# Computational Complexity Theory

Lecture 19-20: Parity not in AC<sup>0</sup> (contd.); Switching lemma

Department of Computer Science, Indian Institute of Science

# Recap: The Parity function

- PARITY $(x_1, x_2, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n$ .
- Fact. PARITY( $x_1, x_2, ..., x_n$ ) can be computed by a circuit of size O(n) and a formula of size  $O(n^2)$ .
- Theorem. (Khrapchenko 1971) Any formula computing PARITY( $x_1, x_2, ..., x_n$ ) has size  $\Omega(n^2)$ .
- Can poly-size <u>constant depth</u> circuits compute PARITY? No!

#### Recap: Depth 2 & 3 circuits for Parity

 Without loss of generality, a depth 2 circuit is either a DNF or a CNF.

- Obs. Any DNF computing PARITY has  $\geq 2^{n-1}$  terms.
- Obs. There's a  $2^{O(\sqrt{n})}$  size depth 3 circuit for PARITY.

# Recap: Depth d circuit for Parity

• Obs. There's a  $exp(n^{1/(d-1)})$  size depth d circuit for PARITY, where  $exp(x) = 2^x$ . (Homework)

 Is the exp(n<sup>1/(d-1)</sup>) upper bound on the size of depth d circuits computing PARITY tight? "Yes"

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Furst, Saxe and Sipser showed a quasi-polynomial lower bound.
- Ajtai showed an exponential lower bound, but the bound wasn't optimal.
- Hastad showed an  $\exp(\Omega(n^{1/(d-1)}))$  lower bound.
- Rossman (2015) showed an optimal  $\exp(\Omega(dn^{1/(d-1)}))$  lower bound.

• Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.

- Gives a super-polynomial lower bound for depth d circuits for d up to o(log n).
- A lower bound for circuits of depth d = O(log n) implies a Boolean formula lower bound!

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof idea. A *random assignment* to a "large" fraction of the variables makes a constant depth circuit of polynomial size evaluate to a constant (i.e., the circuit stops depending on the unset variables). On the other hand, we cannot make PARITY evaluate to a constant by setting less than n variables.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof idea. A *random assignment* to a "large" fraction of the variables makes a constant depth circuit of polynomial size evaluate to a constant (i.e., the circuit stops depending on the unset variables).
- We'll prove this fact using Hastad's <u>Switching</u> <u>lemma</u>. But first let us discuss some structural simplifications of depth d circuits.

# Recap: Simplifying depth d circuits

- Fact I. If  $f(x_1,...,x_n)$  is computable by a circuit of depth d and size s, then f is also computable by a circuit C of depth d and size O(s) such that C has no  $\neg$  gates and the inputs to C are  $x_1,...,x_n$  and  $\neg x_1,...,\neg x_n$ .
- Fact 2. If f is computable by a circuit of depth d and size s, then f is also computable by a <u>formula</u> of depth d and size O(s)<sup>d</sup>.
- Fact 3. If f is computable by a formula of depth d and size s, then f is computable by a formula C of depth d and size O(sd) that has <u>alternating layers</u> of V and A gates with inputs feeding into *only* the bottom layer.

### Recap: Random restrictions

• A <u>restriction</u>  $\sigma$  is a partial assignment to a subset of the n variables.

- A <u>random restriction</u> σ that leaves m variables alive/unset is obtained by picking a random subset S ⊆ [n] of size n-m and setting every variable in S to 0/I uniformly and independently.
- Let  $f_{\sigma}$  denote the function obtained by applying the restriction  $\sigma$  on f.

### The Switching Lemma

• Switching lemma. Let f be a t-CNF on n variables and  $\sigma$  a random restriction that leaves m = pn variables alive, where  $p < \frac{1}{2}$ . Then,

 $Pr_{\sigma}$  [f<sub>\sigma</sub> can't be represented as a k-DNF] \leq (16pt)<sup>k</sup>.

# The Switching Lemma

• Switching lemma. Let f be a t-CNF on n variables and  $\sigma$  a random restriction that leaves m = pn variables alive, where  $p < \frac{1}{2}$ . Then,

 $Pr_{\sigma}$  [f<sub>\sigma</sub> can't be represented as a k-DNF] \leq (16pt)<sup>k</sup>.

 We can interchange "CNF" and "DNF" in the above statement by applying the lemma on ¬f.

# The Switching Lemma

• Switching lemma. Let f be a t-CNF on n variables and  $\sigma$  a random restriction that leaves m = pn variables alive, where  $p < \frac{1}{2}$ . Then,

 $Pr_{\sigma}$  [f<sub>\sigma</sub> can't be represented as a k-DNF] \leq (16pt)<sup>k</sup>.

- We can interchange "CNF" and "DNF" in the above statement by applying the lemma on ¬f.
- Before proving the lemma, let us see how it is used to prove lower bound for depth d circuits.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. Bottom-up application of the switching lemma.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- **Step 0:** Pick every variable independently with prob.  $\frac{1}{2}$ , and then set it to  $\frac{0}{1}$  uniformly.  $C_1$  be the resulting ckt.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- **Step 0:** Pick every variable independently with prob.  $\frac{1}{2}$ , and then set it to  $\frac{0}{1}$  uniformly.  $C_1$  be the resulting ckt.
- Let t be a parameter that we'll fix later in the analysis. If a  $\vee$  gate in the last layer has fan-in > t, then the probability it doesn't evaluate to  $\mid$  is  $\leq (3/4)^t$ .

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- **Step 0:** Pick every variable independently with prob.  $\frac{1}{2}$ , and then set it to  $\frac{0}{1}$  uniformly.  $C_1$  be the resulting ckt.
- Let t be a parameter that we'll fix later in the analysis. If a  $\vee$  gate in the last layer has fan-in > t, then the probability it doesn't evaluate to  $\mid$  is  $\leq (3/4)^t$ . So,

 $Pr[a fan-in > t last layer V gate survives] \le s(3/4)^t$ .

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- **Step 0:** Pick every variable independently with prob.  $\frac{1}{2}$ , and then set it to  $\frac{0}{1}$  uniformly.  $C_1$  be the resulting ckt.
- Let t be a parameter that we'll fix later in the analysis. If a  $\vee$  gate in the last layer has fan-in > t, then the probability it doesn't evaluate to  $\mid$  is  $\leq (3/4)^t$ . So,

 $Pr[a fan-in > t last layer \lor gate survives] \le s(3/4)^t$ .

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- **Step 0:** Pick every variable independently with prob.  $\frac{1}{2}$ , and then set it to  $\frac{0}{1}$  uniformly.  $C_1$  be the resulting ckt.
- With probability  $\geq 1 s(3/4)^t$ , every  $\wedge$  gate of the second-last layer of  $C_1$  computes a t-CNF.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- **Step 0:** Pick every variable independently with prob.  $\frac{1}{2}$ , and then set it to  $\frac{0}{1}$  uniformly.  $C_1$  be the resulting ckt.
- With probability  $\geq 1 s(3/4)^t$ , every  $\wedge$  gate of the second-last layer of  $C_1$  computes a t-CNF.
- Let  $n_1$  be the no. of unset variables after Step 0. By Chernoff bound,  $n_1 \ge n/4$  with probability  $I 2^{-\Omega(n)}$ .

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- **Step 0:** Pick every variable independently with prob.  $\frac{1}{2}$ , and then set it to  $\frac{0}{1}$  uniformly.  $C_1$  be the resulting ckt.
- With probability  $\geq 1 s(3/4)^t$ , every  $\wedge$  gate of the second-last layer of  $C_1$  computes a t-CNF.
- Let  $n_1$  be the no. of unset variables after Step 0. By Chernoff bound,  $n_1 \ge n/4$  with probability  $I 2^{-\Omega(n)}$ .

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\land$  gates of the second-last layer of  $C_1$ )  $\leq$  s.
- **Step I:** Apply a random restriction  $\sigma_1$  on the  $n_1$  variables that leaves  $n_2 = pn_1$  variables alive, where  $p < \frac{1}{2}$  will be fixed later.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\land$  gates of the second-last layer of  $C_1$ )  $\leq$  s.
- **Step I:** Apply a random restriction  $\sigma_1$  on the  $n_1$  variables that leaves  $n_2 = pn_1$  variables alive, where  $p < \frac{1}{2}$  will be fixed later.
- By the Switching lemma, probability that any of the t-CNFs computed at the second-last layer of  $C_1$  cannot be expressed as a t-DNF is  $\leq$  s.(16pt)<sup>t</sup>.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\land$  gates of the second-last layer of  $C_1$ )  $\leq$  s.
- **Step I:** Apply a random restriction  $\sigma_1$  on the  $n_1$  variables that leaves  $n_2 = pn_1$  variables alive, where  $p < \frac{1}{2}$  will be fixed later.
- By the Switching lemma, probability that any of the t-CNFs computed at the second-last layer of  $C_1$  cannot be expressed as a t-DNF is  $\leq s.(16pt)^t$ .

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\land$  gates of the second-last layer of  $C_1$ )  $\leq$  s.
- **Step I:** Apply a random restriction  $\sigma_1$  on the  $n_1$  variables that leaves  $n_2 = pn_1$  variables alive, where  $p < \frac{1}{2}$  will be fixed later.
- Replace the t-CNFs by the corresponding t-DNFs.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\land$  gates of the second-last layer of  $C_1$ )  $\leq$  s.
- **Step I:** Apply a random restriction  $\sigma_1$  on the  $n_1$  variables that leaves  $n_2 = pn_1$  variables alive, where  $p < \frac{1}{2}$  will be fixed later.
- Replace the t-CNFs by the corresponding t-DNFs.
- Merge the V gates of the second-last layer with the V gates of the layer above. C<sub>2</sub> be the resulting ckt.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\land$  gates of the second-last layer of  $C_1$ )  $\leq$  s.
- **Step I:** Apply a random restriction  $\sigma_1$  on the  $n_1$  variables that leaves  $n_2 = pn_1$  variables alive, where  $p < \frac{1}{2}$  will be fixed later.
- The no. of V gates of the second-last layer of the resulting circuit  $C_2$  equals the no. of V gates of the third-last layer of  $C_1$ . So, this no. is  $\leq s$ .

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\land$  gates of the second-last layer of  $C_1$ )  $\leq$  s.
- **Step I:** Apply a random restriction  $\sigma_1$  on the  $n_1$  variables that leaves  $n_2 = pn_1$  variables alive, where  $p < \frac{1}{2}$  will be fixed later.
- Merging reduces the depth to d-1.
- All the gates of the second-last layer of  $C_2$  compute t-DNFs with probability  $\geq 1 s.(16pt)^t$ .

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\vee$  gates of the second-last layer of  $C_2$ )  $\leq$  s.
- **Step 2:** Apply a random restriction  $\sigma_2$  on the  $n_2$  variables that leaves  $n_3 = pn_2$  variables alive, where p is same as before.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\vee$  gates of the second-last layer of  $C_2$ )  $\leq$  s.
- **Step 2:** Apply a random restriction  $\sigma_2$  on the  $n_2$  variables that leaves  $n_3 = pn_2$  variables alive, where p is same as before.
- By the Switching lemma, probability that any of the t-DNFs computed at the second-last layer of  $C_2$  cannot be expressed as a t-CNF is  $\leq$  s.(16pt)<sup>t</sup>.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\vee$  gates of the second-last layer of  $C_2$ )  $\leq$  s.
- **Step 2:** Apply a random restriction  $\sigma_2$  on the  $n_2$  variables that leaves  $n_3 = pn_2$  variables alive, where p is same as before.
- By the Switching lemma, probability that any of the t-DNFs computed at the second-last layer of  $C_2$  cannot be expressed as a t-CNF is  $\leq s.(16pt)^t$ .

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\vee$  gates of the second-last layer of  $C_2$ )  $\leq$  s.
- **Step 2:** Apply a random restriction  $\sigma_2$  on the  $n_2$  variables that leaves  $n_3 = pn_2$  variables alive, where p is same as before.
- Replace the t-DNFs by the corresponding t-CNFs.
- Merge the  $\land$  gates of the second-last layer with the  $\land$  gates of the layer above.  $C_3$  be the resulting ckt.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\vee$  gates of the second-last layer of  $C_2$ )  $\leq$  s.
- **Step 2:** Apply a random restriction  $\sigma_2$  on the  $n_2$  variables that leaves  $n_3 = pn_2$  variables alive, where p is same as before.
- The no. of  $\Lambda$  gates of the second-last layer of the resulting circuit  $C_3$  equals the no. of  $\Lambda$  gates of the third-last layer of  $C_2$ . So, this no. is  $\leq$  s (why?).

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\vee$  gates of the second-last layer of  $C_2$ )  $\leq$  s.
- **Step 2:** Apply a random restriction  $\sigma_2$  on the  $n_2$  variables that leaves  $n_3 = pn_2$  variables alive, where p is same as before.
- Merging reduces the depth to d-2.
- All the gates of the second-last layer of  $C_3$  compute t-CNFs with probability  $\geq 1 s.(16pt)^t$ .

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. # ( $\land$  gates of the second-last layer of  $C_3$ )  $\leq$  s.
- **Step 3:** Apply a random restriction  $\sigma_3$  on the  $n_3$  variables that leaves  $n_4 = pn_3$  variables alive, where p is same as before. Continue as before.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. After **Step d-2**, we are left with a depth 2 circuit, i.e., a t-CNF or a t-DNF with probability  $\geq$  1 s.(d-2)(16pt)<sup>t</sup>  $2^{-\Omega(n)}$  s(3/4)<sup>t</sup>.
- The number of variables alive is  $p^{d-2}n_1 \ge (p^{d-2}n)/4$ .

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. After **Step d-2**, we are left with a depth 2 circuit, i.e., a t-CNF or a t-DNF with probability  $\geq$  1 s.(d-2)(16pt)<sup>t</sup>  $2^{-\Omega(n)}$  s(3/4)<sup>t</sup>.
- The number of variables alive is  $p^{d-2}n_1 \ge (p^{d-2}n)/4$ .
- Observe that by setting t more variables, we can now fix the value of the circuit. But, recall that the value of PARITY cannot be fixed by setting < n variables.</li>

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. After **Step d-2**, we are left with a depth 2 circuit, i.e., a t-CNF or a t-DNF with probability  $\geq$  1 s.(d-2)(16pt)<sup>t</sup>  $2^{-\Omega(n)}$  s(3/4)<sup>t</sup>.
- The number of variables alive is  $p^{d-2}n_1 \ge (p^{d-2}n)/4$ .
- Hence,  $\text{either } I s.(d-2)(16pt)^t 2^{-\Omega(n)} s(3/4)^t \leq 0,$  or  $p^{d-2}n_1 \leq t \ .$

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. After Step d-2, we are left with a depth 2 circuit, i.e., a t-CNF or a t-DNF with probability ≥

$$I - s.(d-2)(16pt)^{t} - 2^{-\Omega(n)} - s(3/4)^{t}$$
.

- The number of variables alive is  $p^{d-2}n_1 \ge (p^{d-2}n)/4$ .
- By choosing  $t = O(n^{1/(d-1)})$  and p = 1/(160 t), we can make sure that

$$p^{d-2}n_1 > t.$$

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit C computing PARITY has size  $\exp(\Omega_d(n^{1/(d-1)}))$ , where  $\Omega_d()$  is hiding a d-1 factor.
- Proof. After Step d-2, we are left with a depth 2 circuit, i.e., a t-CNF or a t-DNF with probability ≥

$$I - s.(d-2)(16pt)^{t} - 2^{-\Omega(n)} - s(3/4)^{t}$$
.

- The number of variables alive is  $p^{d-2}n_1 \ge (p^{d-2}n)/4$ .
- Therefore, for  $t = O(n^{1/(d-1)})$  and p = 1/(160 t),

$$1 - s.(d-2)(16pt)^{t} - 2^{-\Omega(n)} - s(3/4)^{t} \le 0,$$



• Switching lemma. Let f be a t-CNF on n variables and  $\sigma$  a random restriction that leaves m = pn variables alive, where  $p < \frac{1}{2}$ . Then,

 $Pr_{\sigma}$  [f<sub>\sigma</sub> can't be represented as a k-DNF] \leq (16pt)<sup>k</sup>.

Proof. We'll present a proof due to Razborov.

• Switching lemma. Let f be a t-CNF on n variables and  $\sigma$  a random restriction that leaves m = pn variables alive, where  $p < \frac{1}{2}$ . Then,

 $Pr_{\sigma}$  [f<sub>\sigma</sub> can't be represented as a k-DNF] \leq (16pt)<sup>k</sup>.

• Proof. Let  $A_{\ell}$  be the set of restrictions that keeps  $\ell$  variables alive. Then,  $|A_{\ell}| = \binom{n}{\ell} . 2^{n-\ell}$ .

• Switching lemma. Let f be a t-CNF on n variables and  $\sigma$  a random restriction that leaves m = pn variables alive, where  $p < \frac{1}{2}$ . Then,

 $Pr_{\sigma}$  [f<sub>\sigma</sub> can't be represented as a k-DNF] \leq (16pt)<sup>k</sup>.

- Proof. Let  $A_{\ell}$  be the set of restrictions that keeps  $\ell$  variables alive. Then,  $|A_{\ell}| = \binom{n}{\ell} .2^{n-\ell}$ . Let  $B_{m,k} \subseteq A_m$  be the set of "bad" restrictions, i.e., a  $\sigma \in A_m$  is in  $B_{m,k}$  iff  $f_{\sigma}$  can't be represented as a k-DNF.
- We need to upper bound  $|B_{m,k}|$ .

• Switching lemma. Let f be a t-CNF on n variables and  $\sigma$  a random restriction that leaves m = pn variables alive, where  $p < \frac{1}{2}$ . Then,

 $Pr_{\sigma}$  [f<sub>\sigma</sub> can't be represented as a k-DNF] \leq (16pt)<sup>k</sup>.

- Proof. Let  $A_{\ell}$  be the set of restrictions that keeps  $\ell$  variables alive. Then,  $|A_{\ell}| = \binom{n}{\ell} .2^{n-\ell}$ . Let  $B_{m,k} \subseteq A_m$  be the set of "bad" restrictions, i.e., a  $\sigma \in A_m$  is in  $B_{m,k}$  iff  $f_{\sigma}$  can't be represented as a k-DNF.
- We need to upper bound  $|B_{m,k}|$ .
- This is done by giving an <u>injective map</u> from  $B_{m,k}$  to  $A_{m-k} \times U$ , where  $U = \{0,1\}^{k(\log t + 2)}$ .  $|U| = (4t)^k$ .

• Switching lemma. Let f be a t-CNF on n variables and  $\sigma$  a random restriction that leaves m = pn variables alive, where  $p < \frac{1}{2}$ . Then,

 $Pr_{\sigma}$  [f<sub>\sigma</sub> can't be represented as a k-DNF] \leq (16pt)<sup>k</sup>.

• Proof. Then,  $|B_{m,k}| \le \binom{n}{m-k} . 2^{n-m+k} . (4t)^k$ . and so  $|B_{m,k}|/|A_m| \le [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)] . 2^k . (4t)^k$ 

• Switching lemma. Let f be a t-CNF on n variables and  $\sigma$  a random restriction that leaves m = pn variables alive, where  $p < \frac{1}{2}$ . Then,

 $Pr_{\sigma}$  [f<sub>\sigma</sub> can't be represented as a k-DNF] \leq (16pt)<sup>k</sup>.

• Proof.Then,  $|B_{m,k}| \le \binom{n}{m-k} . 2^{n-m+k} . (4t)^k$ . and so  $|B_{m,k}|/|A_m| \le [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)] . 2^k . (4t)^k$   $\le (m/(n-m))^k . 2^k . (4t)^k$   $= (p/(1-p))^k . 2^k . (4t)^k$  (as m = pn)  $\le p^k . 2^k . 2^k . (4t)^k$  (as  $p < \frac{1}{2}$ )  $= (16pt)^k$ .

• Switching lemma. Let f be a t-CNF on n variables and  $\sigma$  a random restriction that leaves m = pn variables alive, where  $p < \frac{1}{2}$ . Then,

 $Pr_{\sigma}$  [f<sub>\sigma</sub> can't be represented as a k-DNF] \leq (16pt)<sup>k</sup>.

• Proof. Next, we show an injection from  $B_{m,k}$  to  $A_{m-k} \times U$ , where  $U = \{0,1\}^{k(\log t + 2)}$ .

#### A definition and a notation

- Definition. A <u>min-term</u> of a function g is a restriction  $\pi$  such that  $g_{\pi} = I$ , but **no** proper sub-restriction of  $\pi$  makes g evaluate to I.
- Obs. If g can't be expressed as a k-DNF, then g has a min-term  $\pi$  of width > k (i.e.,  $\pi$  assigns 0/1 values to more than k variables). (Homework)

#### A definition and a notation

- Definition. A <u>min-term</u> of a function g is a restriction  $\pi$  such that  $g_{\pi} = 1$ , but no proper sub-restriction of  $\pi$  makes g evaluate to 1.
- Obs. If g can't be expressed as a k-DNF, then g has a min-term  $\pi$  of width > k (i.e.,  $\pi$  assigns 0/1 values to more than k variables). (Homework)
- Notation. If  $\sigma$  is a restriction that assigns 0/1 values to variables in  $S_1 \subseteq [n]$  and  $\pi$  is a restriction that assigns 0/1 values to variables in  $S_2 \subseteq [n] \setminus S_1$ , then  $\sigma \circ \pi$  is the "composed" restriction that assigns 0/1 values to  $S_1 \cup S_2$  consistent with  $\sigma$  and  $\pi$ .  $|\pi| :=$  width of  $\pi$ .

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ : (Overview)
- **Step I:** For  $\sigma \in B_{m,k}$ , let  $\pi$  be the lexicographically smallest min-term of  $f_{\sigma}$  of width > k. We'll carefully define a <u>sub-restriction  $\pi$ </u> of  $\pi$  of width k.

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ : (Overview)
- **Step I:** For  $\sigma \in B_{m,k}$ , let  $\pi$  be the lexicographically smallest min-term of  $f_{\sigma}$  of width > k. We'll carefully define a <u>sub-restriction  $\pi$ </u> of  $\pi$  of width k.
- > **Step 2:** Using  $\pi$ ', we'll carefully define a <u>restriction  $\rho$ </u> that assigns 0/1 values to the same set of variables as  $\pi$ '.

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ : (Overview)
- **Step I:** For  $\sigma \in B_{m,k}$ , let  $\pi$  be the lexicographically smallest min-term of  $f_{\sigma}$  of width > k. We'll carefully define a <u>sub-restriction  $\pi$ </u> of  $\pi$  of width k.
- > **Step 2:** Using  $\pi$ ', we'll carefully define a <u>restriction  $\rho$ </u> that assigns 0/1 values to the same set of variables as  $\pi$ '.
- > Step 3: Using  $\pi'$ , define a  $u \in U$ . Finally,  $\chi(\sigma) := (\sigma \circ \rho, u)$ .

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ :
- **Step I:** For  $\sigma \in B_{m,k}$ , let  $\pi$  be the lexicographically smallest min-term of  $f_{\sigma}$  of width > k. Order the clauses of f, and order the  $\leq t$  variables appearing within such a clause.

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ :
- Step I: For  $\sigma \in B_{m,k}$ , let  $\pi$  be the lexicographically smallest min-term of  $f_{\sigma}$  of width > k. Order the clauses of f, and order the  $\leq$  t variables appearing within such a clause.  $C_{\parallel}$  be the first <u>surviving</u> clause in  $f_{\sigma}$  and  $\pi(1)$  the assignment to its surviving variables made by  $\pi$ .

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ :
- Step I: For  $\sigma \in B_{m,k}$ , let  $\pi$  be the lexicographically smallest min-term of  $f_{\sigma}$  of width > k. Order the clauses of f, and order the  $\leq$  t variables appearing within such a clause.  $C_{1}$  be the first surviving clause in  $f_{\sigma}$  and  $\pi(1)$  the assignment to its surviving variables made by  $\pi$ .  $C_{2}$  be the first surviving clause in  $f_{\sigma \circ \pi(1)}$  and  $\pi(2)$  the assignment to its surviving variables made by  $\pi$ .

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ :
- **Step I:** For  $\sigma \in B_{m,k}$ , let  $\pi$  be the lexicographically smallest min-term of  $f_{\sigma}$  of width > k. Order the clauses of f, and order the  $\leq$  f to variables appearing within such a clause.  $C_{1}$  be the first surviving clause in  $f_{\sigma}$  and  $\pi(1)$  the assignment to its surviving variables made by  $\pi$ .  $C_{2}$  be the first surviving clause in  $f_{\sigma \circ \pi(1)}$  and  $\pi(2)$  the assignment to its surviving variables made by  $\pi$ . Continue like this.. Stop if  $|\pi(1) \circ ... \circ \pi(r)| \geq k$ .

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ :
- **Step I:** If  $|\pi(1) \circ ... \circ \pi(r)| > k$ , then "prune"  $\pi(r)$  by restricting it to the set of "smallest" variables in  $C_r$  so that  $|\pi(1) \circ ... \circ \pi(r)| = k$ . Define  $\pi' := \pi(1) \circ ... \circ \pi(r)$ ;  $|\pi'| = k$ .

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ :
- **Step 2:** For  $i \in [r]$ , let  $S_i$  be the set of variables in the clause  $C_i$  that are assigned 0/I values by  $\pi(i)$ .  $|S_i| = |\pi(i)|$ . Let  $\rho(i)$  be the <u>unique</u> assignment to the variables in  $S_i$  that makes the corresponding literals in  $C_i$  zero. Define  $\rho := \rho(1) \circ ... \circ \rho(r)$ .

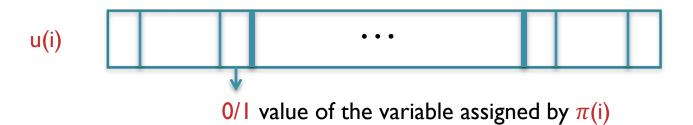
- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ :
- **Step 2:** For  $i \in [r]$ , let  $S_i$  be the set of variables in the clause  $C_i$  that are assigned 0/I values by  $\pi(i)$ .  $|S_i| = |\pi(i)|$ . Let  $\rho(i)$  be the <u>unique</u> assignment to the variables in  $S_i$  that makes the corresponding literals in  $C_i$  zero. Define  $\rho := \rho(1) \circ ... \circ \rho(r)$ .
- Remark\*.  $\pi(i)$  and  $\rho(i)$  are assignments to the same set of variables  $S_i$ .  $C_i$  remains unsatisfied under  $\rho(i)$ .

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ :
- **Step 3:** For  $i \in [r]$ , let u(i) be the string obtained by listing the indices (within the clause  $C_i$ ) of the variables assigned by  $\rho(i)$  along with the values assigned to them by  $\pi(i)$ .

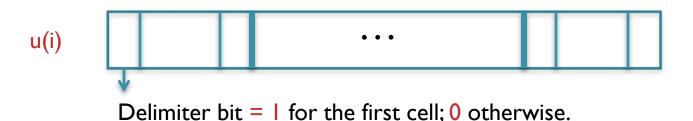


log t bit index of a variable in  $C_i$  that is assigned by  $\rho(i)$ 

- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ :
- **Step 3:** For  $i \in [r]$ , let u(i) be the string obtained by listing the indices (within the clause  $C_i$ ) of the variables assigned by  $\rho(i)$  along with the values assigned to them by  $\pi(i)$ .



- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ :
- **Step 3:** For  $i \in [r]$ , let u(i) be the string obtained by listing the indices (within the clause  $C_i$ ) of the variables assigned by  $\rho(i)$  along with the values assigned to them by  $\pi(i)$ .



- f is a t-CNF on n variables.  $U = \{0,1\}^{k(\log t + 2)}$ .
- $A_{\ell}$  = set of restrictions that keeps  $\ell$  variables alive.
- $B_{m,k} = {\sigma \in A_m : f_{\sigma} \text{ can't be represented as a k-DNF}}.$
- Obs. If  $\sigma \in B_{m,k}$  then  $f_{\sigma}$  has a min-term of width > k.
- A map  $\chi$  from  $B_{m,k}$  to  $A_{m-k} \times U$ :
- Step 3: For  $i \in [r]$ , let u(i) be the string obtained by listing the indices (within the clause  $C_i$ ) of the variables assigned by  $\rho(i)$  along with the values assigned to them by  $\pi(i)$ . Define u by concatenating  $u(1), \ldots, u(r)$  in order. Observe that  $|u| = k(\log t + 2)$ . Finally,  $\chi(\sigma) := (\sigma \circ \rho, u)$ . (Remark. The delimiter bits make it possible to extract u(i) from u.)

• We'll now show that it is possible to recover  $\sigma$  from  $(\sigma \circ \rho, u)$  which will then imply  $\chi$  is an injection.

- We'll now show that it is possible to recover  $\sigma$  from  $(\sigma \circ \rho, u)$  which will then imply  $\chi$  is an injection.
- Obs\*. For every  $i \in [r]$ , the first "unsatisfied" clause in  $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1) \circ \rho(i) \circ \ldots \circ \rho(r)}$  is  $C_i$ .
- Proof. Fix an  $i \in [r]$ . By construction,  $C_i$  is the first surviving clause in  $f_{\sigma \circ \pi(1) \circ ... \circ \pi(i-1)}$ .

- We'll now show that it is possible to recover  $\sigma$  from  $(\sigma \circ \rho, u)$  which will then imply  $\chi$  is an injection.
- Obs\*. For every  $i \in [r]$ , the first "unsatisfied" clause in  $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1) \circ \rho(i) \circ \ldots \circ \rho(r)}$  is  $C_i$ .
- Proof. Fix an  $i \in [r]$ . By construction,  $C_i$  is the first surviving clause in  $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1)}$ .  $C_i$  remains unsatisfied under  $\rho(i)$  (Remark\*). Further,  $\rho(i+1), \ldots, \rho(r)$  do not touch any variable of  $C_i$ . Hence,  $C_i$  is the first unsatisfied clause in  $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1) \circ \rho(i) \circ \ldots \circ \rho(r)}$ .

- We'll now show that it is possible to recover  $\sigma$  from  $(\sigma \circ \rho, u)$  which will then imply  $\chi$  is an injection.
- Obs\*. For every  $i \in [r]$ , the first "unsatisfied" clause in  $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1) \circ \rho(i) \circ \ldots \circ \rho(r)}$  is  $C_i$ .
- Recovering  $\sigma$  from  $(\sigma \circ \rho, u)$ :
- Pick the first unsatisfied clause in  $f_{\sigma \circ \rho(1) \circ ... \circ \rho(r)}$ . This clause is  $C_1$  (Obs\*). Now by looking at u(1), we can derive  $\pi(1)$ .

- We'll now show that it is possible to recover  $\sigma$  from  $(\sigma \circ \rho, u)$  which will then imply  $\chi$  is an injection.
- Obs\*. For every  $i \in [r]$ , the first "unsatisfied" clause in  $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1) \circ \rho(i) \circ \ldots \circ \rho(r)}$  is  $C_i$ .
- Recovering  $\sigma$  from  $(\sigma \circ \rho, u)$ :
- Pick the first unsatisfied clause in  $f_{\sigma \circ \rho(1) \circ ... \circ \rho(r)}$ . This clause is  $C_1$  (Obs\*). Now by looking at u(1), we can derive  $\pi(1)$ . Construct  $\sigma \circ \pi(1) \circ \rho(2) \circ ... \circ \rho(r)$  from  $\sigma \circ \rho(1) \circ ... \circ \rho(r)$  and  $\pi(1)$ .

- We'll now show that it is possible to recover  $\sigma$  from  $(\sigma \circ \rho, u)$  which will then imply  $\chi$  is an injection.
- Obs\*. For every  $i \in [r]$ , the first "unsatisfied" clause in  $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1) \circ \rho(i) \circ \ldots \circ \rho(r)}$  is  $C_i$ .
- Recovering  $\sigma$  from  $(\sigma \circ \rho, u)$ :
- Pick the first unsatisfied clause in  $f_{\sigma \circ \pi(1) \circ \rho(2) \circ \ldots \circ \rho(r)}$ . This clause is  $C_2$  (Obs\*). Now by looking at u(2), we can derive  $\pi(2)$ . Construct  $\sigma \circ \pi(1) \circ \pi(2) \circ \rho(3) \circ \ldots \circ \rho(r)$  from  $\sigma \circ \pi(1) \circ \rho(2) \circ \ldots \circ \rho(r)$  and  $\pi(2)$ .

- We'll now show that it is possible to recover  $\sigma$  from  $(\sigma \circ \rho, u)$  which will then imply  $\chi$  is an injection.
- Obs\*. For every  $i \in [r]$ , the first "unsatisfied" clause in  $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1) \circ \rho(i) \circ \ldots \circ \rho(r)}$  is  $C_i$ .
- Recovering  $\sigma$  from  $(\sigma \circ \rho, u)$ :
- Continuing like this we can construct  $\sigma \circ \pi(1) \circ ... \circ \pi$  (r) and also find  $\pi(1), ..., \pi(r)$  in the process. From here, recovering  $\sigma$  is straightforward.

• Ref.

https://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec3.pdf