Computational Complexity Theory

Lecture 10: Relativization (contd.);
Space complexity classes

Department of Computer Science,
Indian Institute of Science

Recap: Limits of diagonalization

o Like in the proof of P # EXP can we use
diagonalization to show P # NP ?

e The answer is No, if one insists on using only the two
features of diagonalization.

e The proof of this fact uses diagonalization and the
notion of oracle Turing machines!

Recap: Oracle Turing Machines

° :Let L < {0,1}* be a language. An oracle TM
Mt is a TM with a special query tape and three special
states qg.e» 9yes @aNd q,, such that whenever the
machine enters the q ., state, it immediately transits
to g, or q,, depending on whether the string in the
query tape belongs to L. (M" has oracle access to L)

» Think of physical realization of M- as a device with
access to a subroutine that decides L. We don’t count
the time taken by the subroutine.

Recap: Oracle Turing Machines

* We can define a nhondeterministic Oracle TM similarly.

° Oracle TMs (deterministic or
nondeterministic) have the same two features used in
diagonalization: For any fixed L < {0, | }*,

|. There’s an efficient universal TM with oracle access to L,

2. Every M" has infinitely many representations.

Recap: Complexity classes using oracles

0 Let L € {0,1}* be a language. Complexity
classes Pt, NP- and EXP' are defined just as P, NP and
EXP respectively, but with TMs replaced by oracle TMs
with oracle access to L in the definitions of P, NP and
EXP respectively. For e.g., SAT € PSAT.

e Such complexity classes help us identify a class of
complexity theoretic proofs called relativizing proofs.

Relativization

Recap: Relativizing results

o Let L € {0,1}* be an arbitrarily fixed
language. Owing to the “Important note”, the proof of
P # EXP can be easily adapted to prove P- # EXP- by
working with TMs with oracle access to L.

* We say that the P # EXP result/proof relativizes.

e Let L € {0,1}* be an arbitrarily fixed
language. Owing to the ‘Important note’, any
proof/result that uses only the two features of
diagonalization relativizes.

Recap: Relativizing results

e If there is a resolution of the P vs. NP problem using
only the two features of diagonalization, then such a
proof must relativize.

e Is it true that
- either P- = NP* for every L € {0, | }*,
-or P-# NP-for every L € {0,1}*?

: The answer is No.
Any proof of P = NP or P # NP must not relativize.

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: Using diagonalization!

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: Let A ={(M,x,I™M): M accepts x in 2™ steps}.

e A is an EXP-complete language under poly-time Karp
reduction.

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: Let A ={(M,x,I™M): M accepts x in 2™ steps}.

e A is an EXP-complete language under poly-time Karp
reduction.

e Then, PA = EXP.
e Also, NP* = EXP. Hence PA» = NPA,

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: Let A ={(M,x,I™M): M accepts x in 2™ steps}.

e A is an EXP-complete language under poly-time Karp
reduction.

e Then, PA = EXP.
e Also, NP* = EXP. Hence PA» = NPA,

Why isn’t EXPA = EXP ?

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: The construction of B uses diagonalization.

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: For any language B let
Lg = {I" : there’s a string of length n in B}.

Baker-Gill-Solovay theorem

° There exist languages A and B such that
PA = NPA but PB # NP&,
* Proof: For any language B let
Lg = {I" : there’s a string of length n in B}.

» Observe, L, € NP for any B. (Guess the string, check
if it has length n, and ask oracle B to verify
membership.)

Baker-Gill-Solovay theorem

° There exist languages A and B such that
PA = NPA but PB # NP&,

* Proof: For any language B let
Lg = {I" : there’s a string of length n in B}.

» Observe, L, € NP® for any B.

* WEe'll construct B (using diagonalization) in such a way
that L, & PB, implying P® # NP®,

Constructing B

o WEe'll construct B in stages, starting from Stage |.

e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.
Moreover, n will grow monotonically with stages.

Constructing B

o WEe'll construct B in stages, starting from Stage |.

e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M® doesn’t
decide |I" correctly (for some n) within 210 steps.
Moreover, n will grow monotonically with stages.

whether or not a string belongs to B The machine with oracle access to B
that is represented by i

Constructing B

o WEe'll construct B in stages, starting from Stage |.
e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.
Moreover, n will grow monotonically with stages.

» Clearly, a B satisfying the above implies L, & PE.

Constructing B

o WEe'll construct B in stages, starting from Stage |.
e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.
Moreover, n will grow monotonically with stages.

» Clearly, a B satisfying the above implies L, & PE.

* ...because M?® has infinitely many representations, and
for sufficiently large n, 2"/10 >> n®0),

Constructing B

o WEe'll construct B in stages, starting from Stage |.
e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.
Moreover, n will grow monotonically with stages.

o Stage i: Choose n larger than the length of any string
whose status has already been decided. Simulate M?
on input |" for 2"/10 steps.

Constructing B

o WEe'll construct B in stages, starting from Stage |.

e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.

o Stage i: If MP queries oracle B with a string whose
status has already been decided, answer consistently.

If MB queries oracle B with a string whose
status has not been decided yet, answer ‘No’.

Constructing B

o WEe'll construct B in stages, starting from Stage |.

e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.

o Stage i: If M® outputs | within 2"/10 steps then don’t
put any string of length n in B.

If M.B outputs 0 or doesn’t halt, put a string of
length n in B. 2/10

n

Constructing B

o WEe'll construct B in stages, starting from Stage |.

e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.

o In fact, we can assume that B € EXP.

Space bounded computation

Space bounded computation

e Here, we are interested to find out how much of work
space is required to solve a problem.

e For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

Space bounded computation

e Here, we are interested to find out how much of work
space is required to solve a problem.

e For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

o Let S: N — N be a function. A language L
is in DSPACE(S(n)) if there’s a TM M that decides L
using O(S(n)) work space on inputs of length n.

Space bounded computation

e Here, we are interested to find out how much of work
space is required to solve a problem.

e For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

o Let S: N — N be a function. A language L
is in NSPACE(S(n)) if there’s a NTM M that decides L
using O(S(n)) work space on inputs of length n,
regardless of M’s nondeterministic choices.

Space bounded computation

o We'll refer to ‘work space’ as ‘space’. For convenience,
assume there’s a single work tape.

o If the output has many bits, then we will assume that
the TM has a separate write-only output tape.

Space bounded computation

o We'll refer to ‘work space’ as ‘space’. For convenience,
assume there’s a single work tape.

o If the output has many bits, then we will assume that
the TM has a separate write-only output tape.

o Let S: N — N be a function. S is space
constructible if S(n) = log n and there’s a TM that
computes S(|x|) from x using O(S(|x]|)) space.

Relation between time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) € NSPACE(S(n)).

N

Relation between time and space

o Obs. DTIME(S(n)) & DSPACE(S(n)) € NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

* Proof. Uses the notion of configuration graph of a TM.
We'll see this shortly.

Relation between time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

e Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = U DSPACE(n°)

c>0

Relation between time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

e Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = U DSPACE(n°)

c>0

Giving space at least log n gives a
TM at least the power to
remember the index of a cell.

Relation between time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) € NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQ2°CM), if S is
space constructible.

e Caution. The theorem does not
imply P & PSPACE.

e Open. Is P # PSPACE?

Relation between time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

e Theorem.L € NL € P € NP < PSPACE < EXP

N

Follows from the above theorem

Relation between time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

e Theorem.L € NL € P € NP < PSPACE < EXP

;

Run through all possible
choices of certificates of the
verifier and reuse space.

Relation between time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

Relation between time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

Homeworle Integer addition and
multiplication are in (functional) L.

Integer division is also in (functional)
L. (Chiu, Davida & Litow 2001)

