{ Computational Complexity Theory

Lecture |3: Log-space reductions (contd.);
NL-completeness; NL = co-NL

Department of Computer Science,
Indian Institute of Science

Recap: NL-completeness

e Recall again, to define completeness of a complexity
class, we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

eIs L = NL? ...poly-time (Karp) reductions are much
too powerful for L.

* We need to define a suitable ‘log-space’ reduction.

Recap: Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o A function f : {0, 1 }*— {0, 1}* is implicitly log-
space computable if

|. [f(x)| = |x|¢ for some constant c,

2.The following two languages are in L :

L= {(x,i) : f(x), = 1} and L, ={(x,i):i < |f(x)|}

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

° A language L, is log-space reducible to a
language L,, denoted L, =, L,, if there’s an implicitly
log-space computable function f such that

xEL = f(X)EL,

Log-space reductions

(X, |) Log-spaceTM} f (X)i
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.

* Proof: Let f be the reduction from L, to L,, and g the
reduction from L, to L;. We’ll show that the function
h(x) = g(f(x)) is implicitly log-space computable which
will suffice as,

XxXEL e f(X)EL, e gf(x) €L

Log-space reductions

(X, |) Log-spaceTM> f (X)i
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.
e Proof: ...Think of the following log-space TM that
computes h(x), from (x, i). Let

» M, be the log-space TM that computes f(x), from (x,),

» M, be the log-space TM that computes g(y); from (y, i).

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.
* Proof:...On input x, simulate M, on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the

simulation whenever M, tries to read a j-th bit of f(x),
postpone M,’s computation and start simulating M; on

input (X, j).

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

stores M_'s current configuration

o IfL, = L,and L, 5L nlL, s L.

* Proof:...On input x, siatulate M, on (f(x), i) pretending
that f(x) is there”in some fictitious tape. During the
simulatio enever M, tries to read a j-th bit of f(x),

postpone M,’s computation and start simulating M; on
input (%, j). Space usage = O(log [f(x)]) + O(log [x]).

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.

* Proof:...On input x, simulate M, on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever M, tries to read a j-th bit of f(x),

postpone M,’s computation and start simulating M; on
input (%, j). Space usage = O(log [x]).

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.

* Proof:...On input x, simulate M, on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever M, tries to read a j-th bit of f(x),

postpone M,’s computation and start simulating M; on
input (X, j). This shows L, is in L.

Log-space reductions

(X, |) Log-spaceTM> f (X)i
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.
e Proof: ...Similarly, L, is in L and so h is implicitly log-
space computable.

Log-space reductions

(X, |) Log-spaceTM} f (X)i
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

° IfL, < L,and L, € Lthen L, € L.

* Proof: Same ideas. ()

NL-completeness

NL-completeness

e Definition: A language L is NL-complete if L € NL and
for every L' € NL, L is log-space reducible to L.

NL-completeness

e Definition: A language L is NL-complete if L € NL and
for every L' € NL, L is log-space reducible to L.

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

e [heorem: PATH is NL-complete.

* Proof: We've already shown that PATH € NL. Now
we’ll show that for every L € NL, L < PATH. We
need to come up with an implicitly log-space
computable function f s.t.

xEL 4= f(x) € PATH

NL-completeness

e Definition: A language L is NL-complete if L € NL and
for every L' € NL, L is log-space reducible to L.

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

e [heorem: PATH is NL-complete.

e Proof: (contd.) Let M be a log-space NTM deciding L.
Define, f(x) = (Gy o Coarer Caccent)s Where Gy | is given
as an adjacency matrix.

accept

NL-completeness

e Definition: A language L is NL-complete if L € NL and
for every L' € NL, L is log-space reducible to L.

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

e [heorem: PATH is NL-complete.

e Proof: (contd.) Let M be a log-space NTM deciding L.
Define, f(x) = (G, Coaro Caccepe)» Where Gy, is given
as an adjacency matrix. Let m = O(log |x|) be the no.
of bits required to represent a configuration. Then,

[f()| = 2%™ + 2m = poly(|x|).

NL-completeness

e Definition: A language L is NL-complete if L € NL and
for every L' € NL, L is log-space reducible to L.

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

e [heorem: PATH is NL-complete.

* Proof: (contd.) Let’s see how to compute f(x). from (x,

) using log-space: 22" bits

|

1

f(x) Gy,

X

C

start

C

accept

If i > 2?™ then i indexes a bit in the (C
f(x), can be computed by simply writing down C

start’

Caceepr) Prt of f(x); so
and C

accept*

NL-completeness

e Definition: A language L is NL-complete if L € NL and
for every L' € NL, L is log-space reducible to L.

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

e [heorem: PATH is NL-complete.

* Proof: (contd.) Let’s see how to compute f(x). from (x,

) using log-space: 22" bits

|

1

f(x) Gy,

X

C

start

C

accept

If i <22™ then write i as (C,,C,), where C, and C, are m bits each,
and check if C, is a neighbor of C, in Gy . This takes O(m) space.

NL-completeness

e Definition: A language L is NL-complete if L € NL and
for every L' € NL, L is log-space reducible to L.

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

e [heorem: PATH is NL-complete.

* Proof: (contd.) Thus, we've argued that |[f(x)| has
poly(|x|]) length and L. € L. Similarly, L’ € L. So, f
defines a log-space reduction from L to PATH.

Other NL-complete problems

e Reachability in directed acyclic graphs.
* Checking if a directed graph is strongly connected.

o 2SAT.

e Determining if a word is accepted by a NFA.

An alternate characterization of NL

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

o Suppose L is a language, and
there’s a log-space verifier M & a function q s.t.

x €L <= Ju e {0} st M(xu)=I

Should we define q(|x|) as a log function, meaning q(|x|) = O(log |x|) ?

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

o Suppose L is a language, and
there’s a log-space verifier M & a function q s.t.

x €L <= Ju e {0} st M(xu)=I

Should we define q(|x|) as a log function, meaning q(|x|) = O(log |x|) ?
...No, that’s too restrictive.That will imply L € L.

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

o Suppose L is a language, and
there’s a log-space verifier M & a poly-function q s.t.

x €L <= Ju e {0} st M(xu)=I

s it so that L € NL iff L has such a log-space verifier of the above kind?

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

o Suppose L is a language, and
there’s a log-space verifier M & a poly-function q s.t.

x €L <= Ju e {0} st M(xu)=I

s it so that L € NL iff L has such a log-space verifier of the above kind?
Unfortunately not!! L € NP iff L has such a log-space verifier.

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

o Suppose L is a language, and
there’s a log-space verifier M & a poly-function q s.t.

x €L <= Ju e {0} st M(xu)=I

Solution: Make the certificate read-one as described next...

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

° A tape is called a read-one tape if the head
moves from left to right and never turns back.

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

° A language L has read-once certificates if
there’s a log-space verifier M & a poly-function q s.t.

x €L e= Ju e {01} st M(xu)=I,

where u is given on a read-once input tape of M.

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

o L € NL iff L has read-once certificates.

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

o L € NL iff L has read-once certificates.

* Proof. Suppose L € NL. Let N be an NTM that
decides L. Think of a verifier M that on input (x, u)
simulates N on input x by using u as the
nondeterministic choices of N. Clearly |u| = poly(|x|)...

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

o L € NL iff L has read-once certificates.

e Proof. (contd.) ...as G, has poly(|x|) configurations.
M scans u from left to right without moving its head
backward. So, u is a read-once certificate satisfying,

x €L &= Ju € {0,[}PoV(x) s t. M(x,u) = |

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

o L € NL iff L has read-once certificates.

* Proof. (contd.) Suppose L has read-once certificates,
and M be a log-space verifier s.t.

x EL <= Jue{0,I}Dst M(xu)=1I.

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

o L € NL iff L has read-once certificates.

* Proof. (contd.) Now, think of an NTM N that on input
x starts simulating M. It guesses the bits of u as and
when required during the simulation. As u is read-
once for M, there’s no need for N to store u.

Certificate definition of NL

* Like NP, it will be useful to have a certificate-verifier
kind of definition of the class NL.

* WEe'll see how it helps in proving NL = co-NL i.e,, in
showing PATH € NL.
PATH = {(G,s,t): G is a digraph with no path from s to t}

° L € NL iff L has read-once certificates.
* Proof. (contd.) So, N is a log-space NTM deciding L.

NL = co-NL

Class co-NL

e Definition. A language L is in co-NL if LEeNL. Lis
co-NL-complete if L € co-NL and for every L' € co-
NL, L is log-space reducible to L.

PATH = {(G,s,t): G is a digraph with no path from s to t}

e Obs. PATH is co-NL-complete under log-space
reduction.

Class co-NL

° A language L is in co-NL if L € NL. L is
co-NL-complete if L € co-NL and for every L' € co-
NL, L is log-space reducible to L.

PATH = {(G,s,t): G is a digraph with no path from s to t}

° PATH is co-NL-complete under log-space
reduction.

° If a language L' log-space reduces to a language in
NL then L' € NL. () So, if PATH € NL then

NL = co-NL.

NL = co-NL

e Theorem. () PATH € NL.

NL = co-NL

. () PATH € NL.

e Proof. It is sufficient to show that there’s a log-space
verifier M & a poly-function q s.t.

x € PATH &= 3y € {0,1}90X) s.t. M(x,u) = |,

where u is given on a read-once input tape of M.

* Let us focus on forming a read-once certificate u that
convinces a verifier that there’s no path from s to t...

NL = co-NL

e Theorem. () PATH € NL.
* Proof. x = (G,s,t). Let m be the number of nodes in G.
Let k. = no. of nodes reachable from s by a path of

length at most i in G.

Path of
length < i
r
S

k; nodes

NL = co-NL

. () PATH € NL.

* Proof. x = (G,s,t). Let m be the number of nodes in G.
Let k. = no. of nodes reachable from s by a path of
length at most i in G.

Read-once certificate u is of the form (u, u,, ...,u_, V),

where u’s and v are strings s.t.

(I) reading until (u, u,, ...u) in a read-once fashion, M knows

correctly the value of k.

NL = co-NL

. () PATH € NL.

* Proof. x = (G,s,t). Let m be the number of nodes in G.
Let k. = no. of nodes reachable from s by a path of
length at most i in G.

Read-once certificate u is of the form (u, u,, ...,u_, V),

where u’s and v are strings s.t.

(I) reading until (u, u,, ...u) in a read-once fashion, M knows
correctly the value of k. So, after reading (u, u,,...u_), M

knows k_, the number of nodes reachable from s.

NL = co-NL

o () PATH € NL.
* Proof. x = (G,s,t). Let m be the number of nodes in G.
Let k. = no. of nodes reachable from s by a path of

length at most i in G.

Read-once certificate u is of the form (u, u,, ...,u_, V),

where u’s and v are strings s.t.
(I) reading until (u, u,, ...u) in a read-once fashion, M knows
correctly the value of k. So, after reading (u, u,,...u_), M
knows k_, the number of nodes reachable from s.

(2) v then convinces M (which already knows k_) that t is

not one of the k_ vertices reachable from s.

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We'll design u, assuming that u,, ..., u_, have
already been constructed and M knows k . Let r|,
...r.. bethe nodes of Gs.t.r, <r, <....<r_.Then,

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We'll design u, assuming that u,, ..., u_, have
already been constructed and M knows k . Let r|,
...r.. bethe nodes of Gs.t.r, <r, <....<r_.Then,

u, looks like:
path of length No path of path of length
k F I <ifromstor, | [0 length =< i e o oo i I Sifromstor,
fromstor,
A

\ J \ J
I | | |

The claimed value of k.
O(log m) bits required.

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We'll design u, assuming that u,, ..., u_, have
already been constructed and M knows k . Let r|,
...r.. bethe nodes of Gs.t.r, <r, <....<r_.Then,

u, looks like:
path of length No path of path of length
k F I <ifromstor, | [0 length =< i e o oo i I Sifromstor,
fromstor,

|

Index of a vertex.
O(log m) bits required.

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We'll design u, assuming that u,, ..., u_, have
already been constructed and M knows k . Let r|,
...r.. bethe nodes of Gs.t.r, <r, <....<r_.Then,

u, looks like:
path of length No path of path of length
k F I <ifromstor, | [0 length =< i e o oo i I Sifromstor,
fromstor,

|

Indicator bit that
indicates if r| is
reachable from s by a
path of length < i

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We'll design u, assuming that u,, ..., u_, have
already been constructed and M knows k . Let r|,
...r.. bethe nodes of Gs.t.r, <r, <....<r_.Then,

u, looks like:

path of length No path of path of length
k F I <ifromstor, | [0 length =< i e o oo i I Sifromstor,

fromstor,

If indicator bit is | then
give a path from s to r| of
length = i. O(m log m)
bits required for this.

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We'll design u, assuming that u,, ..., u_, have
already been constructed and M knows k . Let r|,
...r.. bethe nodes of Gs.t.r, <r, <....<r_.Then,

u, looks like:
path of length No path of path of length
k F I <ifromstor, | [0 length =< i e o oo i I Sifromstor,
fromstor,

|

If indicator bit is O then
give a certificate for
absence of paths from s to
r, of length < i.

NL = co-NL

e Theorem. () PATH € NL.

e Proof. We'll design u, assuming that u, ..., u_, have
already been constructed and M knows k |. Let r|,
...r.. bethe nodes of Gs.t.r, <r, <....<r_.Then,

u, looks like:
path of length No path of path of length
k F I <ifromstor, | [0 length =< i e o oo i I Sifromstor,
fromstor,

|

If indicator bit is O then
give a certificate for
absence of paths from s to
r, of length < i.

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We'll design u, assuming that u,, ..., u_, have
already been constructed and M knows k . Let r|,
...r.. bethe nodes of Gs.t.r, <r, <....<r_.Then,

u, looks like:

path of length No path of path of length
k F I <ifromstor, | [0 length =< i e o oo i I Sifromstor,
fromstor,
If |nd|catorj !Dlt is O then If such certificates
give a certificate for can be given using
e
absence of paths from s to poly(m) bits then
r, of length < i. |uil = poly(m)

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We'll design u, assuming that u,, ..., u_, have
already been constructed and M knows k . Let r|,
...r.. bethe nodes of Gs.t.r, <r, <....<r_.Then,

u, looks like:

path of length No path of path of length
k F I Sifromstor, ry 0 length < i e o o i I Sifromstor,

fromstor,

* While reading u, Ms work tape remembers the
following info:

|. k., and k,

2. the last read index of a vertex r,

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We'll design u, assuming that u,, ..., u_, have
already been constructed and M knows k . Let r|,
...r.,,bethe nodes of Gs.t.r <r, < ...<r_.Then,

u, looks like:

path of length No path of path of length
k F I Sifromstor, ry 0 length < i e o o i I Sifromstor,

fromstor,

* While reading u, Ms work tape remembers the
fOI IOWi ng |nf0: The moment M encounters a new vertex index r, it

checks immediately if r > r,.This ensures that M is not
fooled by repeating info about the same vertex in u..

|. k., and k,

2. the last read index of a vertex r,

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We'll design u, assuming that u,, ..., u_, have
already been constructed and M knows k . Let r|,
...r.. bethe nodes of Gs.t.r, <r, <....<r_.Then,

u, looks like:
path of length No path of path of length
k F I Sifromstor, ry 0 length < i e o o i I Sifromstor,
fromstor,

* While reading u, Ms work tape remembers the
fOI IOWing |nfo: While reading u, M keeps a count of the number of indicator

bits that are | and finally checks if this number is k.

/>

|. k., and k;

2. the last read index of a vertex r,

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We'll design u, assuming that u,, ..., u_, have
already been constructed and M knows k . Let r|,
...r.. bethe nodes of Gs.t.r, <r, <....<r_.Then,

u, looks like:
path of length No path of path of length
k F I <ifromstor, | [0 length =< i e o oo i I Sifromstor,
fromstor,
\ J \ J
| |
This part of the n

certificate is easy
to give and verify

NL = co-NL

e Theorem. () PATH € NL.

e Proof. Recall, M knows k., = k' (say) while reading u..

No path of
u. e oo) 0 length =i

fromstor,

path of length Qi path of length
q < i-l from s to q, e k < i-I from s to q,

9 <9 <...<q

NL = co-NL

e Theorem. () PATH € NL.

e Proof. Recall, M knows k., = k' (say) while reading u..

No path of
u. e oo) 0 length =i

fromstor,

path of length path of length
q < i-l from s to q|| e | Qe < i-I from s to q,
\ y J \ y J
q <y <-..- <qy

Easy to give and verify

NL = co-NL

e Theorem. (

) PATH € NL.

e Proof. Recall, M knows k., = Ik’ (say) while reading u..

|-

No path of
0 length =< i
fromstor,

q,

path of length
< i-l from s to q,

\ 1%

path of length
< i-I from s to q,

q<q;<..-<qy

* While reading the ‘No path...r,’ part of u, M
remembers the last q, read and checks that the next q
> q;. This ensures M is not fooled by repeating q’s.

NL = co-NL

e Theorem. () PATH € NL.

e Proof. Recall, M knows k., = Ik’ (say) while reading u..

No path of
Ui e oo) 0 length =i

fromstor,

Qe path of length
K1 <i-1 from s to Qi

path of length
q < i-l from s to q,

q<q;<..-<qy

e For every j € [l,k], after verifying the path of length
< i-l from s to q;, M checks that r, is not adjacent to
q; by looking at G’s adjacency matrix.

NL = co-NL

e Theorem.() PATH € NL.

e Proof. Recall, M knows k., = Ik’ (say) while reading u..

No path of
u. e oo) 0 length =i

fromstor,

path of length Qi path of length
q <i-1 from s to q, e k <i-1 from s to q.

q<q;<..-<qy
* At the end of reading the ‘No path...r,’ part, M

checks that the number of g’s read is exactly k. ,.

NL = co-NL

e Theorem. () PATH € NL.

e Proof. Recall, M knows k., = Ik’ (say) while reading u..

No path of
u. e oo) 0 length =i

fromstor,

path of length
q < i-l from s to q,

\ Qi path of length

< i-I from s to q,

q<q;<..-<qy
e This convinces M that there is no path of length = i

from s to r,. Length of the ‘No path...r,” part of u. is
O(m? log m).

NL = co-NL

. () PATH € NL.

* Proof. So, after reading (u,, ..., u_), the verifier M
knows k_, the number of vertices reachable from s.

e The v part of the certificate u is similar to the ‘No
path...r,” part of u. described before. The details here
are easy to fill in ().

* We stress again that M is able to verify nonexistence
of a path between s and t by reading u once from left
to right and never moving its head backward.

NL = co-NL

e Hence, both PATH and

PATH € NL < SPACE((log n)?)
by Savitch’s theorem.

