomness in
computation

Counting
Complexity

Hardness of
Approximation

Topics to be covered in this course

Basic
Complexity

theory

Structural
complexity

Circuit
complexity

Randomness in
computation

Counting
Complexity

Hardness of
Approximation

Topics to be covered in this course

Structural Complexity

 Classes P, NP, co-NP… NP-completeness.

 • How hard is it to check satisfiability of a Boolean formula?
• What if the formula has exactly one or no satisfying assignment?

Structural Complexity

 Classes P, NP, co-NP… NP-completeness.

 Space bounded computation.

• How much space is required to check s-t connectivity?

Structural Complexity

 Classes P, NP, co-NP… NP-completeness.

 Space bounded computation.

 Polynomial Hierarchy (PH).

co-NP NP

P

.

.

.
• How hard is it to check if the largest

independent set in G has size k ?

• How hard is it to check if there is a
circuit of size k that computes the same
Boolean function as a given Boolean
circuit C ?

Basic
Complexity

theory

Structural
complexity

Circuit
complexity

Randomness in
computation

Counting
Complexity

Hardness of
Approximation

Topics to be covered in this course

Circuit Complexity

 The internal workings of an algorithm can be
viewed as a Boolean circuit -- a nice
combinatorial model of computation that is
closely related to Turing Machines.

 The size, depth & width of a circuit correspond
to the sequential, parallel & space complexity,
respectively, of the algorithm that it represents.

Circuit Complexity

 The internal workings of an algorithm can be
viewed as a Boolean circuit -- a nice
combinatorial model of computation that is
closely related to Turing Machines.

 The size, depth & width of a circuit correspond
to the sequential, parallel & space complexity,
respectively, of the algorithm that it represents.

 Proving P ≠ NP reduces to showing circuit
lower bounds.

• We will see lower bounds for restricted classes of circuits.

Basic
Complexity

theory

Structural
complexity

Circuit
complexity

Randomness in
computation

Counting
Complexity

Hardness of
Approximation

Topics to be covered in this course

Randomness in Computation

 Probabilistic complexity classes (BPP, RP, co-RP).

• Does randomization help in improving efficiency?
• Quicksort has O(n log n) expected time but O(n^2) worst

case time.
• Can SAT be solved in polynomial time using randomness?

• Access to random bits can help improve computational
efficiency… but, to what extent?

Theorem (Schoening, 1999): 3SAT can be solved in
randomized O((4/3)n) time.

Basic
Complexity

theory

Structural
complexity

Circuit
complexity

Randomness in
computation

Counting
Complexity

Hardness of
Approximation

Topics to be covered in this course

Counting Complexity

 Counting complexity classes (class #P).

• How hard is it to count the number of perfect matchings

in a graph?

• How hard is it to count the number of cycles in a graph?

• Can we compute the number of simple paths between s
and t in G efficiently?

• Is counting much harder than the corresponding decision
problem?

Basic
Complexity

theory

Structural
complexity

Circuit
complexity

Randomness in
computation

Counting
Complexity

Hardness of
Approximation

Topics to be covered in this course

Hardness of Approximation

 Probabilistically Checkable Proofs (PCPs).

 Hardness of approximation results.

Theorem (Hastad, 1997): If there’s a poly-time algorithm
to compute an assignment that satisfies at least 7/8 + 𝛆
fraction of the clauses of an input 3SAT, for any constant 𝛆 > 0, then P = NP.

Course Info

 Course no.: E0 224 Credits: 3:1

 Instructor: Chandan Saha

 Lecture time: M, W 11:30-1pm. Venue: CSA 112

 Course homepage:

 https://www.csa.iisc.ac.in/~chandan/courses/complexity23/home.html

Course Info

 Prerequisites: Basic familiarity with algorithms;

 Mathematical maturity.

 Primary reference: Computational Complexity – A
Modern Approach by Sanjeev Arora and Boaz Barak.

 Lectures: Slides will be posted on the course
homepage.

 Number of lectures: ~27.

Course Info

 Grading policy: Three assignments - 45%

 Presentation or midsem exam - 25%

 Final exam - 30%

Assignments

 First assignment: Will posted on Aug 31; due date
will be Sep 14.

 Second assignment: Will posted on Sep 30; due
date will be Oct 14.

 Third assignment: Will posted on Oct 31; due date
will be Nov 14.

 Mode: Assignments will be posted on the course
homepage. You need to e-mail me your assignment as
a pdf file (use Latex).

Presentations

 A group of 2 students would present a paper/result.

 Duration of a presentation: 1-1.5 hr.

 Mode: In class, use slides.

 I will start giving topics to present from mid-Sep. All
topics will be handed out by mid-Oct.

 You will get ~4 weeks to prepare a presentation.

 We will finish all the presentations by Nov 23 (Wed).

Final exam

 Would be a 3 hr long written test.

 When? First week of Dec.

First few lectures

 Lecture 1: Today

 Lecture 2: Saturday (Aug 5), 11:30-1, Room 112

 Lecture 3: Monday (Aug 7), 11:30-1, Room 112

 Lecture 4: Wednesday (Aug 9), 11:30-1, Room 112

 No lectures on Aug 14 (Mon) and Aug 16 (Wed).

 Lecture 5: Saturday (Aug 19), 11:30-1, Room 112.

Let’s begin…

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

 A TM consists of:

• Memory tape(s)
• A finite set of rules

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

 A TM consists of:

 Turing machines A mathematical way to

 describe algorithms.

• Memory tape(s)
• A finite set of rules

Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

 A TM consists of:

 (e.g. of a physical realization of a TM is a simple adder)

• Memory tape(s)
• A finite set of rules

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

has a blank symbol

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

 Q is a finite set of states. (special states: qstart , qhalt)

 δ is a function from Q x Γ to Q x Γ x {L,S,R}

k k k

Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

 Q is a finite set of states. (special states: qstart , qhalt)

 δ is a function from Q x Γ to Q x Γ x {L,S,R}

k k k

known as transition function; it captures the
dynamics of M

Turing Machines: Computation

 Start configuration.

 All tapes other than the input tape contain blank symbols.

 The input tape contains the input string.

 All the head positions are at the start of the tapes.

 The machine is in the start state qstart .

Turing Machines: Computation

 Start configuration.

 All tapes other than the input tape contain blank symbols.

 The input tape contains the input string.

 All the head positions are at the start of the tapes.

 The machine is in the start state qstart .

 Computation.

 A step of computation is performed by applying δ.

 Halting.

 Once the machine enters qhalt it stops computation.

Turing Machines: Running time

 Let f: {0,1}* {0,1}* and T: and M be a
Turing machine.

 Definition. We say M computes f if on every x in
{0,1}*, M halts with f(x) on its output tape beginning
from the start configuration with x on its input tape.

Turing Machines: Running time

 Let f: {0,1}* {0,1}* and T: and M be a
Turing machine.

 Definition. We say M computes f if on every x in
{0,1}*, M halts with f(x) on its output tape beginning
from the start configuration with x on its input tape.

 Definition. M computes f in T(|x|) time, if for every x
in {0,1}*, M halts within T(|x|) steps of computation
and outputs f(x).

