Computational Complexity Theory

Lecture 13: Log-space reductions (contd.);

NL-completeness; NL = co-NL

Department of Computer Science, Indian Institute of Science

Recap: NL-completeness

- Recall again, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is L = NL? ...poly-time (Karp) reductions are much too powerful for L.
- We need to define a suitable 'log-space' reduction.

Recap: Log-space reductions

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Definition: A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is <u>implicitly log-space computable</u> if
 - 1. $|f(x)| \le |x|^c$ for some constant c,
 - 2. The following two languages are in L:

$$L_f = \{(x, i) : f(x)_i = I\}$$
 and $L'_f = \{(x, i) : i \le |f(x)|\}$

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Definition: A language L_1 is <u>log-space reducible</u> to a language L_2 , denoted $L_1 \le_l L_2$, if there's an implicitly log-space computable function f such that

$$x \in L_1 \longrightarrow f(x) \in L_2$$

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: Let f be the reduction from L_1 to L_2 , and g the reduction from L_2 to L_3 . We'll show that the function h(x) = g(f(x)) is implicitly log-space computable which will suffice as,

$$x \in L_1 \iff f(x) \in L_2 \iff g(f(x)) \in L_3$$

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ... Think of the following log-space TM that computes $h(x)_i$ from (x, i). Let
 - \triangleright M_f be the log-space TM that computes $f(x)_i$ from (x, j),
 - \triangleright M_g be the log-space TM that computes $g(y)_i$ from (y, i).

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j).

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).

stores M_g's current configuration

- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). Space usage = $O(\log |f(x)|) + O(\log |x|)$.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). Space usage = $O(\log |x|)$.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). This shows L_h is in L.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...Similarly, L'_h is in L and so h is implicitly log-space computable.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).

- Claim: If $L_1 \le L_2$ and $L_2 \in L$ then $L_1 \in L$.
- Proof: Same ideas. (Homework)

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

- Theorem: PATH is NL-complete.
- Proof: We've already shown that PATH \in NL. Now we'll show that for every $L \in NL$, $L \leq_l PATH$. We need to come up with an implicitly log-space computable function f s.t.

$$x \in L \iff f(x) \in PATH$$

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let M be a log-space NTM deciding L. Define, $f(x) = (G_{M,x}, C_{start}, C_{accept})$, where $G_{M,x}$ is given as an adjacency matrix.

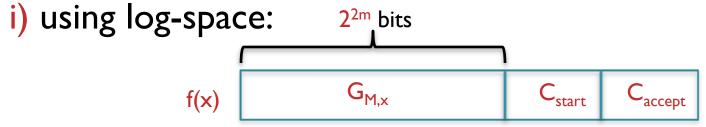
 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let M be a log-space NTM deciding L. Define, $f(x) = (G_{M,x}, C_{start}, C_{accept})$, where $G_{M,x}$ is given as an adjacency matrix. Let $m = O(\log |x|)$ be the no. of bits required to represent a configuration. Then, $|f(x)| = 2^{2m} + 2m = poly(|x|)$.

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

PATH = $\{(G,s,t): G \text{ is a digraph having a path from } s \text{ to } t\}$.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let's see how to compute $f(x)_i$ from (x,

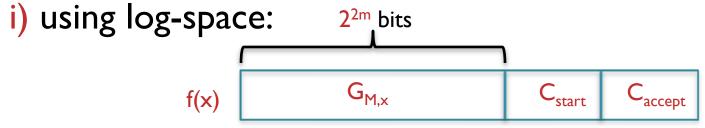


If $i > 2^{2m}$ then i indexes a bit in the (C_{start}, C_{accept}) part of f(x); so $f(x)_i$ can be computed by simply writing down C_{start} and C_{accept} .

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

PATH = $\{(G,s,t): G \text{ is a digraph having a path from } s \text{ to } t\}$.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let's see how to compute $f(x)_i$ from (x,



If $i \le 2^{2m}$ then write i as (C_1, C_2) , where C_1 and C_2 are m bits each, and check if C_2 is a neighbor of C_1 in $G_{M,x}$. This takes O(m) space.

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Thus, we've argued that |f(x)| has poly(|x|) length and $L_f \in L$. Similarly, $L'_f \in L$. So, f defines a log-space reduction from L to PATH.

Other NL-complete problems

Reachability in directed acyclic graphs.

Checking if a directed graph is strongly connected.

2SAT.

Determining if a word is accepted by a NFA.

An alternate characterization of NL

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.
 - $PATH = \{(G,s,t): G \text{ is a digraph with } \underline{no} \text{ path from } s \text{ to } t\}$

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

 $PATH = \{(G,s,t): G \text{ is a digraph with } no \text{ path from } s \text{ to } t\}$

 Definition.(first attempt) Suppose L is a language, and there's a <u>log-space verifier</u> M & a function q s.t.

$$x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u) = I$$

Should we define q(|x|) as a log function, meaning $q(|x|) = O(\log |x|)$?

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

 $PATH = \{(G,s,t): G \text{ is a digraph with } no \text{ path from } s \text{ to } t\}$

 Definition.(first attempt) Suppose L is a language, and there's a log-space verifier M & a function q s.t.

```
x \in L \implies \exists u \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u) = I
```

Should we define q(|x|) as a log function, meaning $q(|x|) = O(\log |x|)$? ... No, that's too restrictive. That will imply $L \in L$.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

 $PATH = \{(G,s,t): G \text{ is a digraph with } no \text{ path from } s \text{ to } t\}$

• Definition.(first attempt) Suppose L is a language, and there's a log-space verifier M & a poly-function q s.t.

$$x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u) = I$$

Is it so that $L \in NL$ iff L has such a log-space verifier of the above kind?

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

 $PATH = \{(G,s,t): G \text{ is a digraph with } no \text{ path from } s \text{ to } t\}$

 Definition.(first attempt) Suppose L is a language, and there's a log-space verifier M & a poly-function q s.t.

$$x \in L \implies \exists u \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u) = I$$

Is it so that $L \in NL$ iff L has such a log-space verifier of the above kind? Unfortunately not!! Exercise: $L \in NP$ iff L has such a log-space verifier.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

 $PATH = \{(G,s,t): G \text{ is a digraph with } no \text{ path from } s \text{ to } t\}$

 Definition.(first attempt) Suppose L is a language, and there's a log-space verifier M & a poly-function q s.t.

$$x \in L \implies \exists u \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u) = I$$

Solution: Make the certificate **read-one** as described next...

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.
 - $PATH = \{(G,s,t): G \text{ is a digraph with } no \text{ path from } s \text{ to } t\}$

 Definition. A tape is called a read-one tape if the head moves from left to right and never turns back.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

 $PATH = \{(G,s,t): G \text{ is a digraph with } no \text{ path from } s \text{ to } t\}$

• Definition. A language L has read-once certificates if there's a log-space verifier M & a poly-function q s.t.

 $x \in L \quad \Longrightarrow \exists u \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u) = 1,$

where <u>u</u> is given on a read-once input tape of M.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

 $PATH = \{(G,s,t): G \text{ is a digraph with } no \text{ path from } s \text{ to } t\}$

Theorem. L ∈ NL iff L has read-once certificates.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.
 - $PATH = \{(G,s,t): G \text{ is a digraph with } no \text{ path from } s \text{ to } t\}$
- Theorem. L ∈ NL iff L has read-once certificates.
- Proof. Suppose L ∈ NL. Let N be an NTM that decides L. Think of a verifier M that on input (x, u) simulates N on input x by using u as the nondeterministic choices of N. Clearly |u| = poly(|x|)...

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

- Theorem. L ∈ NL iff L has read-once certificates.
- Proof. (contd.) ...as $G_{N,x}$ has poly(|x|) configurations. M scans u from left to right without moving its head backward. So, u is a read-once certificate satisfying,

```
x \in L \implies \exists u \in \{0,1\}^{poly(|x|)} \text{ s.t. } M(x,u) = I
```

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

- Theorem. L ∈ NL iff L has read-once certificates.
- Proof. (contd.) Suppose L has read-once certificates, and M be a log-space verifier s.t.

```
x \in L \quad \iff \exists u \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u) = 1.
```

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

- Theorem. L ∈ NL iff L has read-once certificates.
- Proof. (contd.) Now, think of an NTM N that on input x starts simulating M. It guesses the bits of u as and when required during the simulation. As u is readonce for M, there's no need for N to store u.

- Like NP, it will be useful to have a certificate-verifier kind of definition of the class NL.
- We'll see how it helps in proving NL = co-NL i.e., in showing PATH ∈ NL.

- Theorem. L ∈ NL iff L has read-once certificates.
- Proof. (contd.) So, N is a log-space NTM deciding L.

Class co-NL

Definition. A language L is in co-NL if L ∈ NL. L is co-NL-complete if L ∈ co-NL and for every L' ∈ co-NL, L' is log-space reducible to L.

```
PATH = \{(G,s,t): G \text{ is a digraph with } \underline{no} \text{ path from } s \text{ to } t\}
```

• Obs. PATH is co-NL-complete under log-space reduction.

Class co-NL

Definition. A language L is in co-NL if \(\bar{L} \in \text{NL}. \) L is co-NL-complete if L ∈ co-NL and for every L' ∈ co-NL, L' is log-space reducible to L.

```
PATH = \{(G,s,t): G \text{ is a digraph with } no \text{ path from } s \text{ to } t\}
```

• Obs. PATH is co-NL-complete under log-space reduction.

 Obs. If a language L' log-space reduces to a language in NL then L' ∈ NL. (Homework) So, if PATH ∈ NL then NL = co-NL.

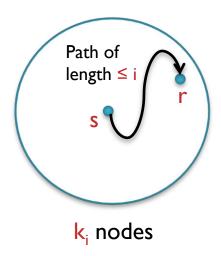
• Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. It is sufficient to show that there's a log-space verifier M & a poly-function q s.t.

```
x \in PATH \implies \exists u \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u) = 1, where u is given on a read-once input tape of M.
```

• Let us focus on forming a <u>read-once certificate u</u> that convinces a verifier that there's no path from s to t...

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. x = (G,s,t). Let m be the number of nodes in G.
 Let k_i = no. of nodes reachable from s by a path of length at most i in G.



- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. x = (G,s,t). Let m be the number of nodes in G.
 Let k_i = no. of nodes reachable from s by a path of length at most i in G.
 - Read-once certificate u is of the form $(u_1, u_2, ..., u_m, v)$, where u_i 's and v are strings s.t.
 - (I) reading until $(u_1, u_2, ... u_i)$ in a read-once fashion, M knows correctly the value of k_i .

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. x = (G,s,t). Let m be the number of nodes in G.
 Let k_i = no. of nodes reachable from s by a path of length at most i in G.

Read-once certificate u is of the form $(u_1, u_2, ..., u_m, v)$, where u_i 's and v are strings s.t.

(I) reading until $(u_1, u_2, ... u_i)$ in a read-once fashion, M knows correctly the value of k_i . So, after reading $(u_1, u_2, ... u_m)$, M knows k_m , the number of nodes reachable from s.

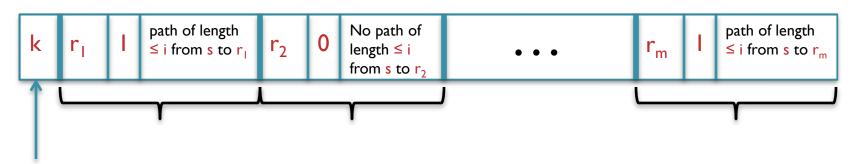
- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. x = (G,s,t). Let m be the number of nodes in G.
 Let k_i = no. of nodes reachable from s by a path of length at most i in G.

Read-once certificate u is of the form $(u_1, u_2, ..., u_m, v)$, where u_i 's and v are strings s.t.

- (I) reading until $(u_1, u_2, ... u_i)$ in a read-once fashion, M knows correctly the value of k_i . So, after reading $(u_1, u_2, ... u_m)$, M knows k_m , the number of nodes reachable from s.
- (2) v then convinces M (which already knows k_m) that t is not one of the k_m vertices reachable from s.

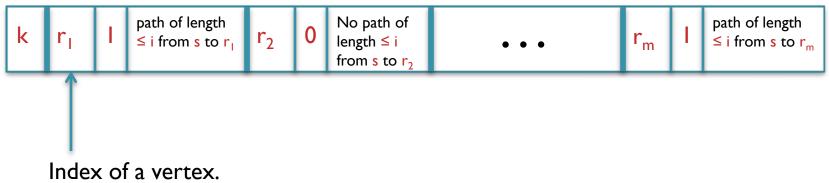
- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1 , ..., u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ..., r_m be the nodes of G s.t. $r_1 < r_2 < < r_m$. Then,

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1, \ldots, u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < \ldots < r_m$. Then, u_i looks like:



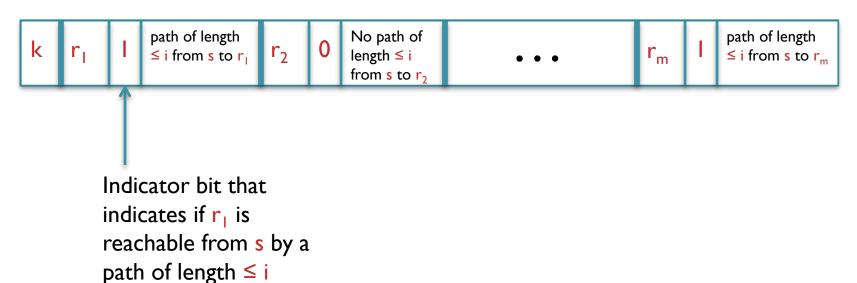
The claimed value of k_i . O(log m) bits required.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1, \ldots, u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < \ldots < r_m$. Then, u_i looks like:

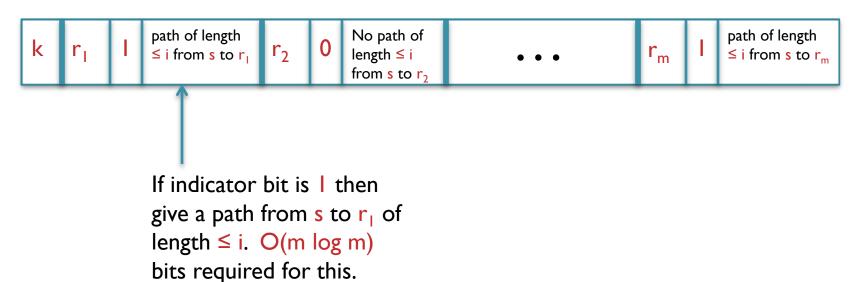


O(log m) bits required.

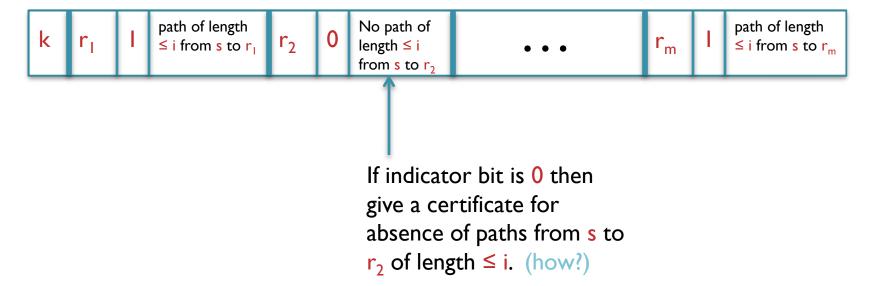
- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1, \ldots, u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < \ldots < r_m$. Then, u_i looks like:



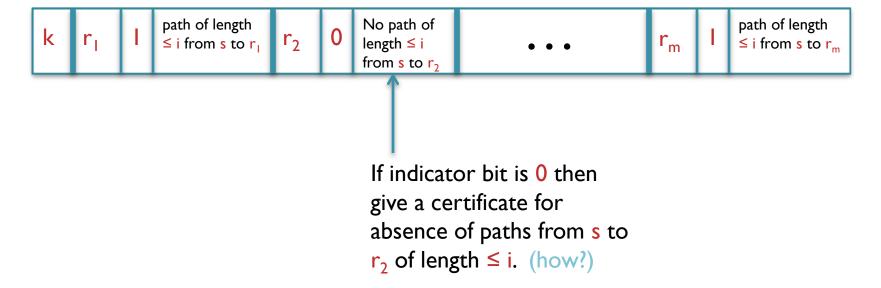
- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1, \ldots, u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < \ldots < r_m$. Then, u_i looks like:



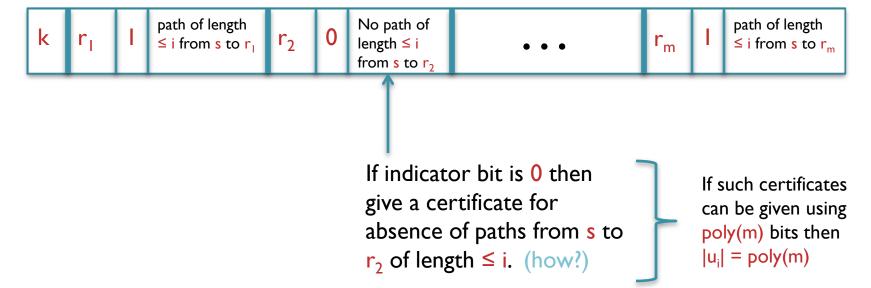
- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1, \ldots, u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < \ldots < r_m$. Then, u_i looks like:



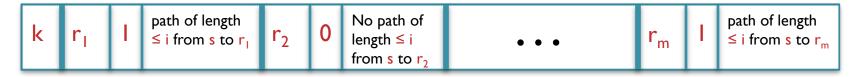
- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1, \ldots, u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < \ldots < r_m$. Then, u_i looks like:



- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1, \ldots, u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < \ldots < r_m$. Then, u_i looks like:

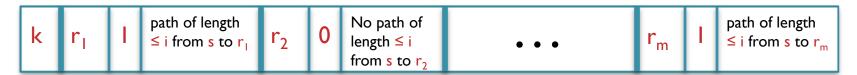


- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1, \ldots, u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < \ldots < r_m$. Then, u_i looks like:



- While reading u_i, M's work tape remembers the following info:
 - $I.k_{i-1}$ and k,
 - 2. the last read index of a vertex r_i

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1, \ldots, u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < \ldots < r_m$. Then, u_i looks like:

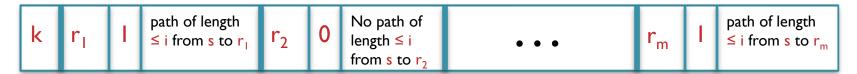


While reading u_i, M's work tape remembers the following info:
 The moment M encounters a new vertex index r, it checks immediately if r > r_i. This ensures that M is not

fooled by repeating info about the same vertex in u_i.

- $l.k_{i-1}$ and k,
- 2. the last read index of a vertex r_i

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1, \ldots, u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < \ldots < r_m$. Then, u_i looks like:

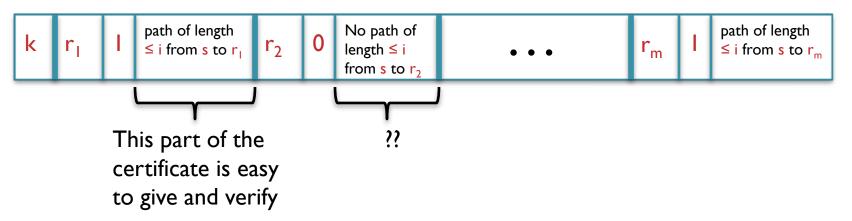


• While reading u_i, M's work tape remembers the following info:

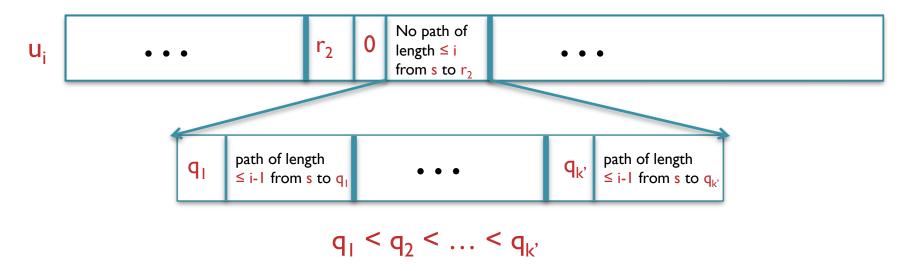
While reading u_i, M keeps a count of the number of indicator bits that are I and finally checks if this number is k.

- I. k_{i-1} and k,
- 2. the last read index of a vertex r_i

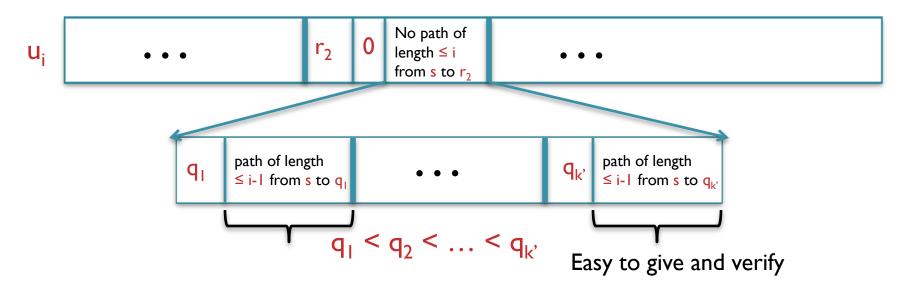
- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. We'll design u_i assuming that u_1, \ldots, u_{i-1} have already been constructed and M knows k_{i-1} . Let r_1 , ... r_m be the nodes of G s.t. $r_1 < r_2 < \ldots < r_m$. Then, u_i looks like:



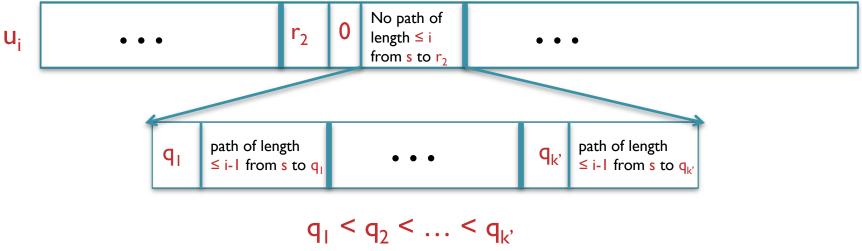
- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .



- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .

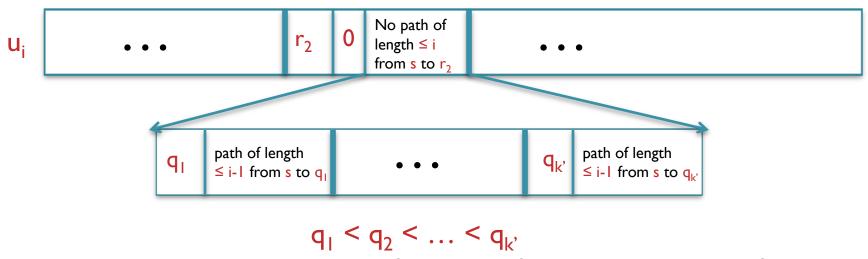


- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .



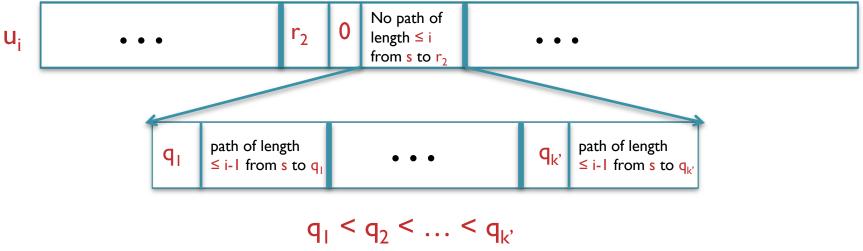
While reading the 'No path...r₂' part of u_i, M remembers the last q_j read and checks that the next q
 > q_i. This ensures M is not fooled by repeating q's.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .



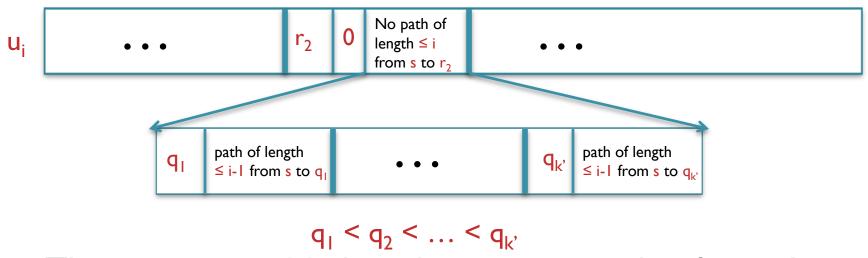
• For every $j \in [l,k_{i-1}]$, after verifying the path of length $\leq i$ -l from s to q_j , M checks that r_2 is not adjacent to q_j by looking at G's adjacency matrix.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .



• At the end of reading the 'No path... r_2 ' part, M checks that the number of q's read is exactly k_{i-1} .

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. Recall, M knows $k_{i-1} = k'$ (say) while reading u_i .



• This convinces M that there is no path of length \leq i from s to r_2 . Length of the 'No path... r_2 ' part of u_i is $O(m^2 \log m)$.

- Theorem. (Immerman-Szelepcsenyi 1987) PATH ∈ NL.
- Proof. So, after reading $(u_1, ..., u_m)$, the verifier M knows k_m , the number of vertices reachable from s.

The v part of the certificate u is similar to the 'No path...r₂' part of u_i described before. The details here are easy to fill in (homework).

 We stress again that M is able to verify nonexistence of a path between s and t by <u>reading u once</u> from left to right and never moving its head backward.

• Hence, both PATH and $\overline{PATH} \in NL \subseteq SPACE((log n)^2)$

by Savitch's theorem.