
Computational Complexity Theory

Lecture 10: Relativization (contd.);

 Space complexity classes

Department of Computer Science,

Indian Institute of Science

Recap: Limits of diagonalization

 Like in the proof of P ≠ EXP, can we use
diagonalization to show P ≠ NP ?

 The answer is No, if one insists on using only the two
features of diagonalization.

 The proof of this fact uses diagonalization and the
notion of oracle Turing machines!

Recap: Oracle Turing Machines

 Definition: Let L ⊆ {0,1}* be a language. An oracle TM
ML is a TM with a special query tape and three special
states qquery, qyes and qno such that whenever the
machine enters the qquery state, it immediately transits
to qyes or qno depending on whether the string in the
query tape belongs to L. (ML has oracle access to L)

 Think of physical realization of ML as a device with
access to a subroutine that decides L. We don’t count
the time taken by the subroutine.

Recap: Oracle Turing Machines

 We can define a nondeterministic Oracle TM similarly.

 “Important note”: Oracle TMs (deterministic or
nondeterministic) have the same two features used in
diagonalization: For any fixed L ⊆ {0,1}*,

 1. There’s an efficient universal TM with oracle access to L,

 2. Every ML has infinitely many representations.

Recap: Complexity classes using oracles

 Definition: Let L ⊆ {0,1}* be a language. Complexity
classes PL, NPL and EXPL are defined just as P, NP and
EXP respectively, but with TMs replaced by oracle TMs
with oracle access to L in the definitions of P, NP and
EXP respectively. For e.g., SAT ∈ PSAT.

 Such complexity classes help us identify a class of
complexity theoretic proofs called relativizing proofs.

Relativization

Recap: Relativizing results

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed
language. Owing to the “Important note”, the proof of
P ≠ EXP can be easily adapted to prove PL ≠ EXPL by
working with TMs with oracle access to L.

 We say that the P ≠ EXP result/proof relativizes.

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed
language. Owing to the ‘Important note’, any
proof/result that uses only the two features of
diagonalization relativizes.

Recap: Relativizing results

 If there is a resolution of the P vs. NP problem using
only the two features of diagonalization, then such a
proof must relativize.

 Is it true that

 - either PL = NPL for every L ⊆ {0,1}*,

 - or PL ≠ NPL for every L ⊆ {0,1}* ?

Theorem (Baker, Gill & Solovay 1975): The answer is No.
Any proof of P = NP or P ≠ NP must not relativize.

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: Using diagonalization!

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: Let A = {(M, x,1m): M accepts x in 2m steps}.

 A is an EXP-complete language under poly-time Karp
reduction. (simple exercise)

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: Let A = {(M, x,1m): M accepts x in 2m steps}.

 A is an EXP-complete language under poly-time Karp
reduction.

 Then, PA = EXP.

 Also, NPA = EXP. Hence PA = NPA.

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: Let A = {(M, x,1m): M accepts x in 2m steps}.

 A is an EXP-complete language under poly-time Karp
reduction.

 Then, PA = EXP.

 Also, NPA = EXP. Hence PA = NPA.

 Why isn’t EXPA = EXP ?

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: The construction of B uses diagonalization.

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: For any language B let

 LB = {1n : there’s a string of length n in B}.

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: For any language B let

 LB = {1n : there’s a string of length n in B}.

 Observe, LB ∈ NPB for any B. (Guess the string, check
if it has length n, and ask oracle B to verify
membership.)

Baker-Gill-Solovay theorem

 Theorem: There exist languages A and B such that
PA = NPA but PB ≠ NPB.

 Proof: For any language B let

 LB = {1n : there’s a string of length n in B}.

 Observe, LB ∈ NPB for any B.

 We’ll construct B (using diagonalization) in such a way
that LB ∉ PB, implying PB ≠ NPB.

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.
Moreover, n will grow monotonically with stages.

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.
Moreover, n will grow monotonically with stages.

whether or not a string belongs to B The machine with oracle access to B
that is represented by i

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.
Moreover, n will grow monotonically with stages.

 Clearly, a B satisfying the above implies LB ∉ PB. Why?

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.
Moreover, n will grow monotonically with stages.

 Clearly, a B satisfying the above implies LB ∉ PB. Why?

 …because Mi
B has infinitely many representations, and

for sufficiently large n, 2n/10 >> nO(1).

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.
Moreover, n will grow monotonically with stages.

 Stage i: Choose n larger than the length of any string
whose status has already been decided. Simulate Mi

B
on input 1n for 2n/10 steps.

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.

 Stage i: If Mi
B queries oracle B with a string whose

status has already been decided, answer consistently.

 If Mi
B queries oracle B with a string whose

status has not been decided yet, answer ‘No’.

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.

 Stage i: If Mi
B outputs 1 within 2n/10 steps then don’t

put any string of length n in B.

 If Mi
B outputs 0 or doesn’t halt, put a string of

length n in B. (This is possible as the status of at most 2n/10 many
length n strings have been decided during the simulation)

Constructing B

 We’ll construct B in stages, starting from Stage 1.

 Each stage determines the status of finitely many
strings.

 In Stage i, we’ll ensure that the oracle TM Mi
B doesn’t

decide 1n correctly (for some n) within 2n/10 steps.

 Homework: In fact, we can assume that B ∈ EXP.

Space bounded computation

Space bounded computation

 Here, we are interested to find out how much of work
space is required to solve a problem.

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

Space bounded computation

 Here, we are interested to find out how much of work
space is required to solve a problem.

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

 Definition. Let S: be a function. A language L
is in DSPACE(S(n)) if there’s a TM M that decides L
using O(S(n)) work space on inputs of length n.

Space bounded computation

 Here, we are interested to find out how much of work
space is required to solve a problem.

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

 Definition. Let S: be a function. A language L
is in NSPACE(S(n)) if there’s a NTM M that decides L
using O(S(n)) work space on inputs of length n,
regardless of M’s nondeterministic choices.

Space bounded computation

 We’ll refer to ‘work space’ as ‘space’. For convenience,
assume there’s a single work tape.

 If the output has many bits, then we will assume that
the TM has a separate write-only output tape.

Space bounded computation

 We’ll refer to ‘work space’ as ‘space’. For convenience,
assume there’s a single work tape.

 If the output has many bits, then we will assume that
the TM has a separate write-only output tape.

 Definition. Let S: be a function. S is space
constructible if S(n) ≥ log n and there’s a TM that
computes S(|x|) from x using O(S(|x|)) space.

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

Hopcroft, Paul & Valiant 1977

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Proof. Uses the notion of configuration graph of a TM.
We’ll see this shortly.

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Definition. L = DSPACE(log n)

 NL = NSPACE(log n)

 PSPACE = ∪ DSPACE(nc)
c > 0

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Definition. L = DSPACE(log n)

 NL = NSPACE(log n)

 PSPACE = ∪ DSPACE(nc)
c > 0

Giving space at least log n gives a
TM at least the power to
remember the index of a cell.

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Caution. The Hopcroft-Paul-Valiant theorem does not
imply P ⊊ PSPACE.

 Open. Is P ≠ PSPACE ?

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Follows from the above theorem

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Run through all possible
choices of certificates of the
verifier and reuse space.

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

NP co-NP

P

EXP

PSPACE

NL

L

Relation between time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

NP co-NP

P

EXP

PSPACE

NL

L

Homework: Integer addition and
multiplication are in (functional) L.

Integer division is also in (functional)
L. (Chiu, Davida & Litow 2001)

