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Randomized computation 

 So far, we have used deterministic TMs to model 
“real-world” computation. But, DTMs don’t have the 
ability to make random choices during a computation. 

 

 The usefulness of randomness in computation was 
realized as early as the 1940s when the first 
electronic computer, ENIAC, was developed.  
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electronic computer, ENIAC, was developed.  

The use of statistical methods in a computational 
model of a thermonuclear reaction for the ENIAC led 
to the invention of the Monte Carlo methods. 



Randomized computation 

 So far, we have used deterministic TMs to model 
“real-world” computation. But, DTMs don’t have the 
ability to make random choices during a computation. 

 

 The usefulness of randomness in computation was 
realized as early as the 1940s when the first 
electronic computer, ENIAC, was developed.  

 

 To study randomized computation, we need to give 
TMs the power of generating random numbers.  

 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 
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linear congruential generators and von Neumann’s 
middle-square method.  
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Randomized computation 

 How realistic such a randomized TM model would be 
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Square an n bit number to get a 2n bit 
number and take the middle n bits. 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 Many programming languages have built-in random 
number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  

 To what extent a PRG is adequate is studied under 
the topic `Pseudorandomness’ in complexity theory. 

 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 Many programming languages have built-in random 
number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  

 We’ll assume that a TM can generate, or has access 
to, truly random bits/coins.  (We’ll touch upon “truly 
vs biased random bits” at end of the lecture.) 

 



Probabilistic Turing Machines 

 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). 
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 Note. PTMs and NTMs are syntatically similar – both 
have two transition functions.  
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 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
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T(|x|) steps regardless of its random choices. 

 

 Note. But, semantically, they are quite different – 
unlike NTMs, PTMs are meant to model realistic 
computation devices.  



Probabilistic Turing Machines 

 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). M runs in T(n) time if M always halts within 
T(|x|) steps regardless of its random choices. 

 

 Note.  The above definition allows a PTM M to not 
halt on some computation paths defined by its 
random choices (unless we explicitly say that M runs 
in T(n) time). More on this later when we define ZPP. 



Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 
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Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 
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PTM that decides L in O(T(n)) time. 
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 Clearly, P ⊆ BPP. 

 

c > 0 

Remark. The defn of 
class BPP is robust. The 
class remains unaltered if 
we replace 2/3 by any 
constant strictly greater 
than (i.e., bounded 
away from) ½. We’ll 
discuss this next. 
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Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 

 

 Definition.  BPP  = ∪ BPTIME (nc). 

 

 Clearly, P ⊆ BPP. 

 

c > 0 

Remark. Achieving 
success probability ½ is 
trivial for any language. If 
we replace ≥ 2/3 by > ½  
then the corresponding 
class is called PP, which is 
(presumably) larger than 
BPP.  More on PP later.  



Error reduction for BPP 

 Lemma. Let c > 0 be a constant. Suppose L is decided 
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.  
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d). 
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Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d). 

 Proof. Let |x| = n. Think of M’ that runs M on input x 
for m = 4n2c+d times independently. Let b1, …,bm be 
the outputs of these independent executions of M. M’ 
outputs Majority(b1, …,bm).  
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correct (i.e., bi = L(x)), otherwise yi = 0. Then M’ 
outputs incorrectly only if  Y = y1+…+ ym ≤ m/2.  
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 E[yi] = Pr[yi = 1] = Pr[M(x) = L(x)] = p (say). It’s given 
that p ≥ ½ + n-c.   So, 𝛍 = E[Y] = mp ≥ m/2.(1+2n-c). 
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 E[yi] = Pr[yi = 1] = Pr[M(x) = L(x)] = p (say). It’s given 
that p ≥ ½ + n-c.   So, 𝛍 = E[Y] = mp ≥ m/2.(1+2n-c). 

 By Chernoff bound,  Pr[Y ≤ (1-𝝳)𝛍]  ≤  exp(-(𝝳2𝛍)/2), 
for any 𝝳 ∈ [0,1].   We’ll now fix the value of 𝝳. 
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s.t. m/2 ≤ (1-𝝳)𝛍 then Pr[Y < m/2] ≤ Pr[Y ≤ (1-𝝳)𝛍].  



Error reduction for BPP 

 Lemma. Let c > 0 be a constant. Suppose L is decided 
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.  
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d). 
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s.t. m/2 ≤ (1-𝝳)𝛍 then Pr[Y < m/2] ≤ Pr[Y ≤ (1-𝝳)𝛍].  

 Picking 𝝳 ≤ 2/(nc+2) is sufficient.   Set 𝝳 = n-c. 
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 Lemma. Let c > 0 be a constant. Suppose L is decided 
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Alternative definition of BPP 

 Definition. A language L in BPP if there’s a poly-time 
DTM M(. , .) and a polynomial function q(.) s.t. for 
every x∈{0,1}*,  

                  Pr              [M(x, r) = L(x)] ≥ 2/3. 

 

 2/3 can be replaced by 1 – exp(-|x|d) as before. 

 

 

r ∈R {0,1}q(|x|) 

(Easy Homework) 
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 How large is BPP? Is NP ⊆ BPP?  i.e.,  is SAT ∈ BPP? 
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Alternative definition of BPP 

 Definition. A language L in BPP if there’s a poly-time 
DTM M(. , .) and a polynomial function q(.) s.t. for 
every x∈{0,1}*,  

                  Pr              [M(x, r) = L(x)] ≥ 2/3. 

 

 Hence,  P ⊆ BPP ⊆ EXP. 

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this) 

 How large is BPP? Is NP ⊆ BPP?  i.e.,  is SAT ∈ BPP?  

 Next we show that BPP ⊆ P/poly. So, if NP ⊆ BPP 
then PH = ∑2 .   (Karp-Lipton) 
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Alternative definition of BPP 

 Definition. A language L in BPP if there’s a poly-time 
DTM M(. , .) and a polynomial function q(.) s.t. for 
every x∈{0,1}*,  

                  Pr              [M(x, r) = L(x)] ≥ 2/3. 

 

 Hence,  P ⊆ BPP ⊆ EXP. 

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this) 

 

 Most complexity theorist believe that P = BPP! 
(More on this later.) 
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BPP is in P/poly 

 Theorem. (Adleman 1978)  BPP ⊆ P/poly . 

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-(|x|+1) . 
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 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s 
are “bad”.  (r is bad for x if M(x,r) ≠ L(x)). 
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 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-(|x|+1) . 

 

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s 
are “bad”.  (r is bad for x if M(x,r) ≠ L(x)). 

 Summing over all x∈{0,1}n, at most 2n.2-(n+1) = ½ 
fraction of the r’s are “bad” for some n-bit string x.  
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BPP is in P/poly 

 Theorem. (Adleman 1978)  BPP ⊆ P/poly . 

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-(|x|+1) . 

 

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s 
are “bad”.  (r is bad for x if M(x,r) ≠ L(x)). 

 There’s an r0∈{0,1}q(n) that is “good” for all x∈{0,1}n, 
i.e., M(x, r0) = L(x) for all x∈{0,1}n.  
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BPP is in P/poly 

 Theorem. (Adleman 1978)  BPP ⊆ P/poly . 

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M 
and a polynomial function q(.) s.t. for every x∈{0,1}*,  

         Pr              [M(x, r) = L(x)]  ≥  1- 2-(|x|+1) . 

 

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s 
are “bad”.  (r is bad for x if M(x,r) ≠ L(x)). 

 There’s an r0∈{0,1}q(n) that is “good” for all x∈{0,1}n, 
i.e., M(x, r0) = L(x) for all x∈{0,1}n.  

 By hardwiring this r0, the computation of M( . , r0) can 
be viewed as a poly(n)-size circuit C.  (Cook-Levin) 
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 A PTM is defined using truly random bits. Is the 
definition sufficiently powerful? Do biased random bits 
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Why truly random bits? 

 A PTM is defined using truly random bits. Is the 
definition sufficiently powerful? Do biased random bits 
give any additional computational power? 

 

 Claim. A random bit with Pr[1] = p can be simulated 
by a PTM in expected O(1) time if the i-th bit of p can 
be computed in poly(i) time.      (Homework)   

 

 There’s a p and a PTM M with access to p-biased 
random bits s.t. M decides an undecidable language! 

 

 



Why truly random bits? 

 On the other hand, we can obtain truly random bits 
from biased random bits.  

 

 Claim. (von-Neumann 1951) A truly random bit can be 
simulated by a PTM with access to p-biased random 
bits in expected O(p-1(1-p)-1) time.       (Homework)   

 

 

 


