Computational Complexity Theory

Lecture 15: Polynomial Hierarchy (contd.)

Department of Computer Science, Indian Institute of Science

Recap: Class \sum_{i}

Definition. A language L is in ∑_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t.
 x ∈ L ⇔∃u₁ ∈ {0,1}^{q(|x|)} ∀u₂ ∈ {0,1}^{q(|x|)} Q_iu_i ∈ {0,1}^{q(|x|)}
 s.t. M(x,u₁,...,u_i) = 1,

where Q_i is \exists or \forall if i is odd or even, respectively.

• Obs. $\sum_{i} \subseteq \sum_{i+1}$ for every i.

Recap: Polynomial Hierarchy

Definition. A language L is in ∑_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t.
 x ∈ L ⇔∃u₁ ∈ {0,1}^{q(|x|)} ∀u₂ ∈ {0,1}^{q(|x|)} Q_iu_i ∈ {0,1}^{q(|x|)}
 s.t. M(x,u₁,...,u_i) = 1,

where Q_i is \exists or \forall if i is odd or even, respectively.

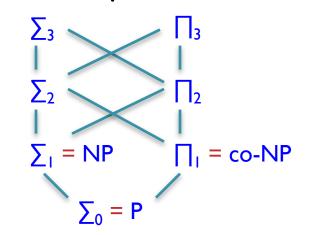
• Definition. (Meyer & Stockmeyer 1972) $PH = \bigcup_{i \in \mathbb{N}} \sum_{i}$. Σ_{2} Σ_{2} $\Sigma_{1} = NP$

Recap: Class ∏_i

- Definition. $\prod_i = co \sum_i = \{ L : \overline{L} \in \sum_i \}.$
- Obs. A language L is in ∏_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t.
 x ∈ L ⇔ ∀u₁ ∈ {0,1}^{q(|x|)} ∃u₂ ∈ {0,1}^{q(|x|)} Q_iu_i ∈ {0,1}^{q(|x|)} s.t. M(x,u₁,...,u_i) = 1,
 - where Q_i is \forall or \exists if i is odd or even, respectively.
- Obs. $\sum_{i} \subseteq \prod_{i+1} \subseteq \sum_{i+2}$.

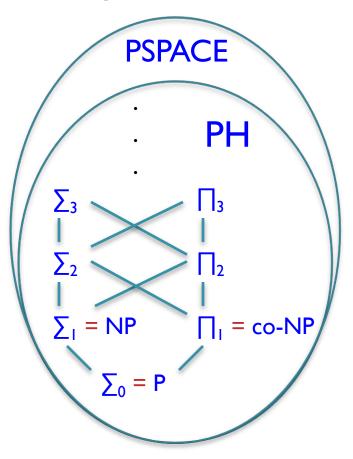
Recap: Polynomial Hierarchy

• Obs. PH = $\bigcup_{i \in \mathbb{N}} \sum_{i \in \mathbb{N}} = \bigcup_{i \in \mathbb{N}} \prod_{i \in \mathbb{N}} U_i$.



Recap: Polynomial Hierarchy

- Claim. $PH \subseteq PSPACE$.
- **Proof.** Similar to the proof of $TQBF \in PSPACE$.



Recap: Does PH collapse?

- General belief. Just as many of us believe $P \neq NP$ (i.e. $\sum_{0} \neq \sum_{i}$) and NP \neq co-NP (i.e. $\sum_{i} \neq \prod_{i}$), we also believe that for every i, $\sum_{i} \neq \sum_{i+1}$ and $\sum_{i} \neq \prod_{i}$.
- Definition. We say PH <u>collapses to the i-th level</u> if $\sum_{i} = \sum_{i+1}$. (justified in the next theorem)
- Conjecture. There is no i such that PH collapses to the i-th level.

This is stronger than the $P \neq NP$ conjecture.

Recap: PH collapse theorems

- Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} .
- Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} .

Recap: Complete problems in PH ?

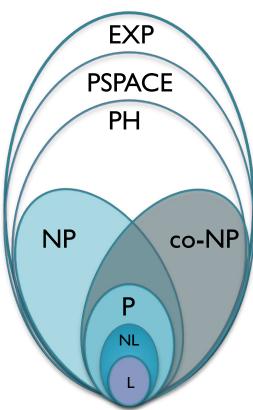
- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PH ? ... use poly-time Karp reduction!
- Definition. A language L' is *PH-hard* if for every L in PH, $L \leq_{p} L'$. Further, if L' is in PH then L' is *PH-complete*.

Recap: Complete problems in PH ?

- Fact. If L is poly-time reducible to a language in \sum_{i} then L is in \sum_{i} . (we've seen a similar fact for NP)
- Observation. If PH has a complete problem then PH collapses.
- Proof. If L is *PH-complete* then L is in \sum_{i} for some i. Now use the above fact to infer that PH = \sum_{i} .

Recap: Complete problems in PH ?

- Fact. If L is poly-time reducible to a language in \sum_{i} then L is in \sum_{i} . (we've seen a similar fact for NP)
- Corollary. PH \subsetneq PSPACE unless PH collapses.



Recap: Complete problems in \sum_{i}

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is $P = \sum_{i}$?...use poly-time Karp reduction!
- Definition. A language L' is \sum_{i} -hard if for every L in \sum_{i} , $L \leq_{p} L'$. Further, if L' is in \sum_{i} then L' is \sum_{i} -complete.

Recap: Complete problems in \sum_{i}

- Definition. The language \sum_{i} -SAT contains all *true* QBF with i alternating quantifiers starting with \exists .
- Theorem. \sum_{i} -SAT is \sum_{i} -complete. (\sum_{i} -SAT is just SAT)

• Observation. Owing to the proof of the Cook-Levin theorem, we can assume that the formula in a \sum_{i} -SAT instance is a CNF (if i is odd) or a DNF (if i is even).

Recap: Other complete problems in \sum_{2}

- Ref. "Completeness in the Polynomial-Time Hierarchy: A Compendium" by Schaefer and Umans (2008).
- Theorem. Eq-DNF and Succinct-SetCover are \sum_{2} -complete.

An alternate characterization of PH

- Definition. A language L is in NP^{Σ_i -SAT} if there is a polytime NTM with oracle access to Σ_i -SAT that decides L.
- Theorem. $\sum_{i+1} = NP^{\sum_{i}-SAT}$.

- Definition. A language L is in NP^{Σ_i -SAT} if there is a polytime NTM with oracle access to Σ_i -SAT that decides L.
- Theorem. $\sum_{i+1} = NP^{\sum_{i-SAT}}$.
- Observe that \sum_{I} -SAT = SAT. We'll prove the special case \sum_{2} = NP^{SAT}. The proof of the theorem is similar.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in ∑2. There's a polynomial function q(.) and a poly-time TM M s.t.

 $\mathbf{x} \in \mathbf{L} \quad \Longleftrightarrow \exists \mathbf{u} \in \{\mathbf{0}, \mathbf{I}\}^{q(|\mathbf{x}|)} \quad \forall \mathbf{v} \in \{\mathbf{0}, \mathbf{I}\}^{q(|\mathbf{x}|)} \quad \text{s.t.} \quad \mathbf{M}(\mathbf{x}, \mathbf{u}, \mathbf{v}) = \mathbf{I}.$

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in ∑₂. There's a polynomial function q(.) and a poly-time TM M s.t.

 $\mathbf{x} \in \mathbf{L} \iff \exists \mathbf{u} \in \{0, \mathbf{I}\}^{q(|\mathbf{x}|)} \quad \forall \mathbf{v} \in \{0, \mathbf{I}\}^{q(|\mathbf{x}|)} \quad \text{s.t.} \quad \oint(\mathbf{x}, \mathbf{u}, \mathbf{v}) = \mathbf{I}.$ Boolean circuit (by Cook-Levin)

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in \sum_{2} . There's a polynomial function q(.) and a poly-time TM M s.t. x $\in L \iff \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} s.t. \neg \phi(x,u,v) = 0.$
- Think of a NTM N that has the knowledge of M. On input x, it guesses u ∈ {0,1}^{q(|x|)} non-deterministically and computes the circuit φ(x,u,v). Then, it queries the SAT oracle with ¬φ(x,u,v).

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in \sum_{2} . There's a polynomial function q(.) and a poly-time TM M s.t.

 $\mathbf{x} \in \mathsf{L} \quad \Longleftrightarrow \exists \mathbf{u} \in \{0, \mathsf{I}\}^{q(|\mathsf{x}|)} \quad \forall \mathbf{v} \in \{0, \mathsf{I}\}^{q(|\mathsf{x}|)} \text{ s.t. } \neg \varphi(\mathbf{x}, \mathbf{u}, \mathbf{v}) = \mathbf{0}.$

- Think of a NTM N that has the knowledge of M. On input x, it guesses u ∈ {0,1}^{q(|x|)} non-deterministically and computes the circuit φ(x,u,v). Then, it queries the SAT oracle with ¬φ(x,u,v).
- Note that $\neg \phi(x,u,v)$ is a CNF.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most <u>one</u> query to the SAT oracle on every computation path on input x.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most <u>one</u> query to the SAT oracle on every computation path on input x.
- We need to construct a \sum_2 -statement that captures N's computation on input x.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to the SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0, I\}^{q(|x|)}$, $a_I \in \{0, I\}$ and u_I , $v_I \in \{0, I\}^{q(|x|)}$, where $\underline{q(|x|)}$ is the runtime of N on input x, and does the following:

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to the SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0, I\}^{q(|x|)}$, $a_I \in \{0, I\}$ and u_I , $v_I \in \{0, I\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following:
- M simulates N on input x with w as the nondeterministic choices.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to the SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0, I\}^{q(|x|)}$, $a_I \in \{0, I\}$ and u_I , $v_I \in \{0, I\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following:
- M simulates N on input x with w as the <u>computation</u> <u>path</u>. Suppose \$\oplus\$ is the query asked by N on the path of computation defined by w.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to the SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0, I\}^{q(|x|)}$, $a_I \in \{0, I\}$ and u_I , $v_I \in \{0, I\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following:

> If $a_1 = I$ and $\phi(u_1) = I$, M continues the simulation; else it stops and outputs 0. (In this case, M ignores v_1 .)

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to the SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0, I\}^{q(|x|)}$, $a_I \in \{0, I\}$ and u_I , $v_I \in \{0, I\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following:
- > If $a_1 = 0$ and $\phi(v_1) = 0$, M continues the simulation; else it stops and outputs 0. (In this case, M ignores u_1 .)

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to the SAT oracle on every computation path on input x.
- Think of a TM M that takes input x and $w \in \{0, I\}^{q(|x|)}$, $a_I \in \{0, I\}$ and u_I , $v_I \in \{0, I\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following:
- At the end of the simulation, M outputs whatever N outputs. Note: M is a poly-time TM.

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to the SAT oracle on every computation path on input x.
- Observation. For any $w \in \{0, I\}^{q(|x|)}$ and $a_I \in \{0, I\}$,
- > N on computation path w gets answer a_1 from the SAT oracle and accepts x \iff

 $\exists u_1 \in \{0, I\}^{q(|x|)} \quad \forall v_1 \in \{0, I\}^{q(|x|)} \text{ s.t. } M(x, w, a_1, u_1, v_1) = I.$

(...will prove the observation shortly. Let's finish the proof.)

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to the SAT oracle on every computation path on input x.
- $x \in L \iff \exists w \in \{0, I\}^{q(|x|)}, a_I \in \{0, I\}$ s.t
- N on computation path w gets answer a₁ from the SAT oracle and accepts x ⇔∃w ∈ {0,1}^{q(|x|)}, a₁∈ {0,1} $\exists u_1 \in \{0,1\}^{q(|x|)} \forall v_1 \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,w,a_1,u_1,v_1) = 1.$

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to the SAT oracle on every computation path on input x.
- $x \in L \iff \exists w \in \{0, I\}^{q(|x|)}, a_I \in \{0, I\}$ s.t
- N on computation path w gets answer a₁ from the SAT oracle and accepts x ⇔∃w ∈ {0,1}^{q(|x|)}, a₁∈ {0,1} $\exists u_1 \in \{0,1\}^{q(|x|)} \forall v_1 \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,w,a_1,u_1,v_1) = 1.$

Call it u

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- Special case: N asks at most one query to the SAT oracle on every computation path on input x.
- $x \in L \iff \exists w \in \{0, I\}^{q(|x|)}, a_I \in \{0, I\}$ s.t
- N on computation path w gets answer a₁ from the SAT oracle and accepts x ⇐ $\exists u \in \{0,1\}^{2q(|x|)+1} \quad \forall v_1 \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u,v_1) = 1.$
- Therefore, L is in \sum_{2} .

- Observation. For any $w \in \{0, I\}^{q(|x|)}$ and $a_I \in \{0, I\}$,
- N on computation path w gets answer a₁ from the SAT oracle and accepts x <=>

 $\exists u_1 \in \{0, I\}^{q(|x|)} \quad \forall v_1 \in \{0, I\}^{q(|x|)} \text{ s.t. } M(x, w, a_1, u_1, v_1) = I.$

- Proof.(⇒) M simulates N on computation path w.
 Let φ be the query asked by N to SAT.
- If $a_1 = I$, $\exists u_1 \in \{0, I\}^{q(|x|)} \phi(u_1) = I$ and N accepts x.

- Observation. For any $w \in \{0, I\}^{q(|x|)}$ and $a_I \in \{0, I\}$,
- N on computation path w gets answer a₁ from the SAT oracle and accepts x <=>

 $\exists u_1 \in \{0, I\}^{q(|x|)} \quad \forall v_1 \in \{0, I\}^{q(|x|)} \text{ s.t. } M(x, w, a_1, u_1, v_1) = I.$

- Proof.(⇒) M simulates N on computation path w.
 Let φ be the query asked by N to SAT.
- If $a_1 = 1, \exists u_1 \in \{0, 1\}^{q(|x|)}$ s.t. $M(x, w, a_1, u_1, v_1) = 1$.

In this case, M ignores v_1 .

- Observation. For any $w \in \{0, I\}^{q(|x|)}$ and $a_I \in \{0, I\}$,
- N on computation path w gets answer a₁ from the SAT oracle and accepts x <</p>

 $\exists u_1 \in \{0, I\}^{q(|x|)} \quad \forall v_1 \in \{0, I\}^{q(|x|)} \text{ s.t. } M(x, w, a_1, u_1, v_1) = I.$

- Proof.(⇒) M simulates N on computation path w.
 Let φ be the query asked by N to SAT.
- If $a_1 = 0$, $\forall v_1 \in \{0, I\}^{q(|x|)} \phi(v_1) = 0$ and N accepts x.

- Observation. For any $w \in \{0, I\}^{q(|x|)}$ and $a_I \in \{0, I\}$,
- N on computation path w gets answer a₁ from the SAT oracle and accepts x <=>

 $\exists u_1 \in \{0, I\}^{q(|x|)} \quad \forall v_1 \in \{0, I\}^{q(|x|)} \text{ s.t. } M(x, w, a_1, u_1, v_1) = I.$

- Proof.(⇒) M simulates N on computation path w.
 Let φ be the query asked by N to SAT.
- If $a_1 = 0, \forall v_1 \in \{0, I\}^{q(|x|)}$ s.t. $M(x, w, a_1, u_1, v_1) = I$.

In this case, M ignores u_1 .

- Observation. For any $w \in \{0, I\}^{q(|x|)}$ and $a_I \in \{0, I\}$,
- N on computation path w gets answer a₁ from the SAT oracle and accepts x <</p>

 $\exists u_1 \in \{0, I\}^{q(|x|)} \quad \forall v_1 \in \{0, I\}^{q(|x|)} \text{ s.t. } M(x, w, a_1, u_1, v_1) = I.$

- Proof.(⇒) M simulates N on computation path w.
 Let φ be the query asked by N to SAT.
- Irrespective of the value of a_1 , $\exists u_1 \in \{0,1\}^{q(|x|)} \forall v_1 \in \{0,1\}^{q(|x|)}$ s.t. $M(x,w,a_1,u_1,v_1) = 1$.

- Observation. For any $w \in \{0, I\}^{q(|x|)}$ and $a_I \in \{0, I\}$,
- N on computation path w gets answer a₁ from the SAT oracle and accepts x <</p>

 $\exists u_1 \in \{0, I\}^{q(|x|)} \quad \forall v_1 \in \{0, I\}^{q(|x|)} \text{ s.t. } M(x, w, a_1, u_1, v_1) = I.$

 Proof.(<) Need to show that N on computation path w <u>gets answer a</u> from the SAT oracle. (Homework)

- Theorem. $\sum_{2} = NP^{SAT}$.
- Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT.
- General case: N asks at most q(|x|) queries to SAT oracle on every computation path on input x.
- *Homework*: Prove the general case. Define the polytime machine M appropriately.

- Definition. A language L is in P^{SAT} if there is a polytime TM with oracle access to SAT that decides L.
- $\Delta_2 := \mathsf{P}^{\mathsf{SAT}} \subseteq \sum_2 \cap \prod_2$.
- A SAT oracle gives us the ability to solve SAT efficiently "much like" a poly-time algorithm for SAT.

- Definition. A language L is in PSAT if there is a polytime TM with oracle access to SAT that decides L.
- $\Delta_2 := \mathsf{P}^{\mathsf{SAT}} \subseteq \sum_2 \cap \prod_2$.
- A <u>SAT</u> oracle gives us the ability to solve SAT efficiently "much like" a poly-time algorithm for SAT.
- Yet, in the <u>first case</u> we believe $P^{SAT} \neq NP^{SAT}$, (otherwise, PH collapses to \sum_{2})

- Definition. A language L is in P^{SAT} if there is a polytime TM with oracle access to SAT that decides L.
- $\Delta_2 := \mathsf{P}^{\mathsf{SAT}} \subseteq \sum_2 \cap \prod_2$.
- A SAT oracle gives us the ability to solve SAT efficiently "much like" a poly-time algorithm for SAT.
- Yet, in the first case we believe PSAT ≠ NPSAT, whereas in the second case PH collapses to P, i.e., PSAT = NPSAT.

- Definition. A language L is in PSAT if there is a polytime TM with oracle access to SAT that decides L.
- $\Delta_2 := \mathsf{P}^{\mathsf{SAT}} \subseteq \sum_2 \cap \prod_2$.
- A SAT oracle gives us the ability to solve SAT efficiently "much like" a poly-time algorithm for SAT.
- Yet, in the first case we believe $P^{SAT} \neq NP^{SAT}$, whereas in the second case PH collapses to P, i.e., $P^{SAT} = NP^{SAT}$.
- Why? Think to understand the difference between oracles and poly-time algorithms for SAT (*Homework*).