Computational Complexity Theory

Lecture 18: P-completeness;

Parity not in AC⁰

Department of Computer Science, Indian Institute of Science

Recap: Karp-Lipton theorem

- Theorem (Karp & Lipton 1982). If NP \subseteq P/poly then PH = \sum_2 .
- If we can show NP $\not\subset$ P/poly assuming P \neq NP, then NP $\not\subset$ P/poly \iff P \neq NP.

• Karp-Lipton theorem shows NP $\not\subset$ P/poly assuming the stronger statement PH $\neq \sum_{2}$

Recap: Functions outside P/poly

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let $exp(m) = 2^m$.
- Theorem. I- $exp(-2^{n-1})$ fraction of Boolean functions on n variables **do not** have circuits of size $2^n/(22n)$.
- Is one out of so many functions outside P/poly in NP? We don't know even after ~40 yrs of research!
- Theorem. (Iwama, Lachish, Morizumi & Raz 2002) There is a language $L \in NP$ such that any circuit C_n that decides $L \cap \{0,1\}^n$ requires 5n o(n) many Λ and V gates.

Recap: Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some natural classes of circuits.
- The proofs of these lower bounds introduced and developed some highly interesting techniques.

- Fact. PARITY($x_1, x_2, ..., x_n$) can be computed by a circuit of size O(n) and a formula of size $O(n^2)$.
- Theorem. (Khrapchenko 1971) Any formula computing PARITY($x_1, x_2, ..., x_n$) has size $\Omega(n^2)$.

Recap: Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some natural classes of circuits.
- The proofs of these lower bounds introduced and developed some highly interesting techniques.
- Theorem. (Andreev 1987, Hastad 1998) There's a f that can be computed by a O(n)-size circuit such that any formula computing f has size $\Omega(n^{3-o(1)})$.

Recap: Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly interesting techniques.
- Conjecture. (Circuits more powerful than formulas) There's a f that can be computed by a O(n)-size circuit such that any formula computing f has size $n^{\omega(1)}$.

Recap: Non-uniform size hierarchy

- Shanon's result. There's a constant c ≥ I such that every Boolean function in n variables has a circuit of size at most c.(2ⁿ/n).
- Theorem. There's a constant $d \ge 1$ s.t. if $T_1: N \to N$ & $T_2: N \to N$ and $T_1(n) \le d^{-1}.T_2(n) \le T_2(n) \le c.(2^n/n)$ then $SIZE(T_1(n)) \subsetneq SIZE(T_2(n))$.

Recap: Class NC

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition. $NC = \bigcup_{i \in N} NC^i$.
- PARITY is in $NC^1 = poly(n)$ -size Boolean formulas.

Recap: Class AC

- Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in AC^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size <u>unbounded fan-in</u> circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition. AC = $\bigcup_{i \ge 0} AC^i$. (stands for Alternating Class)
- Observation. $AC^i \subseteq NC^{i+1} \subseteq AC^{i+1}$ for all $i \ge 0$.

Replace an unbounded fan-in gate by a binary tree of bounded fan-in gates.

Recap: Class AC

• Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in AC^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size <u>unbounded fan-in</u> circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.

- Definition.AC = $\bigcup_{i \ge 0} AC^i$.
- In this lecture, we'll show that PARITY is not in AC⁰,
 i.e., AC⁰ ⊊ NC¹.

P-completeness

P-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = (uniform) NC? Is P = L?...use log-space reduction!

• Definition. A language $L \in P$ is P-complete if for every L' in $P, L' \leq_l L$.

P-complete problems

- Circuit value problem. Given a circuit and an input, compute the output of the circuit. (The reduction in the Cook-Levin theorem can be made a log-space reduction.)
- Linear programming. Check the feasibility of a system of linear inequality constraints over rationals. (Assignment problem)
- CFG membership. Given a context-free grammar and a string, decide if the string can be generated by the grammar.

No log-space algo for PC problems

- Theorem. Let L be a P-complete language. Then,
 L is in L P = L.
- Proof. Easy.
- Can't hope to get a log-space algorithm for a Pcomplete problem unless P = L.

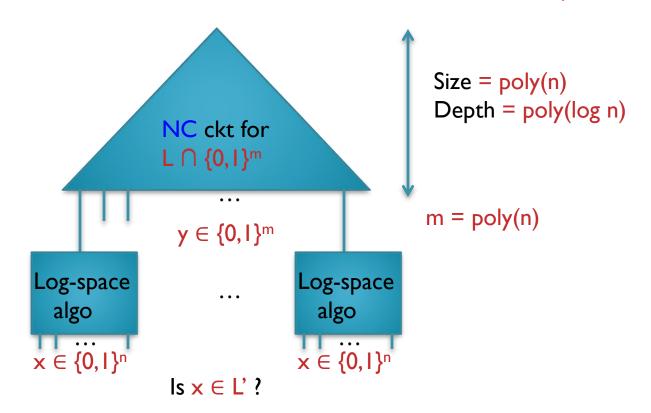
No parallel algo for PC problems

- Theorem. Let L be a P-complete language. Then,
 L is in NC → P⊆NC.

• Can't hope to get an efficient parallel algorithm for a P-complete problem unless $P \subseteq NC$.

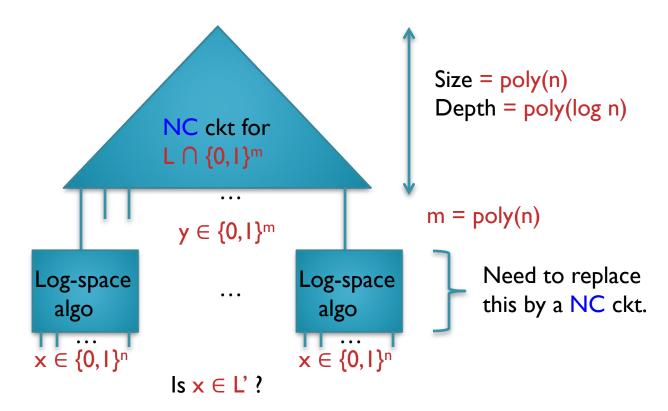
No parallel algo for PC problems

- Theorem. Let L be a P-complete language. Then,
 L is in NC → P⊆NC.
- Proof.(\Longrightarrow) Let L' \in P.As L is P-complete, L' \leq ₁ L.



No parallel algo for PC problems

- Theorem. Let L be a P-complete language. Then,
 L is in NC → P⊆NC.
- Proof.(\Longrightarrow) Let L' \in P.As L is P-complete, L' \leq ₁ L.



Parallelization of Log-space

Do problems in L have efficient parallel algorithms?

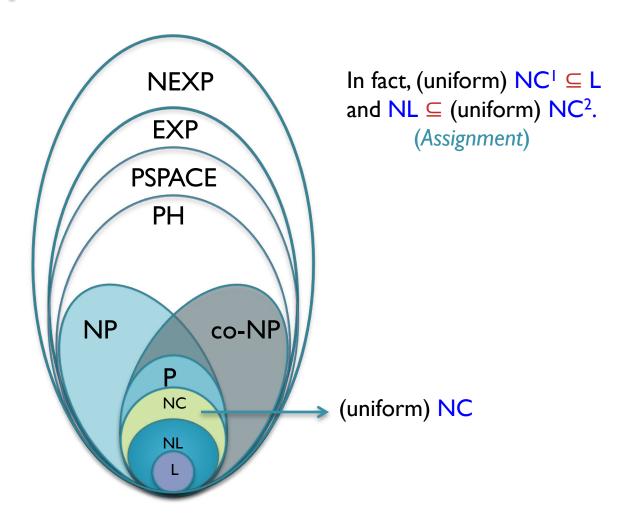
• Theorem. NL ⊆ (uniform) NC. (Assignment problem)

Parallelization of Log-space

Do problems in L have efficient parallel algorithms?

- Theorem. NL ⊆ (uniform) NC. (Assignment problem)
- Proof sketch.
- I. Construct the adjacency matrix A of the configuration graph.
- 2. Use repeated squaring of A to find out if there's a path from start to accept configurations.

Complexity zoo



The Parity function

The Parity function

- PARITY $(x_1, x_2, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n$.
- Fact. PARITY($x_1, x_2, ..., x_n$) can be computed by a circuit of size O(n) and a formula of size $O(n^2)$.

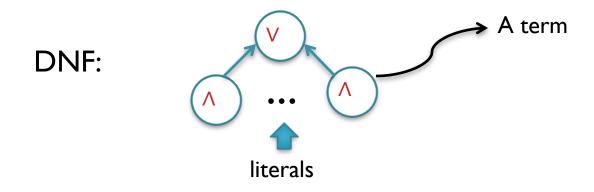
 has depth $O(\log n)$
- Theorem. (Khrapchenko 1971) Any formula computing PARITY($x_1, x_2, ..., x_n$) has size $\Omega(n^2)$.

The Parity function

- PARITY $(x_1, x_2, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n$.
- Fact. PARITY($x_1, x_2, ..., x_n$) can be computed by a circuit of size O(n) and a formula of size $O(n^2)$.
- Theorem. (Khrapchenko 1971) Any formula computing PARITY($x_1, x_2, ..., x_n$) has size $\Omega(n^2)$.
- Can poly-size <u>constant depth</u> circuits compute PARITY? No!

Depth 2 circuit for Parity

 Without loss of generality, a depth 2 circuit is either a DNF or a CNF.



- Any Boolean function can be computed by a DNF (similarly, CNF) with 2ⁿ terms (respectively, clauses).
- Can we do better for depth 2 circuits computing PARITY?

Depth 2 circuit for Parity

 Without loss of generality, a depth 2 circuit is either a DNF or a CNF.

- Obs. Any DNF computing PARITY has $\geq 2^{n-1}$ terms.
- Proof. Let φ be a DNF computing PARITY. Then, every term in φ has n literals (otherwise, the value of PARITY can be fixed by fixing less than n variables which is false).

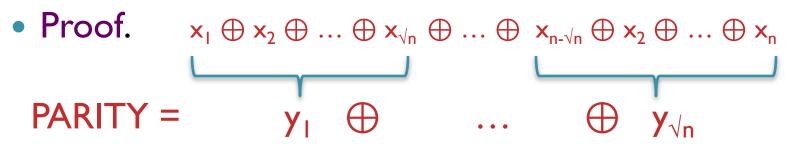
Depth 2 circuit for Parity

 Without loss of generality, a depth 2 circuit is either a DNF or a CNF.

- Obs. Any DNF computing PARITY has $\geq 2^{n-1}$ terms.
- Proof. Let ϕ be a DNF computing PARITY. Then, every term in ϕ has n literals (otherwise, the value of PARITY can be fixed by fixing less than n variables which is false). Such a term corresponds to a unique assignment that makes the term evaluate to I. Terms corresponding to assignments that set odd number of variables to I must be present in ϕ .

Depth 3 circuit for Parity

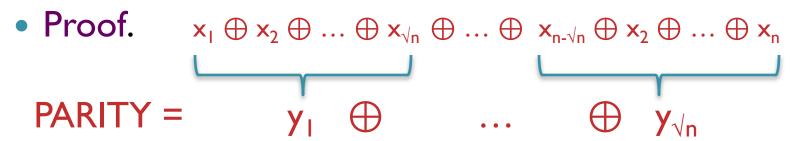
• Obs. There's a $2^{O(\sqrt{n})}$ size depth 3 circuit for PARITY.



• <u>Divide & conquer</u>: Compute y_i and $\neg y_i$ by $2^{O(\sqrt{n})}$ size DNFs on the **x** literals. Compute $y_i \oplus ... \oplus y_{\sqrt{n}}$ by a $2^{O(\sqrt{n})}$ size CNF on the **y** literals. "Attach" the CNF with the DNFs and "merge" the two middle layers of V gates.

Depth 3 circuit for Parity

• Obs. There's a $2^{O(\sqrt{n})}$ size depth 3 circuit for PARITY.



• <u>Divide & conquer</u>: Compute y_i and $\neg y_i$ by $2^{O(\sqrt{n})}$ size DNFs on the **x** literals. Compute $y_i \oplus ... \oplus y_{\sqrt{n}}$ by a $2^{O(\sqrt{n})}$ size CNF on the **y** literals. "Attach" the CNF with the DNFs and "merge" the two middle layers of V gates.

Is the $2^{O(\sqrt{n})}$ upper bound on the size of depth 3 circuits computing PARITY tight? "Yes"

Depth d circuit for Parity

- Obs. There's a $exp(n^{1/(d-1)})$ size depth d circuit for PARITY, where $exp(x) = 2^x$. (Homework)
- Proof sketch. "Divide & conquer" for d-I levels. Alternate between CNFs and DNFs. "Attach" the CNFs and the DNFs appropriately, and then "merge" the intermediate layers to bring the depth down to d.
- Is the exp(n^{1/(d-1)}) upper bound on the size of depth d circuits computing PARITY tight? "Yes"

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d-1 factor.
- Furst, Saxe and Sipser showed a quasi-polynomial lower bound.
- Ajtai showed an exponential lower bound, but the bound wasn't optimal.
- Hastad showed an $\exp(\Omega(n^{1/(d-1)}))$ lower bound.
- Rossman (2015) showed an optimal $\exp(\Omega(dn^{1/(d-1)}))$ lower bound.

• Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d-1 factor.

- Gives a super-polynomial lower bound for depth d circuits for d up to o(log n).
- A lower bound for circuits of depth d = O(log n) implies a Boolean formula lower bound!

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d-1 factor.
- Proof idea. A *random assignment* to a "large" fraction of the variables makes a constant depth circuit of polynomial size evaluate to a constant (i.e., the circuit stops depending on the unset variables). On the other hand, we cannot make PARITY evaluate to a constant by setting less than n variables.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d-1 factor.
- Proof idea. A *random assignment* to a "large" fraction of the variables makes a constant depth circuit of polynomial size evaluate to a constant (i.e., the circuit stops depending on the unset variables).
- We'll prove this fact using Hastad's <u>Switching</u> <u>lemma</u>. But first let us discuss some structural simplifications of depth d circuits.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d-1 factor.
- Proof idea. A *random assignment* to a "large" fraction of the variables makes a constant depth circuit of polynomial size evaluate to a constant (i.e., the circuit stops depending on the unset variables).
- We'll prove this fact using Hastad's <u>Switching</u>
 <u>lemma</u>. But first let us discuss some structural simplifications of depth d circuits.

next lecture

• Fact I. If $f(x_1,...,x_n)$ is computable by a circuit of depth d and size s, then f is also computable by a circuit C of depth d and size O(s) such that C has no \neg gates and the inputs to C are $x_1,...,x_n$ and $\neg x_1,...,\neg x_n$.

- Fact I. If $f(x_1,...,x_n)$ is computable by a circuit of depth d and size s, then f is also computable by a circuit C of depth d and size O(s) such that C has no \neg gates and the inputs to C are $x_1,...,x_n$ and $\neg x_1,...,\neg x_n$.
- Fact 2. If f is computable by a circuit of depth d and size s, then f is also computable by a *formula* of depth d and size O(s)^d.

- Fact I. If $f(x_1,...,x_n)$ is computable by a circuit of depth d and size s, then f is also computable by a circuit C of depth d and size O(s) such that C has no \neg gates and the inputs to C are $x_1,...,x_n$ and $\neg x_1,...,\neg x_n$.
- Fact 2. If f is computable by a circuit of depth d and size s, then f is also computable by a <u>formula</u> of depth d and size O(s)^d.
- Fact 3. If f is computable by a formula of depth d and size s, then f is computable by a formula C of depth d and size O(sd) that has alternating layers of V and A gates with inputs feeding into only the bottom layer.

- Fact I. If $f(x_1,...,x_n)$ is computable by a circuit of depth d and size s, then f is also computable by a circuit C of depth d and size O(s) such that C has no \neg gates and the inputs to C are $x_1,...,x_n$ and $\neg x_1,...,\neg x_n$.
- Fact 2. If f is computable by a circuit of depth d and size s, then f is also computable by a *formula* of depth d and size O(s)^d.
- Fact 3. If f is computable by a formula of depth d and size s, then f is computable by a formula C of depth d and size O(sd) that has alternating layers of V and A gates with inputs feeding into only the bottom layer.

Homework: Prove the above facts.

Random restrictions

• A <u>restriction</u> σ is a partial assignment to a subset of the n variables.

- A <u>random restriction</u> σ that leaves m variables alive/unset is obtained by picking a random subset S ⊆ [n] of size n-m and setting every variable in S to 0/I uniformly and independently.
- Let f_{σ} denote the function obtained by applying the restriction σ on f.

The Switching Lemma

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where $p < \frac{1}{2}$. Then,

 Pr_{σ} [f_{\sigma} can't be represented as a k-DNF] \leq (16pt)^k.