Computational Complexity Theory

Lecture |18: P-completeness;
Parity not in AC°

Department of Computer Science,
Indian Institute of Science

Recap: Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* If we can show NP & P/poly assuming P # NP , then
NP ¢ P/poly & P # NP.

o Karp-Lipton theorem shows NP & P/poly assuming
the stronger statement PH # 5,

Recap: Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

There is a language L € NP such that any circuit C_
that decides LM{0,1}" requires 5n — o(n) many A and
V gates.

Recap: Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

e PARITY(x,, %x,, ..., x,) can be computed by a
circuit of size O(n) and a formula of size O(n?).
° (Khrapchenko ~ 1971) Any formula

computing PARITY(x,, x5, ..., x_) has size {(n?).

Recap: Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

e (Andreev 1987, Hastad 1998) There’s a f
that can be computed by a O(n)-size circuit such that
any formula computing f has size Q(n3°(!).

Recap: Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

o (Circuits _more powerful than formulas)
There’s a f that can be computed by a O(n)-size circuit
such that any formula computing f has size n®(!) .

Recap: Non-uniform size hierarchy

e Shanon’s result. There’s a constant ¢ = | such that
every Boolean function in n variables has a circuit of
size at most c.(2"/n).

o Theorem.There’sa constantd = | s.t.if T: N—=N &
T,:N =N and T (n) =d'.T,(n) £T,(n) < c.(2"/n) then
SIZE(T,(n)) & SIZE(T,(n)).

Recap: Class NC

e NC stands for Nick’s Class — named after Nick
Pippenger.

o For iEN, a language L is in NC' if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {C_} .\, wWhere
depth of C_ is at most c.(log n)' for every neN.

® NC = U NC'
iEN

e PARITY is in NC' = poly(n)-size Boolean formulas.

Recap: Class AC

° For iENU{0}, a language L is in AC' if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a g(n)-size unbounded fan-in circuit
family {C, } ., Where depth of C_is at most c.(log n)'
for every neN.

g AC =U 0AC‘. (stands for Alternating Class)
o AC' € NC*I c AC*! for all i = 0.

Replace an unbounded fan-in gate by a
binary tree of bounded fan-in gates.

Recap: Class AC

° For iENU{0}, a language L is in AC' if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C_} cn» Where depth of C_ is at most c.(log n)’
for every neN.

o AC = U AC.

i=0

e In this lecture, we’'ll show that PARITY is not in ACC,
i.e., AC° < NC!,

P-completeness

P-completeness

e Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

els P = (uniform) NC? Is P = L?...use log-space
reduction!

° A language L € P is P-complete if for every
U'inP,L 5/ L

P-complete problems

e Circuit value problem. Given a circuit and an input,

compute the output of the circuit. (The reduction in the
Cook-Levin theorem can be made a log-space reduction.)

 Linear programming. Check the feasibility of a system

of linear inequality constraints over rationals.
(Assignment problem)

e CFG membership. Given a context-free grammar and
a string, decide if the string can be generated by the
grammar.

No log-space algo for PC problems

e [heorem. Let L be a P-complete language. Then,
LisinL & P=1L.
e Proof. Easy.

e Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L.

No parallel algo for PC problems

e [heorem. Let L be a P-complete language. Then,
Lisin NC &= P C NC.

* Proof. = direction is straightforward.

e Can’t hope to get an efficient parallel algorithm for a
P-complete problem unless P © NC.

No parallel algo for PC problems

e [heorem. Let L be a P-complete language. Then,
_isin NC & P C NC.
* Proof.(=) Let L € PAs L is P-complete, L < L.

Size = poly(n)
Depth = poly(log n)

v
m = poly(n)

x € {0,1}" x € {0,1}"
Isx e L ?

No parallel algo for PC problems

e Theorem.

e Proof.(=»)

et L be a P-complete language. Then,
_isin NC & P C NC.

et L' € PAs L is P-complete, L </ L.

Size = poly(n)
Depth = poly(log n)

m = poly(n)

Need to replace
this by a NC ckt.

Parallelization of Log-space

* Do problems in L have efficient parallel algorithms?
Yes!

e [heorem. NL € (uniform) NC. (Assignment problem)

Parallelization of Log-space

* Do problems in L have efficient parallel algorithms?

° NL € (uniform) NC. (Assignment problem)
e Proof sketch.

e |. Construct the adjacency matrix A of the
configuration graph.

e 2. Use repeated squaring of A to find out if there’s a
path from start to accept configurations.

Complexity zoo

NEXP In fact, (uniform) NC' € L
and NL € (uniform) NC2
A (Assignment)

(uniform) NC

The Parity function

The Parity function

e PARITY (X}, X5, ..., X)) = X, D x, D ... D x,.

o Fact. PARITY(x,, x5, ..., x,) can be computed by a
circuit of size O(n) and a formula of size O(n?).

!
has depth O(log n) has depth O(log n)

o [heorem. (Khrapchenko 19/71) Any formula computing
PARITY (x|, X, ..., x_) has size (n?).

The Parity function

e PARITY (X}, X5, ..., X)) = X, D x, D ... D x,.

o Fact. PARITY(x,, x5, ..., x,) can be computed by a
circuit of size O(n) and a formula of size O(n?).

o [heorem. (Khrapchenko 19/71) Any formula computing
PARITY (x|, X, ..., x_) has size (n?).

e Can poly-size constant depth circuits compute
PARITY? No!

Depth 2 circuit for Parity

e Without loss of generality, a depth 2 circuit is either a
DNF or a CNF.

- d@b D A term

<

literals

* Any Boolean function can be computed by a DNF
(similarly, CNF) with 2" terms (respectively, clauses).

e Can we do better for depth 2 circuits computing
PARITY?

Depth 2 circuit for Parity

e Without loss of generality, a depth 2 circuit is either a
DNF or a CNF.

° Any DNF computing PARITY has = 2" terms.

* Proof. Let ¢ be a DNF computing PARITY. Then, every
term in ¢ has n literals (otherwise, the value of
PARITY can be fixed by fixing less than n variables
which is false).

Depth 2 circuit for Parity

e Without loss of generality, a depth 2 circuit is either a
DNF or a CNF.

° Any DNF computing PARITY has = 2" terms.

* Proof. Let ¢ be a DNF computing PARITY. Then, every
term in ¢ has n literals (otherwise, the value of
PARITY can be fixed by fixing less than n variables
which is false). Such a term corresponds to a unique
assignment that makes the term evaluate to |. Terms
corresponding to assignments that set odd number of
variables to | must be present in ¢.

Depth 3 circuit for Parity

o Obs.There’s a 2°0' size depth 3 circuit for PARITY.

* Proof. x®x®..®x,D.. 0 x,Dx,D..Dx

| / | /
|

1
PARITY = y, D Dy,

» Divide & conquer: Compute y. and —y. by 200 sjze
DNFs on the x literals. Compute y, &© ... & y,, by a
200 size CNF on the y literals. “Attach” the CNF

with the DNFs and “merge” the two middle layers of
V gates.

Depth 3 circuit for Parity

o Obs.There’s a 2°0' size depth 3 circuit for PARITY.

* Proof. x®x®..®x,D.. 0 x,Dx,D..Dx
\ ; \ ;

| 1
PARITY = y, D Dy,

» Divide & conquer: Compute y. and —y. by 200 sjze
DNFs on the x literals. Compute y, &© ... & y,, by a
200 size CNF on the y literals. “Attach” the CNF

with the DNFs and “merge” the two middle layers of

V gates.
Is the 2°0'" upper bound on the size of depth 3 circuits
computing PARITY tight? “Yes”

Depth d circuit for Parity

o Obs. There’s a exp(n'/¢!) size depth d circuit for
PARITY, where exp(x) = 2%,

e Proof sketch. “Divide & conquer” for d-l levels.
Alternate between CNFs and DNFs. “Attach” the

CNFs and the DNFs appropriately, and then “merge”
the intermediate layers to bring the depth down to d.

o Is the exp(n'/(4-1)) upper bound on the size of depth d
circuits computing PARITY tight! “Yes”

Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Furst, Saxe and Sipser showed a quasi-polynomial
lower bound.

e Ajtai showed an exponential lower bound, but the
bound wasn’t optimal.

» Hastad showed an exp(€Q(n'1)) lower bound.

* Rossman (2015) showed an optimal exp(Q(dn'/(¢-1))
lower bound.

Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Gives a super-polynomial lower bound for depth d
circuits for d up to o(log n).

* A lower bound for circuits of depth d = O(log n)
implies a Boolean formula lower bound!

Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).
On the other hand, we cannot make PARITY evaluate
to a constant by setting less than n variables.

Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).

e We'll prove this fact using Hastad’'s Switching
lemma. But first let us discuss some structural
simplifications of depth d circuits.

Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).

e We'll prove this fact using Hastad’'s Switching
lemma. But first let us discuss some/ structural
simplifications of depth d circuits.

Will be proved in the
next lecture

Simplifying depth d circuits

C

If f(x,,..., x_) is computable by a circuit of depth
and size s, then f is also computable by a circuit C of
epth d and size O(s) such that C has no = gates and

he inputs to C are x|, ..., x, and =X, ..., 7X,.

Simplifying depth d circuits

o If f(x,,..., x_) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no = gates and
the inputs to C are x, ..., %, and =X, ..., 7X

° If f is computable by a circuit of depth d and

size s, then f is also computable by a formula of depth
d and size O(s).

Simplifying depth d circuits

o If f(x,,..., x_) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no = gates and
the inputs to C are x, ..., %, and =X, ..., 7X

° If f is computable by a circuit of depth d and

size s, then f is also computable by a formula of depth
d and size O(s).

° If f is computable by a formula of depth d and
size s, then f is computable by a formula C of depth d
and size O(sd) that has alternating layers of V and A
gates with inputs feeding into only the bottom layer.

Simplifying depth d circuits

o If f(x,,..., x_) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no = gates and
the inputs to C are x, ..., %, and =X, ..., 7X

° If f is computable by a circuit of depth d and

size s, then f is also computable by a formula of depth
d and size O(s).

° If f is computable by a formula of depth d and
size s, then f is computable by a formula C of depth d
and size O(sd) that has alternating layers of V and A
gates with inputs feeding into only the bottom layer.

Prove the above facts.

Random restrictions

* A restriction o is a partial assighment to a subset of the
n variables.

e A random restriction o that leaves m variables
alive/unset is obtained by picking a random subset S C
[n] of size n-m and setting every variable in S to 0/|
uniformly and independently.

e Let f, denote the function obtained by applying the
restriction o on f.

The Switching Lemma

e Switching lemma. Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

