Computational Complexity Theory

Lecture 17: Class NC and AC

Department of Computer Science, Indian Institute of Science

Recap: Lesson learnt from Cook-Levin

- Locality of computation implies that an algorithm A working on inputs of some fixed length n and running in time T(n) can be viewed as a Boolean circuit ϕ of size O(T(n)²) s.t. A(x) = $\phi(x)$ for every $x \in \{0, 1\}^n$.
- On the other hand, a circuit on inputs of length n and of size S can be viewed as an algorithm working on length n inputs and running in time S.
- To rule the existence of a sequence of algorithms one for each input length – we need to rule out the existence of a sequence of <u>(i.e., a family of) circuits</u>.

Recap: Boolean circuits

- A <u>Boolean circuit</u> is a directed acyclic graph whose nodes/gates are labelled as follows:
- > A node with in-degree zero is labelled by an input variable, and it outputs the value of the variable.
- > Any other node is labelled by one of the three operations Λ , \vee , \neg , and it outputs the value of the operation on its input.

Nodes with out-degree zero are the output gates.

 <u>Size</u> of circuit is the no. of edges in it. <u>Depth</u> is the length of the longest path from an i/p to o/p node.

Recap: Class P/poly

- Let T: $N \rightarrow N$ be some function.
- Definition: A T(n)-size circuit family is a set of circuits $\{C_n\}_{n \in \mathbb{N}}$ such that C_n has n inputs and $|C_n| \leq T(n)$.
- Definition: A language L is in SIZE(T(n)) if there's a T(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that $x \in L \iff C_n(x) = I$, where n = |x|.
- Definition: Class $P/poly = \bigcup_{c \ge 1} SIZE(n^c)$.

Recap: Class P/poly

- Observation: $P \subseteq P/poly$.
- Proof. If L ∈ P, then there's a n^c-time TM that decides L for some constant c. By Cook-Levin, there's a O(n^{2c})-size circuit family {C_n}_{n∈N} such that x ∈ L ⇔C_n(x) = I, where n = |x|.

(Note: C_n is poly(n)-time computable from I^n .)

 Is P = P/poly? No! P/poly contains undecidable languages.

Recap: Karp-Lipton theorem

- Theorem (Karp & Lipton 1982). If NP \subsetneq P/poly then PH = \sum_2 .
- If we can show NP ⊄ P/poly assuming P ≠ NP, then
 NP ⊄ P/poly ⇔ P ≠ NP.
- Karp-Lipton theorem shows NP ⊄ P/poly assuming the stronger statement PH ≠ ∑₂.

Recap: Functions outside P/poly

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I exp(-2ⁿ⁻¹) fraction of Boolean functions on n variables do not have circuits of size 2ⁿ/(22n).
- Proof. Follows from a counting argument.

Recap: Functions outside P/poly

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many.
- Is one out of so many functions outside P/poly in NP? We don't know even after ~40 yrs of research!
- Theorem. (Iwama, Lachish, Morizumi & Raz 2002) There is a language $L \in NP$ such that any circuit C_n that decides $L \cap \{0,1\}^n$ requires 5n - o(n) many Λ and V gates.

Results of this kind are known as circuit lower bound.

Lower bounds for restricted circuits

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.

Lower bounds for restricted circuits

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- Fact. $PARITY(x_1, x_2, ..., x_n)$ can be computed by a circuit of size O(n) and a formula of size $O(n^2)$.

Homework

Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- Theorem. (*Khrapchenko* 1971) Any formula computing PARITY($x_1, x_2, ..., x_n$) has size $\Omega(n^2)$.

Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- Theorem. (Andreev 1987, Hastad 1998) There's a f that can be computed by a O(n)-size circuit such that any formula computing f has size $\Omega(n^{3-o(1)})$.

Technique: Shrinkage of formulas under random restrictions (Subbotovskaya 1961).

Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- Conjecture. (*Circuits more powerful than formulas*) There's a f that can be computed by a O(n)-size circuit such that any formula computing f has size $n^{\omega(1)}$.

An interesting approach was given by Karchmer, Raz & Wigderson (1995).

LB for AC⁰ and monotone circuits

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- We'll discuss a **super-polynomial** lower bound for <u>constant depth circuits</u> later.

Non-uniform size hierarchy

- Shanon's result. There's a constant c ≥ I such that every Boolean function in n variables has a circuit of size at most c.(2ⁿ/n).
- Theorem. There's a constant $d \ge I$ s.t. if $T_1: N \rightarrow N \& T_2: N \rightarrow N$ and $T_1(n) \le d^{-1} \cdot T_2(n) \le T_2(n) \le c \cdot (2^n/n)$ then SIZE $(T_1(n)) \subseteq SIZE(T_2(n))$.

Non-uniform size hierarchy

- Shanon's result. There's a constant c ≥ I such that every Boolean function in n variables has a circuit of size at most c.(2ⁿ/n).
- Theorem. There's a constant $d \ge I$ s.t. if $T_1: N \rightarrow N \& T_2: N \rightarrow N$ and $T_1(n) \le d^{-1} \cdot T_2(n) \le T_2(n) \le c \cdot (2^n/n)$ then SIZE $(T_1(n)) \subseteq SIZE(T_2(n)).$
- Proof. Uses Shanon's result and a counting argument. (Homework)

Class NCⁱ and ACⁱ

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c.(log n)ⁱ for every $n \in \mathbb{N}$.
- Definition. NC = $\bigcup_{i \in \mathbb{N}} NC^{i}$.

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c.(log n)ⁱ for every $n \in \mathbb{N}$.
- Definition. NC = $\bigcup_{i \in \mathbb{N}} NC^{i}$.
- Homework: PARITY is in NC¹.

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c.(log n)ⁱ for every $n \in \mathbb{N}$.
- Definition. $NC = U NC^{i}$. i∈N

• NC¹ = poly(n)-size Boolean formulas. (Assignment)

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c.(log n)ⁱ for every $n \in \mathbb{N}$.
- Further, L is in <u>log-space uniform</u> NCⁱ if C_n is implicitly log-space computable from Iⁿ.

Note: Sometimes NCⁱ is defined as log-space uniform NCⁱ.

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c.(log n)ⁱ for every $n \in \mathbb{N}$.
- Further, L is in <u>log-space uniform</u> NCⁱ if C_n is implicitly log-space computable from Iⁿ.

log-space uniform $NC \subseteq P$.

NC \equiv Efficient parallel computation

 Definition. A language L can be decided <u>efficiently in</u> <u>parallel</u> if there's a polynomial function q(.) and constants c & i s.t. L∩{0,1}ⁿ can be decided using q(n) many processors in c.(log n)ⁱ time.

$NC \equiv Efficient parallel computation$

- Definition. A language L can be decided <u>efficiently in</u> <u>parallel</u> if there's a polynomial function q(.) and constants c & i s.t. L∩{0,1}ⁿ can be decided using q(n) many processors in c.(log n)ⁱ time.
- Model: **PRAM** (has a central shared memory)
- A processor can "deliver" a message to any other processor in O(log n) time.
- A processor has O(log n) bits of memory and performs a poly-time computation at every step.
- > Processor computation steps are synchronized.

NC \equiv Efficient parallel computation

- Definition. A language L can be decided <u>efficiently in</u> <u>parallel</u> if there's a polynomial function q(.) and constants c & i s.t. L∩{0,1}ⁿ can be decided using q(n) many processors in c.(log n)ⁱ time.
- Observation. A language L is in NC if and only if L can be decided efficiently in parallel.
- **Proof.** Almost immediate from the assumptions on the parallel computation model.

- Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in ACⁱ if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size **unbounded fan-in** circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition. AC = $\bigcup_{i \ge 0} AC^{i}$. (stands for Alternating Class)

- Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in ACⁱ if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size **unbounded fan-in** circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c.(log n)ⁱ for every $n \in \mathbb{N}$.
- Definition. AC = $\bigcup_{i \ge 0} AC^{i}$.
- Observation. $AC^i \subseteq NC^{i+1} \subseteq AC^{i+1}$ for all $i \ge 0$.

Replace an unbounded fan-in gate by a binary tree of bounded fan-in gates.

- Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in ACⁱ if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size **unbounded fan-in** circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition.AC = $\bigcup_{i \ge 0} AC^{i}$.
- Observation. NC = AC.

- Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in ACⁱ if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size **unbounded fan-in** circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition.AC = $\bigcup_{i \ge 0} AC^{i}$.
- In the next lecture, we'll show that PARITY is not in AC⁰, i.e., AC⁰ ⊊ NC¹.

- Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in ACⁱ if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size **unbounded fan-in** circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition.AC = $\bigcup_{i \ge 0} AC^{i}$.
- Further, L is in <u>log-space uniform</u> ACⁱ if C_n is implicitly log-space computable from Iⁿ.

log-space uniform $AC \subseteq P$.