{ Computational Complexity Theory

Lecture | |: Space complexity classes (contd.);
Savitch’s theorem

Department of Computer Science,
Indian Institute of Science

Recap: Space bounded computation

e Here, we are interested to find out how much of work
space is required to solve a problem.

e For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

o Let S: N — N be a function. A language L
is in DSPACE(S(n)) if there’s a TM M that decides L
using O(S(n)) work space on inputs of length n.

Recap: Space bounded computation

e Here, we are interested to find out how much of work
space is required to solve a problem.

e For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

o Let S: N — N be a function. A language L
is in NSPACE(S(n)) if there’s a NTM M that decides L
using O(S(n)) work space on inputs of length n,
regardless of M’s nondeterministic choices.

Recap: Space bounded computation

o We'll refer to ‘work space’ as ‘space’. For convenience,
assume there’s a single work tape.

o If the output has many bits, then we will assume that
the TM has a separate write-only output tape.

o Let S: N — N be a function. S is space
constructible if S(n) = log n and there’s a TM that
computes S(|x|) from x using O(S(|x]|)) space.

Recap: Time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

e Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = U DSPACE(n°)

c>0

Giving space at least log n gives a
TM at least the power to
remember the index of a cell.

Recap: Time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

e Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = U DSPACE(n°)

c>0

Why did we not define NPSPACE?
We'll see that, unlike P and NP,
PSPACE = NPSPACE

Recap: Time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) € NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQ2°CM), if S is
space constructible.

e Caution. The theorem does not
imply P & PSPACE.

e Open. Is P # PSPACE?

Recap: Time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

Homeworle Integer addition and
multiplication are in (functional) L.

Integer division is also in (functional)
L. (Chiu, Davida & Litow 2001)

Configuration graph

° A configuration of a TM M on input x, at any
particular step of its execution, consists of

(a) the nonblank symbols of its work tapes,

(b) the current state,

(c) the current head positions.

It captures a ‘snapshot’ of M at any particular moment
of execution.

Configuration graph

A configuration of a TM M on input x, at any

particular step of its execution, consists of

(2) t
(b) t

(c) t

he nonblank symbols of its work tapes,

ne current state,

he current head positions.

It captures a ‘snapshot’ of M at any particular moment

of execution

State info

index

Input head | Work tape bl

bs(n)

head index

| J
|

Content of work tape

(@

Configuration graph

A configuration of a TM M on input x, at any

particular step of its execution, consists of

(2) t
(b) t

(c) t

he nonblank symbols of its work tapes,

ne current state,

he current head positions.

It captures a ‘snapshot’ of M at any particular moment

of execution

State info

index

Input head | Work tape bl

bs(n)

head index

A configuration C can be represented using O(S(n))
bits if M uses S(n) = 2(log n) space on n-bit inputs.

Configuration graph

° A configuration graph of a TM M on input x,
denoted G, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

Configuration graph

° A configuration graph of a TM M on input x,
denoted G, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

* Number of nodes in G, = 2°9C), if M uses S(n)
space on n-bit inputs

Configuration graph

° A configuration graph of a TM M on input x,
denoted G, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

e If Mis a DTM then every node C in G, has at most
one outgoing edge. If M is an NTM then every node C
in G, has at most two outgoing edges.

Configuration graph

° A configuration graph of a TM M on input x,
denoted G, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

Conf. graph of a DTM
Conf. graph of an NTM

Configuration graph

° A configuration graph of a TM M on input x,
denoted G, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

e By erasing the contents of the work tape at the end,
bringing the head at the beginning, and having a q,..,
state, we can assume that there’s a unique C
configuration. Configuration C__ . is well defined.

accept

start

Configuration graph

° A configuration graph of a TM M on input x,
denoted G, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

* M accepts x if and only if there’s a path from C__ . to
C in Gy ..

accept

Relation between time and space

o Obs. DTIME(S(n)) & DSPACE(S(n)) € NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

* Proof. Let L € NSPACE(S(n)) and M be an NTM
deciding L using O(S(n)) space on length n inputs.

e On input x, compute the configuration graph G, of
M and check if there’s a path from C, . to C .. .
Running time is 29060,

Natural problems?

e Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = U DSPACE(n°)

c>0

e Theorem.L € NL € P € NP < PSPACE < EXP.

* Are there natural problems in L, NL and PSPACE ?

PATH: A canonical problem in NL

o PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

PATH

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

e Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Initialize to s Count=m

I I
log n log n

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

e Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Initialize to s Guess a vertex v, Count =m

If there’s a edge from s to
v, decrease count by |.
Else o/p 0 and stop.

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

e Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Set to v, Guess a vertex v, Count = m-|

If there’s a edge from v, to
v,, decrease count by |.
Else o/p 0 and stop.

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

e Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Set to v, Guess a vertex v, Count = m-2

If there’s a edge from v, to
v;, decrease count by |. _.and so on.
Else o/p 0 and stop.

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

e Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Setto v, | Settot Count = |

If there’s a edge from v_ |
to t,o/p | and stop.
Else o/p 0 and stop.

PATH: A canonical problem in NL

e PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

e Proof. Count the no. of vertices in G, let it be n. Set
aside two memory locations of log n bits each.
Initialize a counter, say Count = m < n.

Setto v, | Settot Count = |

If there’s a edge from v_ |
to t,o/p | and stop.

Space complexity = O(log n) Else o/p 0 and stop.

UPATH: A problem in L

o UPATH = {(G,s,t) : G is an undirected graph having a
path from s to t}.

e Theorem (Reingold 2005). UPATH is in L.

UPATH

UPATH: A problem in L

o UPATH = {(G,s,t) : G is an undirected graph having a
path from s to t}.

e Theorem (Reingold 2005). UPATH is in L.

Is PATH in L?
If yes,then L = NL!
(will prove later)

UPATH

Space Hierarchy Theorem

e Theorem. If fand g

are space-constructible functions and f(n) = o(g(n)),
then SPACE(f(n)) & SPACE(g(n)).

e Proof.

e Theorem. L € PSPACE.

PSPACE = NPSPACE

Savitch’s theorem

e Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof. Let L € NSPACE(S(n)), and M be an NTM
requiring O(S(n)) space to decide L. We'll show that

there’s aTM N requiring O(S(n)?) space to decide L.

Savitch’s theorem

e Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof. Let L € NSPACE(S(n)), and M be an NTM

requiring O(S(n)) space to decide L. We’'ll show that
there’s aTM N requiring O(S(n)?) space to decide L.

e On input x, N checks if there’s a path from C__ . to

Coccepe IN Gy as follows: Let |x| = n.

Savitch’s theorem

NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

Proof. (contd.) N computes m = O(S(n)), the no. of
bits required to represent a configuration of M. It also
finds out C_. and C Then N checks if there’s a

start accept®

path from C__ . to C of length at most 2™ in G,

start accept
recursively using the following procedure.

C,, C,, i) :returns | if there’s a path from C,
to C, of length at most 2'in G, ; 0 otherwise.

Savitch’s theorem

NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

Space constructibility of S(n) used here

A
Proof. (contd.)'N computes m = O(S(n))‘, the no. of

bits required to represent a configuration of M. It also
finds out C_. and C Then N checks if there’s a

start accept®

path from C__ . to C of length at most 2™ in G,

start accept
recursively using the following procedure.

C,, C,, i) :returns | if there’s a path from C,
to C, of length at most 2'in G, ; 0 otherwise.

Savitch’s theorem

e Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
. C,C,i{
If i = 0 check if C, and C, are adjacent.
Else, for every configurations C,
a, = C,GCi-l
a, = G GC,i-l

ifa,=| & a,=I, return |.Else return 0.

Savitch’s theorem

e Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.

° CihCyi){
If i = 0 check if , are adjacent.

Else, for every configurations C,
a| C|’ C, i' I
az — C, C2, |'I

ifa,=| & a,=I, return |.Else return 0.

Require O(S(n)) space

Savitch’s theorem

e Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
‘ CihCyi){
If i = 0 check if C, and C, are adjacent.

Else, for every configurations C,

a| — C|’ C, |'I
) Reuse space
az — C, C2, |'I

ifa,=| & a,=I, return |.Else return 0.

Savitch’s theorem

e Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
Space(i) = Space(i-1) + O(S(n))
» Space complexity: O(S(n)?)

Savitch’s theorem

e Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
Space(i) = Space(i-1) + O(S(n))
» Space complexity: O(S(n)?)

Time(i) = 2™.2.Time(i-1) + O(S(n))
» Time complexity: 2°6()°)

Savitch’s theorem

e Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
Space(i) = Space(i-1) + O(S(n))
» Space complexity: O(S(n)?)

Time(i) = 2™.2.Time(i-1) + O(S(n))
» Time complexity: 2060

Recall, NSPACE(S(n)) < DTIME(2°6M),
There’s an algorithm with time complexity
206M), but higher space requirement.

