
Computational Complexity Theory

 Lecture 15: Polynomial Hierarchy (contd.)

Department of Computer Science,
Indian Institute of Science

Recap: Class ∑i

 Definition. A language L is in ∑i if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∃u1 ∈ {0,1}q(|x|) ∀u2 ∈ {0,1}q(|x|) Qiui ∈ {0,1}q(|x|)

 s.t. M(x,u1,…, ui) = 1,

 where Qi is ∃ or ∀ if i is odd or even, respectively.

 Obs. ∑i ⊆ ∑i+1 for every i.

Recap: Polynomial Hierarchy

 Definition. A language L is in ∑i if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∃u1 ∈ {0,1}q(|x|) ∀u2 ∈ {0,1}q(|x|) Qiui ∈ {0,1}q(|x|)

 s.t. M(x,u1,…, ui) = 1,

 where Qi is ∃ or ∀ if i is odd or even, respectively.

 Definition. (Meyer & Stockmeyer 1972)

 PH = ∪ ∑i .
i ∈ N

∑0 = P

∑1 = NP

∑2

∑3

.

.

.

Recap: Class ∏i

 Definition. ∏i = co-∑i = { L : L ∈ ∑i }.

 Obs. A language L is in ∏i if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

 x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) Qiui ∈ {0,1}q(|x|)

 s.t. M(x,u1,…, ui) = 1,

 where Qi is ∀ or ∃ if i is odd or even, respectively.

 Obs. ∑i ⊆ ∏i+1 ⊆ ∑i+2 .

Recap: Polynomial Hierarchy

 Obs. PH = ∪ ∑i = ∪ ∏i .

i ∈ N i ∈ N

∑0 = P

∑1 = NP

∑2

∑3

.

.

.

∏1 = co-NP

∏2

∏3

PH =

Recap: Polynomial Hierarchy

 Claim. PH ⊆ PSPACE .

 Proof. Similar to the proof of TQBF ∈ PSPACE.

∑0 = P

∑1 = NP

∑2

∑3

.

.

.

∏1 = co-NP

∏2

∏3

PH

PSPACE

Recap: Does PH collapse?

 General belief. Just as many of us believe P ≠ NP (i.e.
∑0 ≠ ∑1) and NP ≠ co-NP (i.e. ∑1 ≠ ∏1), we also
believe that for every i, ∑i ≠ ∑i+1 and ∑i ≠ ∏i .

 Definition. We say PH collapses to the i-th level if
∑i = ∑i+1 . (justified in the next theorem)

 Conjecture. There is no i such that PH collapses to
the i-th level.

This is stronger than the P ≠ NP conjecture.

Recap: PH collapse theorems

 Theorem. If ∑i = ∑i+1 then PH = ∑i .

 Theorem. If ∑i = ∏i then PH = ∑i .

Recap: Complete problems in PH ?

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = PH ? …use poly-time Karp reduction!

 Definition. A language L’ is PH-hard if for every L in
PH, L ≤pL’. Further, if L’ is in PH then L’ is PH-complete.

Recap: Complete problems in PH ?

 Fact. If L is poly-time reducible to a language in ∑i

then L is in ∑i . (we’ve seen a similar fact for NP)

 Observation. If PH has a complete problem then PH
collapses.

 Proof. If L is PH-complete then L is in ∑i for some i.
Now use the above fact to infer that PH = ∑i .

Recap: Complete problems in PH ?

 Fact. If L is poly-time reducible to a language in ∑i

then L is in ∑i . (we’ve seen a similar fact for NP)

 Corollary. PH ⊊ PSPACE unless PH collapses.

EXP

PSPACE

PH

NP co-NP

P
NL

L

Recap: Complete problems in ∑i

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = ∑i ? …use poly-time Karp reduction!

 Definition. A language L’ is ∑i -hard if for every L in ∑i ,
L ≤p L’. Further, if L’ is in ∑i then L’ is ∑i -complete.

Recap: Complete problems in ∑i

 Definition. The language ∑i-SAT contains all true QBF
with i alternating quantifiers starting with ∃.

 Theorem. ∑i-SAT is ∑i -complete. (∑1-SAT is just SAT)

 Observation. Owing to the proof of the Cook-Levin
theorem, we can assume that the formula in a ∑i-SAT
instance is a CNF (if i is odd) or a DNF (if i is even).

Recap: Other complete problems in ∑2

 Ref. “Completeness in the Polynomial-Time Hierarchy: A
Compendium” by Schaefer and Umans (2008).

 Theorem. Eq-DNF and Succinct-SetCover are

 ∑2 -complete.

An alternate characterization of PH

Oracle definition of ∑i

 Definition. A language L is in NP if there is a poly-
time NTM with oracle access to ∑i-SAT that decides L.

 Theorem. ∑i+1 = NP .

∑i-SAT

∑i-SAT

Oracle definition of ∑i

 Definition. A language L is in NP if there is a poly-
time NTM with oracle access to ∑i-SAT that decides L.

 Theorem. ∑i+1 = NP .

 Observe that ∑1-SAT = SAT. We’ll prove the special
case ∑2 = NPSAT. The proof of the theorem is similar.

∑i-SAT

∑i-SAT

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in ∑2. There’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in ∑2. There’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. ϕ(x,u,v) = 1.

 In fact, owing to the proof of the Cook-Levin
theorem, we can assume that ϕ is a DNF.

Boolean circuit
 (by Cook-Levin)

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in ∑2. There’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. ¬ϕ(x,u,v) = 0.

 Think of a NTM N that has the knowledge of M. On
input x, it guesses u ∈ {0,1}q(|x|) non-deterministically
and computes the circuit ϕ(x,u,v). Then, it queries the
SAT oracle with ¬ϕ(x,u,v).

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in ∑2. There’s a polynomial
function q(.) and a poly-time TM M s.t.

 x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. ¬ϕ(x,u,v) = 0.

 Think of a NTM N that has the knowledge of M. On
input x, it guesses u ∈ {0,1}q(|x|) non-deterministically
and computes the circuit ϕ(x,u,v). Then, it queries the
SAT oracle with ¬ϕ(x,u,v).

 Note that ¬ϕ(x,u,v) is a CNF.

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

 We need to construct a ∑2-statement that captures
N’s computation on input x.

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|),
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the
runtime of N on input x, and does the following:

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|),
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the
runtime of N on input x, and does the following:

 M simulates N on input x with w as the non-
deterministic choices.

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|),
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the
runtime of N on input x, and does the following:

 M simulates N on input x with w as the computation
path. Suppose ϕ is the query asked by N on the path
of computation defined by w.

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|),
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the
runtime of N on input x, and does the following:

 If a1 = 1 and ϕ(u1) = 1, M continues the simulation;
else it stops and outputs 0. (In this case, M ignores v1.)

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|),
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the
runtime of N on input x, and does the following:

 If a1 = 0 and ϕ(v1) = 0, M continues the simulation;
else it stops and outputs 0. (In this case, M ignores u1.)

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|),
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the
runtime of N on input x, and does the following:

 At the end of the simulation, M outputs whatever N
outputs. Note: M is a poly-time TM.

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

 Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},

 N on computation path w gets answer a1 from the
SAT oracle and accepts x

 ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

 (…will prove the observation shortly. Let’s finish the proof.)

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

 x ∈ L ∃w ∈ {0,1}q(|x|) , a1∈ {0,1} s.t

 N on computation path w gets answer a1 from the
SAT oracle and accepts x ∃w ∈ {0,1}q(|x|) , a1∈ {0,1}

 ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

 x ∈ L ∃w ∈ {0,1}q(|x|) , a1∈ {0,1} s.t

 N on computation path w gets answer a1 from the
SAT oracle and accepts x ∃w ∈ {0,1}q(|x|) , a1∈ {0,1}

 ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

Call it u

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

 x ∈ L ∃w ∈ {0,1}q(|x|) , a1∈ {0,1} s.t

 N on computation path w gets answer a1 from the
SAT oracle and accepts x

 ∃u ∈ {0,1}2q(|x|)+1 ∀v1 ∈ {0,1}q(|x|) s.t. M(x,u,v1) = 1.

 Therefore, L is in ∑2 .

Proof of the observation

 Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},

 N on computation path w gets answer a1 from the
SAT oracle and accepts x

 ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.() M simulates N on computation path w.
Let ϕ be the query asked by N to SAT.

• If a1 = 1, ∃u1 ∈ {0,1}q(|x|) ϕ(u1) = 1 and N accepts x.

Proof of the observation

 Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},

 N on computation path w gets answer a1 from the
SAT oracle and accepts x

 ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.() M simulates N on computation path w.
Let ϕ be the query asked by N to SAT.

• If a1 = 1, ∃u1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

In this case, M ignores v1.

Proof of the observation

 Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},

 N on computation path w gets answer a1 from the
SAT oracle and accepts x

 ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.() M simulates N on computation path w.
Let ϕ be the query asked by N to SAT.

• If a1 = 0, ∀v1 ∈ {0,1}q(|x|) ϕ(v1) = 0 and N accepts x.

Proof of the observation

 Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},

 N on computation path w gets answer a1 from the
SAT oracle and accepts x

 ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.() M simulates N on computation path w.
Let ϕ be the query asked by N to SAT.

• If a1 = 0, ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

 In this case, M ignores u1.

Proof of the observation

 Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},

 N on computation path w gets answer a1 from the
SAT oracle and accepts x

 ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.() M simulates N on computation path w.
Let ϕ be the query asked by N to SAT.

• Irrespective of the value of a1,

 ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

Proof of the observation

 Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},

 N on computation path w gets answer a1 from the
SAT oracle and accepts x

 ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.() Need to show that N on computation
path w gets answer a1 from the SAT oracle.
(Homework)

Oracle definition of ∑i

 Theorem. ∑2 = NPSAT .

 Proof. Let L be a language in NPSAT. There’s a NTM N
that decides L with oracle access to SAT.

 General case: N asks at most q(|x|) queries to SAT
oracle on every computation path on input x.

 Homework: Prove the general case. Define the poly-
time machine M appropriately.

Oracles versus efficient algorithms

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L.

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 .

 A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

Oracles versus efficient algorithms

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L.

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 .

 A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

 Yet, in the first case we believe PSAT ≠ NPSAT,
(otherwise, PH collapses to ∑2)

Oracles versus efficient algorithms

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L.

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 .

 A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

 Yet, in the first case we believe PSAT ≠ NPSAT, whereas
in the second case PH collapses to P, i.e., PSAT = NPSAT.

Oracles versus efficient algorithms

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L.

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 .

 A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

 Yet, in the first case we believe PSAT ≠ NPSAT, whereas
in the second case PH collapses to P, i.e., PSAT = NPSAT.

 Why? Think to understand the difference between
oracles and poly-time algorithms for SAT (Homework).

