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Recap:  Class ∑i 

 Definition. A language L is in ∑i if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L       ∃u1 ∈ {0,1}q(|x|)  ∀u2 ∈ {0,1}q(|x|)  Qiui ∈ {0,1}q(|x|)   

                              s.t.  M(x,u1,…, ui) = 1, 

   where Qi is ∃ or ∀ if i is odd or even, respectively. 

 

 Obs. ∑i ⊆ ∑i+1 for every i. 



Recap:  Polynomial Hierarchy 

 Definition. A language L is in ∑i if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L       ∃u1 ∈ {0,1}q(|x|)  ∀u2 ∈ {0,1}q(|x|)  Qiui ∈ {0,1}q(|x|)   

                              s.t.  M(x,u1,…, ui) = 1, 

   where Qi is ∃ or ∀ if i is odd or even, respectively. 

 

 Definition. (Meyer & Stockmeyer 1972) 

                      PH = ∪ ∑i . 
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Recap:  Class ∏i 

 Definition.  ∏i  =  co-∑i  =  { L :  L ∈ ∑i }.  

 

 Obs. A language L is in ∏i if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|)  Qiui ∈ {0,1}q(|x|)   

                              s.t.  M(x,u1,…, ui) = 1, 

   where Qi is ∀ or ∃ if i is odd or even, respectively. 

 

 Obs. ∑i ⊆ ∏i+1 ⊆ ∑i+2 . 



Recap:  Polynomial Hierarchy 

 Obs. PH = ∪ ∑i = ∪ ∏i . 
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Recap:  Polynomial Hierarchy 

 Claim. PH ⊆ PSPACE . 

 Proof.  Similar to the proof of  TQBF ∈ PSPACE.  
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Recap:  Does PH collapse? 

 General belief. Just as many of us believe P ≠ NP (i.e. 
∑0 ≠ ∑1) and NP ≠ co-NP (i.e. ∑1 ≠ ∏1), we also 
believe that for every i,    ∑i ≠ ∑i+1   and   ∑i ≠ ∏i . 

    

 Definition. We say PH collapses to the i-th level if     
∑i = ∑i+1 .  (justified in the next theorem) 

 

 Conjecture. There is no i such that PH collapses to 
the i-th level.  

This is stronger than the P ≠ NP conjecture. 



Recap:  PH collapse theorems 

 Theorem. If ∑i = ∑i+1 then PH = ∑i . 

 

 Theorem. If ∑i = ∏i then PH = ∑i . 

 

    



Recap:  Complete problems in PH ? 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PH ? …use poly-time Karp reduction! 

 

 Definition.  A language L’ is PH-hard if for every L in 
PH, L ≤pL’.  Further, if L’ is in PH then L’ is PH-complete. 



Recap:  Complete problems in PH ? 

 Fact. If L is poly-time reducible to a language in ∑i  

then L is in ∑i .      (we’ve seen a similar fact for NP) 

 

 Observation.  If PH has a complete problem then PH  
collapses. 

 Proof. If L is PH-complete then L is in ∑i for some i. 
Now use the above fact to infer that PH = ∑i . 



Recap:  Complete problems in PH ? 

 Fact. If L is poly-time reducible to a language in ∑i  

then L is in ∑i .      (we’ve seen a similar fact for NP) 

 Corollary.  PH ⊊ PSPACE unless PH collapses. 
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Recap:  Complete problems in ∑i  

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = ∑i  ? …use poly-time Karp reduction! 

 

 Definition.  A language L’ is ∑i -hard if for every L in ∑i , 
L ≤p L’.  Further, if L’ is in ∑i  then L’ is ∑i -complete. 



Recap:  Complete problems in ∑i  

 Definition. The language ∑i-SAT contains all true QBF 
with i alternating quantifiers starting with ∃. 

 

 Theorem.  ∑i-SAT is ∑i -complete.  (∑1-SAT is just SAT) 

 

 

 Observation. Owing to the proof of the Cook-Levin 
theorem, we can assume that the formula in a ∑i-SAT 
instance is a CNF (if i is odd) or a DNF (if i is even).    



Recap:  Other complete problems in ∑2  

 Ref. “Completeness in the Polynomial-Time Hierarchy:  A 
Compendium” by Schaefer and Umans (2008). 

 

 Theorem.  Eq-DNF and Succinct-SetCover are  

                   ∑2 -complete.  



An alternate characterization of PH 



Oracle definition of ∑i  

 Definition.  A language L is in NP     if there is a poly-
time NTM with oracle access to ∑i-SAT that decides L. 

 

 Theorem.  ∑i+1 = NP       . 

∑i-SAT 

∑i-SAT 



Oracle definition of ∑i  

 Definition.  A language L is in NP     if there is a poly-
time NTM with oracle access to ∑i-SAT that decides L. 

 

 Theorem.  ∑i+1 = NP       . 

 

 Observe that ∑1-SAT = SAT.  We’ll prove the special 
case ∑2 = NPSAT.  The proof of the theorem is similar.  

∑i-SAT 

∑i-SAT 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof.  Let L be a language in ∑2. There’s a polynomial 
function q(.) and a poly-time TM M s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|)  s.t.  M(x,u,v) = 1. 

 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof.  Let L be a language in ∑2. There’s a polynomial 
function q(.) and a poly-time TM M s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|)  s.t.  ϕ(x,u,v) = 1. 

 

 

 

 In fact, owing to the proof of the Cook-Levin 
theorem, we can assume that ϕ is a DNF.    

 

Boolean circuit 
  (by Cook-Levin) 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof.  Let L be a language in ∑2. There’s a polynomial 
function q(.) and a poly-time TM M s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|) s.t. ¬ϕ(x,u,v) = 0. 

 

 Think of a NTM N that has the knowledge of M. On 
input x, it guesses u ∈ {0,1}q(|x|) non-deterministically 
and computes the circuit ϕ(x,u,v). Then, it queries the 
SAT oracle with ¬ϕ(x,u,v).  

   

 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof.  Let L be a language in ∑2. There’s a polynomial 
function q(.) and a poly-time TM M s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|) s.t. ¬ϕ(x,u,v) = 0. 

 

 Think of a NTM N that has the knowledge of M. On 
input x, it guesses u ∈ {0,1}q(|x|) non-deterministically 
and computes the circuit ϕ(x,u,v). Then, it queries the 
SAT oracle with ¬ϕ(x,u,v).  

 Note that ¬ϕ(x,u,v) is a CNF. 

   

 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 We need to construct a ∑2-statement that captures 
N’s computation on input x. 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 

 M simulates N on input x with w as the non-
deterministic choices.  



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 

 M simulates N on input x with w as the computation 
path. Suppose ϕ is the query asked by N on the path 
of computation defined by w. 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 

 If a1 = 1 and ϕ(u1) = 1, M continues the simulation; 
else it stops and outputs 0.  (In this case, M ignores v1.) 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 

 If a1 = 0 and ϕ(v1) = 0, M continues the simulation; 
else it stops and outputs 0.  (In this case, M ignores u1.) 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 

 At the end of the simulation, M outputs whatever N 
outputs.    Note:  M is a poly-time TM. 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.   

 

        (…will prove the observation shortly. Let’s finish the proof.) 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 x ∈ L        ∃w ∈ {0,1}q(|x|) , a1∈ {0,1} s.t 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x      ∃w ∈ {0,1}q(|x|) , a1∈ {0,1}  

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.   

 

         



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 x ∈ L        ∃w ∈ {0,1}q(|x|) , a1∈ {0,1} s.t 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x      ∃w ∈ {0,1}q(|x|) , a1∈ {0,1}  

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.   

 

         
Call it u 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 x ∈ L        ∃w ∈ {0,1}q(|x|) , a1∈ {0,1} s.t 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x 

    ∃u ∈ {0,1}2q(|x|)+1  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,u,v1) = 1.   

 Therefore,  L is in ∑2 . 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   )  M simulates N on computation path w. 
Let ϕ be the query asked by N to SAT.  

• If a1 = 1, ∃u1 ∈ {0,1}q(|x|) ϕ(u1) = 1 and N accepts x. 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   )  M simulates N on computation path w. 
Let ϕ be the query asked by N to SAT.  

• If a1 = 1, ∃u1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1. 

In this case, M ignores v1. 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   )  M simulates N on computation path w. 
Let ϕ be the query asked by N to SAT.  

• If a1 = 0, ∀v1 ∈ {0,1}q(|x|) ϕ(v1) = 0 and N accepts x. 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   )  M simulates N on computation path w. 
Let ϕ be the query asked by N to SAT.  

• If a1 = 0, ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1. 

 In this case, M ignores u1. 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   )  M simulates N on computation path w. 
Let ϕ be the query asked by N to SAT.  

• Irrespective of the value of a1,  

    ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1. 

 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   ) Need to show that N on computation 
path w gets answer a1 from the SAT oracle. 
(Homework) 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 General case: N asks at most q(|x|) queries to SAT 
oracle on every computation path on input x.  

 Homework:  Prove the general case. Define the poly-
time machine M appropriately. 



Oracles versus efficient algorithms 

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L. 

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 . 

 A SAT oracle gives us the ability to solve SAT 
efficiently “much like” a poly-time algorithm for SAT. 



Oracles versus efficient algorithms 

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L. 

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 . 

 A SAT oracle gives us the ability to solve SAT 
efficiently “much like” a poly-time algorithm for SAT. 

 

 Yet, in the first case we believe PSAT ≠ NPSAT,  
(otherwise, PH collapses to ∑2) 



Oracles versus efficient algorithms 

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L. 

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 . 

 A SAT oracle gives us the ability to solve SAT 
efficiently “much like” a poly-time algorithm for SAT. 

 

 Yet, in the first case we believe PSAT ≠ NPSAT, whereas 
in the second case PH collapses to P, i.e., PSAT = NPSAT. 



Oracles versus efficient algorithms 

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L. 

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 . 

 A SAT oracle gives us the ability to solve SAT 
efficiently “much like” a poly-time algorithm for SAT. 

 

 Yet, in the first case we believe PSAT ≠ NPSAT, whereas 
in the second case PH collapses to P, i.e., PSAT = NPSAT. 

 Why? Think to understand the difference between 
oracles and poly-time algorithms for SAT (Homework). 


