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Recap:  Turing Machines 

 An algorithm is a set of instructions or rules. 

 To understand the performance of an algorithm we 
need a model of computation. Turing machine is one 
such natural model (introduced by Alan Turing in 1936).  

 A TM consists of: 

 

 

 Turing machines              A mathematical way to 

                                        describe algorithms. 
 

• Memory tape(s) 
• A finite set of rules 

 



Recap:  Turing Machines 

 Definition.  A k-tape Turing Machine M is described 
by a tuple (Γ, Q, δ) such that 

 M has k memory tapes (input/work/output tapes) 
with heads; 

 Γis a finite set of alphabets. (Every memory cell 
contains an element of Γ) 

 Q is a finite set of states.  (special states: qstart , qhalt) 

 δ is a function from Q x Γ  to Q x Γ x {L,S,R} 

 

k k k 

known as transition function; it captures the 
dynamics of M 



Recap:  TM Computation 

 Start configuration. 

 All tapes other than the input tape contain blank symbols. 

 The input tape contains the input string. 

 All the head positions are at the start of the tapes. 

 The machine is in the start state qstart . 
 

 Computation. 

 A step of computation is performed by applying δ. 
 

 Halting. 

 Once the machine enters qhalt it stops computation. 

 



Recap:  TM Running time 

 Let f:  {0,1}*      {0,1}* and T:  and M be a 
Turing machine. 
 

 Definition.  We say M computes f if on every x in 
{0,1}*, M halts with f(x) on its output tape beginning 
from the start configuration with x on its input tape. 
 

 Definition. M computes f in T(|x|) time, if for every x 
in {0,1}*, M halts within T(|x|) steps of computation 
and outputs f(x).  

 



Turing Machines 

 In this course, we would be dealing with 

 

 Turing machines that halt on every input. 

 Computational problems that can be solved by Turing 
machines.  

 



Turing Machines 

 In this course, we would be dealing with 

 

 Turing machines that halt on every input. 

 Computational problems that can be solved by Turing 
machines.  

 

 Can every computational problem be solved using 
Turing machines? 

 
 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  
 

 Input:  A system of polynomial equations in many variables with 
integer coefficients.  

 Output:  Check if the system has integer solutions .  

 Question: Is there an algorithm to solve this problem?  

 

  

 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  
 

 A typical input instance: 

 

  

 

x2y + 5y3 = 3 
 
x2 + z5 – 3y2 = 0 
 
y2 – 4z6 = 0 

Integer solutions for x, y, z? 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  
 

 Input:  A system of polynomial equations in many variables with 
integer coefficients.  

 Output:  Check if the system has integer solutions .  

 Question: Is there an algorithm to solve this problem?  

                              (Hilbert’s tenth problem, 1900) 
  

 



Turing Machines:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  
 

 Input:  A system of polynomial equations in many variables with 
integer coefficients.  

 Output:  Check if the system has integer solutions .  

 Question: Is there an algorithm to solve this problem?  

 

 Theorem. There doesn’t exist any algorithm (realizable by a 
TM) to solve this problem. (Davis, Putnam, Robinson, Matiyasevich 1970) 

  



Why Turing Machines? 

 TMs are natural and intuitive. 

 

 Church-Turing thesis:  “Every physically realizable 
computation device – whether it’s based on silicon, DNA, 
neurons or some other alien technology – can be 
simulated by a Turing machine”.  

                          --- [quoted from Arora-Barak’s book] 

 



Why Turing Machines? 

 TMs are natural and intuitive. 

 

 Church-Turing thesis:  “Every physically realizable 
computation device – whether it’s based on silicon, DNA, 
neurons or some other alien technology – can be 
simulated by a Turing machine”.  

                          --- [quoted from Arora-Barak’s book] 

 Several other computational models can be 
simulated by TMs. 

 



Why Turing Machines? 

 TMs are natural and intuitive. 

 

 Strong Church-Turing thesis:  “Every physically 
realizable computation device – whether it’s based on 
silicon, DNA, neurons or some other alien technology – 
can be simulated efficiently by a Turing machine”.  

Possible exception:  Quantum machines! 



Basic facts about TMs 



Turing Machines 

 Time constructible functions.  A function T:  
is time constructible if T(n) ≥ n and there’s a TM that 
computes the function that maps x to T(|x|) in 
O(T(|x|)) time.  

 

 Examples:  T(n) = n2, or 2n, or n log n 

in binary 



Turing Machines:  Robustness 

 Let f:  {0,1}*      {0,1}* and T:  be a time 
constructible function.  
 

  Binary alphabets suffice.  

 If a TM M computes f in T(n) time using Γ as the alphabet 
set, then there’s another TM M’ that computes f in time 
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set. 

 

 



Turing Machines:  Robustness 

 Let f:  {0,1}*      {0,1}* and T:  be a time 
constructible function.  
 

  Binary alphabets suffice.  

 If a TM M computes f in T(n) time using Γ as the alphabet 
set, then there’s another TM M’ that computes f in time 
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set. 

 

 A single tape suffices. 

 If a TM M computes f in T(n) time using k tapes then 
there’s another TM M’ that computes f in time 5k . T(n)2 
using a single tape that is used for input, work and output. 

 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

             …simply encode the description of the TM. 

 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

                  …invalid strings map to a fixed, trivial TM. 

 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

            … allow padding with arbitrary number of 0’s 

 

                                          



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

 

                        α                    Mα 

{0,1} string TM corresponding to α 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

 

 A TM (i.e., its string representation) can be given as 
an input to another TM !! 



Universal Turing Machines  

 Theorem.  There exists a TM U that on every input x, 
α in {0,1}* outputs Mα(x).  

 

 Further, if Mα halts within T steps then U halts within 
C. T. log T steps, where C is a constant that depends 
only on Mα ’s alphabet size, number of states and 
number of tapes.   

 



Universal Turing Machines  

 Theorem.  There exists a TM U that on every input x, 
α in {0,1}* outputs Mα(x).  

 

 Further, if Mα halts within T steps then U halts within 
C. T. log T steps, where C is a constant that depends 
only on Mα ’s alphabet size, number of states and 
number of tapes.   

 

 Physical realization of UTMs are modern day 
electronic computers.  



Complexity class P 



Decision Problems 

 In the initial part of this course, we’ll focus primarily 
on decision problems.  

 



Decision Problems 

 In the initial part of this course, we’ll focus primarily 
on decision problems.  

 

 Decision problems can be naturally identified with 
Boolean functions, i.e., functions from {0,1}* to {0,1}. 

 



Decision Problems 

 In the initial part of this course, we’ll focus primarily 
on decision problems.  

 

 Decision problems can be naturally identified with 
Boolean functions, i.e., functions from {0,1}* to {0,1}. 

 

 Boolean functions can be naturally identified with 
sets of {0,1} strings, also called languages. 



Decision Problems 

 

Decision problems       Boolean functions       Languages 

 

 Definition.  We say a TM M decides a language L ⊆ {0,1}* 
if M computes fL, where fL(x) = 1 if and only if x ∈ L. 
 

The characteristic function of L . 



Complexity Class P 

 Let T:  be some function. 

 

 Definition:  A language L is in DTIME(T(n)) if there’s a 
TM that decides L in time O(T(n)). 

 

 Defintion: Class P = ∪ DTIME (nc). 
c > 0 



Complexity Class P 

 Let T:  be some function. 

 

 Definition:  A language L is in DTIME(T(n)) if there’s a 
TM that decides L in time O(T(n)). 

 

 Defintion: Class P = ∪ DTIME (nc). 
c > 0 

Deterministic polynomial-time 



Complexity Class P :  Examples 

 Cycle detection (DFS) 
 Check if a given graph has a cycle.   

 



Complexity Class P :  Examples 

 Cycle detection 
 

 Solvabililty of a system of linear equations (Gaussian elimination) 

 Given a system of linear equations over  check if there exists a 
common solution to all the linear equations. 



Complexity Class P :  Examples 

 Cycle detection 
 

 Solvabililty of a system of linear equations 
 

 Perfect matching  (Edmonds 1965) (birth of class P) 
 Check if a given graph has a perfect matching 



Complexity Class P :  Examples 

 Cycle detection 
 

 Solvabililty of a system of linear equations 
 

 Perfect matching 
 

 Planarity testing  (Hopcroft & Tarjan 1974) 
 Check if a given graph is planar 



Complexity Class P :  Examples 

 Cycle detection 
 

 Solvabililty of a system of linear equations 
 

 Perfect matching 
 

 Planarity testing 
 

 Primality testing  (Agrawal, Kayal & Saxena 2002) 
 Check if a number is prime 

 



Polynomial-time Turing Machines 

 Definition.  A TM M is a polynimial-time TM if there’s a 
polynomial function q: such that for every 
input x ∈ {0,1}*, M halts within q(|x|) steps. 

 

 

 

 

Polynomial function.    q(n) = O(nc) for some constant c. 



Class (functional) P 

 What if a problem is not a decision problem? Like 
the task of adding two integers. 



Class (functional) P 

 What if a problem is not a decision problem? Like 
the task of adding two integers. 

 One way is to focus on the i-th bit of the output and 
make it a decision problem.  

                          (Is the i-th bit, on input x, 1?) 

 
 



Class (functional) P 

 What if a problem is not a decision problem? Like 
the task of adding two integers. 

 One way is to focus on the i-th bit of the output and 
make it a decision problem.  

 

 Alternatively, we define a class called functional P or 
FP.  



Class (functional) P 

 What if a problem is not a decision problem? Like 
the task of adding two integers. 

 One way is to focus on the i-th bit of the output and 
make it a decision problem.  

 

 We say that a problem or a function f: {0,1}*     {0,1}* 
is in FP (functional P) if there’s a polynomial-time TM 
that computes f. 

                        
 



Complexity Class FP :  Examples 

 Greatest Common Divisor (Euclid ~300 BC) 
 Given two integers a and b, find their gcd.   

 



Complexity Class FP :  Examples 

 Greatest Common Divisor 
 

 Counting paths in a DAG (homework) 

 Find the number of paths between two vertices in a directed  

     acyclic graph. 



Complexity Class FP :  Examples 

 Greatest Common Divisor 
 

 Counting paths in a DAG 
 

 Maximum matching (Edmonds 1965) 
 Find a maximum matching in a given graph 



Complexity Class FP :  Examples 

 Greatest Common Divisor 
 

 Counting paths in a DAG 
 

 Maximum matching 
 

 Linear Programming (Khachiyan 1979, Karmarkar 1984) 

Optimize a linear objective function subject to linear (in)equality 
constraints 



Complexity Class FP :  Examples 

 Greatest Common Divisor 
 

 Counting paths in a DAG 
 

 Maximum matching 
 

 Linear Programming (Khachiyan 1979, Karmarkar 1984) 

Optimize a linear objective function subject to linear (in)equality 
constraints 

Not known if LP has a strongly 
polynomial-time algorithm. 
 
Homework:  Read about the 
differences between strongly poly-
time, weakly poly-time and pseudo 
poly-time algorithms. 
 



Complexity Class FP :  Examples 

 Greatest Common Divisor 
 

 Counting paths in a DAG 
 

 Maximum matching 
 

 Linear Programming 
 

 Factoring Polynomials (Lenstra, Lenstra, Lovasz 1982) 

 Compute the irreducible factors of a univariate polynomial over    

 


