
Computational Complexity Theory

 Lecture 17: Class NC and AC

Department of Computer Science,
Indian Institute of Science

Recap: Lesson learnt from Cook-Levin

 Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ϕ of
size O(T(n)2) s.t. A(x) = ϕ(x) for every x ∈ {0,1}n .

 On the other hand, a circuit on inputs of length n and
of size S can be viewed as an algorithm working on
length n inputs and running in time S.

 To rule the existence of a sequence of algorithms –
one for each input length – we need to rule out the
existence of a sequence of (i.e., a family of) circuits.

Recap: Boolean circuits

 A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

 A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

 Any other node is labelled by one of the three
operations ∧, ∨, ¬, and it outputs the value of the
operation on its input.

 Nodes with out-degree zero are the output gates.

 Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

Recap: Class P/poly

 Let T: be some function.

 Definition: A T(n)-size circuit family is a set of circuits
{Cn}n∈ such that Cn has n inputs and |Cn| ≤ T(n).

 Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 Defintion: Class P/poly = ∪ SIZE(nc).
c ≥ 1

Recap: Class P/poly

 Observation: P ⊆ P/poly .

 Proof. If L ∈ P, then there’s a nc-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n2c)-size circuit family {Cn}n∈ such that

 x ∈ L Cn(x) = 1, where n = |x|.

 (Note: Cn is poly(n)-time computable from 1n.)

 Is P = P/poly? No! P/poly contains undecidable
languages.

Recap: Karp-Lipton theorem

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then
PH = ∑2 .

 If we can show NP ⊄ P/poly assuming P ≠ NP , then

 NP ⊄ P/poly P ≠ NP .

 Karp-Lipton theorem shows NP ⊄ P/poly assuming
the stronger statement PH ≠ ∑2 .

Recap: Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Proof. Follows from a counting argument.

Recap: Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many.

 Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002)
There is a language L ∈ NP such that any circuit Cn
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates.

Results of this kind are known as
circuit lower bound.

Lower bounds for restricted circuits

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

Lower bounds for restricted circuits

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Fact. PARITY(x1, x2, …, xn) can be computed by a
circuit of size O(n) and a formula of size O(n2).

 Homework

Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Theorem. (Khrapchenko 1971) Any formula
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).

Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Theorem. (Andreev 1987, Hastad 1998) There’s a f
that can be computed by a O(n)-size circuit such that
any formula computing f has size 𝛀(n3-o(1)).

 Technique: Shrinkage of formulas under random restrictions (Subbotovskaya 1961).

Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Conjecture. (Circuits more powerful than formulas)
There’s a f that can be computed by a O(n)-size circuit

such that any formula computing f has size nω(1) .

An interesting approach was given by
Karchmer, Raz & Wigderson (1995) .

LB for AC0 and monotone circuits

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 We’ll discuss a super-polynomial lower bound for
constant depth circuits later.

Non-uniform size hierarchy

 Shanon’s result. There’s a constant c ≥ 1 such that
every Boolean function in n variables has a circuit of
size at most c.(2n/n).

 Theorem. There’s a constant d ≥ 1 s.t. if T1: &
T2: and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then

 SIZE(T1(n)) ⊊ SIZE(T2(n)).

Non-uniform size hierarchy

 Shanon’s result. There’s a constant c ≥ 1 such that
every Boolean function in n variables has a circuit of
size at most c.(2n/n).

 Theorem. There’s a constant d ≥ 1 s.t. if T1: &
T2: and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then

 SIZE(T1(n)) ⊊ SIZE(T2(n)).

 Proof. Uses Shanon’s result and a counting argument.

 (Homework)

Class NCi and ACi

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.
i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.

 Homework: PARITY is in NC1.

i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.

 NC1 = poly(n)-size Boolean formulas. (Assignment)

i∈

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Further, L is in log-space uniform NCi if Cn is
implicitly log-space computable from 1n.

Note: Sometimes NCi is defined as
log-space uniform NCi .

Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Further, L is in log-space uniform NCi if Cn is
implicitly log-space computable from 1n.

log-space uniform NC ⊆ P .

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

 Model: PRAM (has a central shared memory)

A processor can “deliver” a message to any other
processor in O(log n) time.

A processor has O(log n) bits of memory and
performs a poly-time computation at every step.

 Processor computation steps are synchronized.

NC ≡ Efficient parallel computation

 Definition. A language L can be decided efficiently in
parallel if there’s a polynomial function q(.) and
constants c & i s.t. L∩{0,1}n can be decided using q(n)
many processors in c.(log n)i time.

 Observation. A language L is in NC if and only if L
can be decided efficiently in parallel.

 Proof. Almost immediate from the assumptions on
the parallel computation model.

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi. (stands for Alternating Class)
i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Observation. ACi ⊆ NCi+1 ⊆ ACi+1 for all i ≥ 0.

i ≥ 0

Replace an unbounded fan-in gate by a
binary tree of bounded fan-in gates.

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Observation. NC = AC.

i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 In the next lecture, we’ll show that PARITY is not in
AC0, i.e., AC0 ⊊ NC1.

i ≥ 0

Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 Further, L is in log-space uniform ACi if Cn is
implicitly log-space computable from 1n.

i ≥ 0

log-space uniform AC ⊆ P .

