Computational Complexity Theory

Lecture 10: Relativization (contd.);

Space complexity classes

Department of Computer Science, Indian Institute of Science

Recap: Limits of diagonalization

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on using only the two features of diagonalization.

 The proof of this fact <u>uses diagonalization</u> and the notion of oracle Turing machines!

Recap: Oracle Turing Machines

- Definition: Let $L \subseteq \{0,1\}^*$ be a language. An <u>oracle TM</u> M^L is a TM with a special query tape and three special states q_{query} , q_{yes} and q_{no} such that whenever the machine enters the q_{query} state, it immediately transits to q_{yes} or q_{no} depending on whether the string in the query tape belongs to L. (M^L has oracle access to L)
- Think of physical realization of M^L as a device with access to a subroutine that decides L. We don't count the time taken by the subroutine.

Recap: Oracle Turing Machines

We can define a <u>nondeterministic</u> Oracle TM similarly.

- "Important note": Oracle TMs (deterministic or nondeterministic) have the same two features used in diagonalization: For any **fixed** $L \subseteq \{0,1\}^*$,
 - I. There's an efficient universal TM with oracle access to L,
 - 2. Every M^L has <u>infinitely many representations</u>.

Recap: Complexity classes using oracles

• Definition: Let L ⊆ {0,1}* be a language. Complexity classes P^L, NP^L and EXP^L are defined just as P, NP and EXP respectively, but with TMs replaced by oracle TMs with oracle access to L in the definitions of P, NP and EXP respectively. For e.g., SAT ∈ PSAT.

 Such complexity classes help us identify a class of complexity theoretic proofs called <u>relativizing proofs</u>.

Relativization

Recap: Relativizing results

- Observation: Let $L \subseteq \{0,1\}^*$ be an arbitrarily fixed language. Owing to the "Important note", the proof of $P \neq EXP$ can be easily adapted to prove $P^L \neq EXP^L$ by working with TMs with oracle access to L.
- We say that the $P \neq EXP$ result/proof <u>relativizes</u>.
- Observation: Let $L \subseteq \{0,1\}^*$ be an arbitrarily fixed language. Owing to the 'Important note', <u>any proof/result that uses only the two features of diagonalization relativizes</u>.

Recap: Relativizing results

- If there is a resolution of the P vs. NP problem <u>using</u>
 <u>only</u> the two features of diagonalization, then such a proof must relativize.
- Is it true that

```
- either P^L = NP^L for every L \subseteq \{0,1\}^*,
- or P^L \neq NP^L for every L \subseteq \{0,1\}^*?
```

Theorem (Baker, Gill & Solovay 1975): The answer is No. Any proof of P = NP or $P \neq NP$ must <u>not</u> relativize.

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: Using diagonalization!

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: Let $A = \{(M, x, I^m): M \text{ accepts } x \text{ in } 2^m \text{ steps}\}.$
- A is an EXP-complete language under poly-time Karp reduction. (simple exercise)

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: Let $A = \{(M, x, I^m): M \text{ accepts } x \text{ in } 2^m \text{ steps}\}.$
- A is an EXP-complete language under poly-time Karp reduction.

- Then, $P^A = EXP$.
- Also, $NP^A = EXP$. Hence $P^A = NP^A$.

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: Let $A = \{(M, x, I^m): M \text{ accepts } x \text{ in } 2^m \text{ steps}\}.$
- A is an EXP-complete language under poly-time Karp reduction.

- Then, $P^A = EXP$.
- Also, $NP^A = EXP$. Hence $P^A = NP^A$.

```
Why isn't EXP^A = EXP?
```

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: The construction of B uses diagonalization.

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: For any language B let
 L_B = {Iⁿ: there's a string of length n in B}.

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: For any language B let
 L_B = {Iⁿ: there's a string of length n in B}.
- Observe, $L_B \in NP^B$ for <u>any</u> B. (Guess the string, check if it has length n, and ask oracle B to verify membership.)

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: For any language B let
 L_B = {Iⁿ: there's a string of length n in B}.
- Observe, $L_B \in \mathbb{NP}^B$ for any B.
- We'll construct B (<u>using diagonalization</u>) in such a way that $L_B \notin P^B$, implying $P^B \neq NP^B$.

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps.
 Moreover, n will grow monotonically with stages.

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the <u>status</u> of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps. Moreover, n will grow monotonically with stages.

whether or not a string belongs to B

The machine with oracle access to B that is represented by i

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps.
 Moreover, n will grow monotonically with stages.
- Clearly, a B satisfying the above implies $L_B \notin P^B$. Why?

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps.
 Moreover, n will grow monotonically with stages.
- Clearly, a B satisfying the above implies $L_B \notin P^B$. Why?
- ...because M_i^B has infinitely many representations, and for sufficiently large n, $2^n/10 >> n^{O(1)}$.

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide Iⁿ correctly (for some n) within 2ⁿ/10 steps.
 Moreover, n will grow monotonically with stages.
- Stage i: Choose n larger than the length of any string whose status has already been decided. Simulate M_i^B on input Iⁿ for 2ⁿ/10 steps.

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide Iⁿ correctly (for some n) within 2ⁿ/I0 steps.
- Stage i: If M_i^B queries oracle B with a string whose status has already been decided, answer consistently.
- If M_i^B queries oracle B with a string whose status has <u>not</u> been decided yet, answer 'No'.

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide I^n correctly (for some n) within $2^n/10$ steps.
- Stage i: If M_i^B outputs I within $2^n/10$ steps then don't put any string of length n in B.

If M_i^B outputs 0 or doesn't halt, put a string of length n in B. (This is possible as the status of at most 2ⁿ/10 many length n strings have been decided during the simulation)

- We'll construct B in stages, starting from Stage 1.
- Each stage determines the status of finitely many strings.
- In Stage i, we'll ensure that the oracle TM M_i^B doesn't decide I^n correctly (for some n) within $2^n/10$ steps.

• Homework: In fact, we can assume that $B \in EXP$.

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate readonly input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate readonly input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- Definition. Let S: $N \to N$ be a function. A language L is in DSPACE(S(n)) if there's a TM M that decides L using O(S(n)) work space on inputs of length n.

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate readonly input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- Definition. Let S: $N \rightarrow N$ be a function. A language L is in NSPACE(S(n)) if there's a NTM M that decides L using O(S(n)) work space on inputs of length n, regardless of M's nondeterministic choices.

- We'll refer to 'work space' as 'space'. For convenience, assume there's a <u>single</u> work tape.
- If the output has many bits, then we will assume that the TM has a separate write-only output tape.

- We'll refer to 'work space' as 'space'. For convenience, assume there's a <u>single</u> work tape.
- If the output has many bits, then we will assume that the TM has a separate write-only <u>output tape</u>.
- Definition. Let S: $N \longrightarrow N$ be a function. S is <u>space</u> <u>constructible</u> if $S(n) \ge \log n$ and there's a TM that computes S(|x|) from x using O(S(|x|)) space.

Hopcroft, Paul & Valiant 1977

- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.
- Proof. Uses the notion of <u>configuration graph</u> of a TM.
 We'll see this shortly.

- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.

```
    Definition.
    L = DSPACE(log n)
    NL = NSPACE(log n)
    PSPACE = U DSPACE(n<sup>c</sup>)
```

• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.

```
    Definition.
    L = DSPACE(log n)
    NL = NSPACE(log n)
    PSPACE = U DSPACE(n<sup>c</sup>)
```

Giving space at least log n gives a TM at least the power to remember the index of a cell.

- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.
- Open. Is P ≠ PSPACE ?

• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.

• Theorem. $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$

Follows from the above theorem

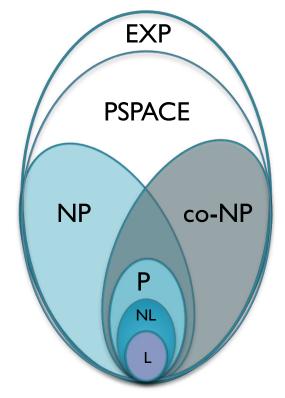
- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.
- Theorem. L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP

Run through all possible choices of certificates of the verifier and **reuse** space.

• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is

space constructible.



• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is

space constructible.

Homework: Integer addition and multiplication are in (functional) L.

Integer division is also in (functional)
L. (Chiu, Davida & Litow 2001)

