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Recap: Limits of diagonalization 

 Like in the proof of P ≠ EXP, can we use 
diagonalization to show P ≠ NP ?  

 

 The answer is No, if one insists on using only the two 
features of diagonalization. 

 

 The proof of this fact uses diagonalization and the 
notion of oracle Turing machines! 



Recap: Oracle Turing Machines 

 Definition: Let L ⊆ {0,1}* be a language. An oracle TM 
ML is a TM with a special query tape and three special 
states qquery, qyes and qno such that whenever the 
machine enters the qquery state, it immediately transits 
to qyes or qno depending on whether the string in the 
query tape belongs to L.     (ML has oracle access to L) 

 

 Think of physical realization of ML as a device with 
access to a subroutine that decides L. We don’t count 
the time taken by the subroutine.  

 



Recap: Oracle Turing Machines 

 

 We can define a nondeterministic Oracle TM similarly. 

 

 “Important note”: Oracle TMs (deterministic or 
nondeterministic) have the same two features used in 
diagonalization:  For any fixed L ⊆ {0,1}*, 

          1.  There’s an efficient universal TM with oracle access to L,  

            2.  Every ML has infinitely many representations.  

 



Recap: Complexity classes using oracles 

 

 Definition: Let L ⊆ {0,1}* be a language. Complexity 
classes PL, NPL and EXPL are defined just as P, NP and 
EXP respectively, but with TMs replaced by oracle TMs 
with oracle access to L in the definitions of P, NP and 
EXP respectively.    For e.g.,  SAT ∈  PSAT. 

 

 Such complexity classes help us identify a class of 
complexity theoretic proofs called relativizing proofs.  



Relativization 



Recap: Relativizing results 

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed 
language. Owing to the “Important note”, the proof of 
P ≠ EXP can be easily adapted to prove PL ≠ EXPL by 
working with TMs with oracle access to L. 

 We say that the P ≠ EXP result/proof relativizes. 

 

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed 
language. Owing to the ‘Important note’, any 
proof/result that uses only the two features of 
diagonalization relativizes. 



Recap: Relativizing results 

 If there is a resolution of the P vs. NP problem using 
only the two features of diagonalization, then such a 
proof must relativize.  

 Is it true that  

 - either PL = NPL for every L ⊆ {0,1}*, 

 - or     PL ≠ NPL for every L ⊆ {0,1}* ?  

 

Theorem (Baker, Gill & Solovay 1975):  The answer is No.  
Any proof of P = NP or P ≠ NP must not relativize. 

 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB.  

 Proof: Using diagonalization! 

 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB.  

 Proof:  Let A = {(M, x,1m):   M accepts x in 2m steps}. 

 A is an EXP-complete language under poly-time Karp 
reduction.  (simple exercise) 
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Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB.  

 Proof:  Let A = {(M, x,1m):   M accepts x in 2m steps}. 

 A is an EXP-complete language under poly-time Karp 
reduction.   

 

 Then, PA = EXP. 

 Also, NPA = EXP.  Hence PA = NPA. 

 Why isn’t EXPA = EXP ? 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB. 

  Proof:  The construction of B uses diagonalization. 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
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 Theorem: There exist languages A and B such that    
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  Proof:  For any language B let 
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membership.) 

 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB. 

  Proof:  For any language B let 

             LB = {1n : there’s a string of length n in B}. 

 

 Observe, LB ∈ NPB for any B.  

 

 We’ll construct B (using diagonalization) in such a way 
that LB ∉ PB, implying PB ≠ NPB. 

 

 



Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 
Moreover, n will grow monotonically with stages. 
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Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 
Moreover, n will grow monotonically with stages. 

 

 Clearly, a B satisfying the above implies LB ∉ PB.   Why? 

 

 

 



Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 
Moreover, n will grow monotonically with stages. 

 

 Clearly, a B satisfying the above implies LB ∉ PB.   Why? 

 …because Mi
B has infinitely many representations, and 

for sufficiently large n,   2n/10  >>  nO(1).  

 

 



Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 
Moreover, n will grow monotonically with stages. 

 

 Stage i: Choose n larger than the length of any string 
whose status has already been decided. Simulate Mi

B 
on input 1n  for 2n/10 steps. 

 



Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 

 

 Stage i:   If Mi
B queries oracle B with a string whose 

status has already been decided, answer consistently. 

           If Mi
B queries oracle B with a string whose 

status has not been decided yet, answer ‘No’. 
 



Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 

 

 Stage i:   If Mi
B outputs 1 within 2n/10 steps then don’t 

put any string of length n in B. 

               If Mi
B outputs 0 or doesn’t halt, put a string of 

length n in B.   (This is possible as the status of at most 2n/10 many 
length n strings have been decided during the simulation) 
 



Constructing B 

 We’ll construct B in stages, starting from Stage 1. 

 Each stage determines the status of finitely many 
strings. 

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t 

decide 1n correctly (for some n) within 2n/10 steps. 

 

 Homework:  In fact, we can assume that B ∈ EXP. 



Space bounded computation 



Space bounded computation 

 Here, we are interested to find out how much of work 
space is required to solve a problem.  

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work 
space is the number of cells in the work tapes of a TM 
M visited by M’s heads during a computation.  
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is in DSPACE(S(n)) if there’s a TM M that decides L 
using O(S(n)) work space on inputs of length n. 



Space bounded computation 

 Here, we are interested to find out how much of work 
space is required to solve a problem.  

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work 
space is the number of cells in the work tapes of a TM 
M visited by M’s heads during a computation.  

 

 Definition. Let S:  be a function.  A language L 
is in NSPACE(S(n)) if there’s a NTM M that decides L 
using O(S(n)) work space on inputs of length n, 
regardless of M’s nondeterministic choices.  



Space bounded computation 

 We’ll refer to ‘work space’ as ‘space’. For convenience, 
assume there’s a single work tape.  

 If the output has many bits, then we will assume that 
the TM has a separate write-only output tape. 



Space bounded computation 

 We’ll refer to ‘work space’ as ‘space’. For convenience, 
assume there’s a single work tape.  

 If the output has many bits, then we will assume that 
the TM has a separate write-only output tape. 

 

 Definition. Let S:  be a function. S is space 
constructible if S(n) ≥ log n and there’s a TM that 
computes S(|x|) from x using O(S(|x|)) space. 

 



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

Hopcroft, Paul & Valiant  1977  



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 Proof. Uses the notion of configuration graph of a TM. 
We’ll see this shortly. 



Relation between time and space 
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 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Definition.          L  = DSPACE(log n) 

                         NL  = NSPACE(log n) 

                  PSPACE  = ∪ DSPACE(nc) 
c > 0 



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Definition.          L  = DSPACE(log n) 

                         NL  = NSPACE(log n) 

                  PSPACE  = ∪ DSPACE(nc) 
c > 0 

Giving space at least log n gives a 
TM at least the power to 
remember the index of a cell. 



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Caution. The Hopcroft-Paul-Valiant theorem does not 
imply P ⊊ PSPACE.  

 

 Open.   Is P ≠ PSPACE ? 



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP 

                          

Follows from the above theorem 



Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP 

                          

Run through all possible 
choices of certificates of the 
verifier and reuse space.  
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Relation between time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

NP co-NP 

P 

EXP 

PSPACE 

NL 
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Homework:  Integer addition and 
multiplication are in (functional) L. 
 
Integer division is also in (functional) 
L.   (Chiu, Davida & Litow 2001) 


