
Computational Complexity Theory

Lecture 21: Probabilistic Turing Machines;

 Class BPP

Department of Computer Science,
Indian Institute of Science

Randomized computation

 So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

 The usefulness of randomness in computation was
realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

Randomized computation

 So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

 The usefulness of randomness in computation was
realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

The use of statistical methods in a computational
model of a thermonuclear reaction for the ENIAC led
to the invention of the Monte Carlo methods.

Randomized computation

 So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

 The usefulness of randomness in computation was
realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

 To study randomized computation, we need to give
TMs the power of generating random numbers.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

1 with probability ½
0 with probability ½

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

Xi+1 = aXi + c (mod m)

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

Square an n bit number to get a 2n bit
number and take the middle n bits.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

 To what extent a PRG is adequate is studied under
the topic `Pseudorandomness’ in complexity theory.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

 We’ll assume that a TM can generate, or has access
to, truly random bits/coins. (We’ll touch upon “truly
vs biased random bits” at end of the lecture.)

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject).

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

 Note. PTMs and NTMs are syntatically similar – both
have two transition functions.

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

 Note. But, semantically, they are quite different –
unlike NTMs, PTMs are meant to model realistic
computation devices.

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

 Note. The above definition allows a PTM M to not
halt on some computation paths defined by its
random choices (unless we explicitly say that M runs
in T(n) time). More on this later when we define ZPP.

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Success probability

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Remark. The defn of
class BPP is robust. The
class remains unaltered if
we replace 2/3 by any
constant strictly greater
than (i.e., bounded
away from) ½. We’ll
discuss this next.

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Remark. The defn of
class BPP is robust. The
class remains unaltered if
we replace 2/3 by any
constant strictly greater
than (i.e., bounded
away from) ½. We’ll
discuss this next.

Bounded-error Probabilistic Polynomial-time

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Remark. Achieving
success probability ½ is
trivial for any language. If
we replace ≥ 2/3 by > ½
then the corresponding
class is called PP, which is
(presumably) larger than
BPP. More on PP later.

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. Let |x| = n. Think of M’ that runs M on input x
for m = 4n2c+d times independently. Let b1, …,bm be
the outputs of these independent executions of M. M’
outputs Majority(b1, …,bm).

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. Let |x| = n & m = 4n2c+d. Let yi = 1 if bi is
correct (i.e., bi = L(x)), otherwise yi = 0. Then M’
outputs incorrectly only if Y = y1+…+ ym ≤ m/2.

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. Let |x| = n & m = 4n2c+d. Let yi = 1 if bi is
correct (i.e., bi = L(x)), otherwise yi = 0. Then M’
outputs incorrectly only if Y = y1+…+ ym ≤ m/2.

 E[yi] = Pr[yi = 1] = Pr[M(x) = L(x)] = p (say). It’s given
that p ≥ ½ + n-c. So, 𝛍 = E[Y] = mp ≥ m/2.(1+2n-c).

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. Let |x| = n & m = 4n2c+d. Let yi = 1 if bi is
correct (i.e., bi = L(x)), otherwise yi = 0. Then M’
outputs incorrectly only if Y = y1+…+ ym ≤ m/2.

 E[yi] = Pr[yi = 1] = Pr[M(x) = L(x)] = p (say). It’s given
that p ≥ ½ + n-c. So, 𝛍 = E[Y] = mp ≥ m/2.(1+2n-c).

 By Chernoff bound, Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2),
for any 𝝳 ∈ [0,1]. We’ll now fix the value of 𝝳.

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. m = 4n2c+d, p ≥ ½ + n-c, 𝛍 = mp ≥ m/2.(1+2n-c).

 Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2), for any 𝝳 ∈ [0,1].

 M’ outputs incorrectly only if Y ≤ m/2.

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. m = 4n2c+d, p ≥ ½ + n-c, 𝛍 = mp ≥ m/2.(1+2n-c).

 Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2), for any 𝝳 ∈ [0,1].

 M’ outputs incorrectly only if Y ≤ m/2. If we choose 𝝳
s.t. m/2 ≤ (1-𝝳)𝛍 then Pr[Y < m/2] ≤ Pr[Y ≤ (1-𝝳)𝛍].

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. m = 4n2c+d, p ≥ ½ + n-c, 𝛍 = mp ≥ m/2.(1+2n-c).

 Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2), for any 𝝳 ∈ [0,1].

 M’ outputs incorrectly only if Y ≤ m/2. If we choose 𝝳
s.t. m/2 ≤ (1-𝝳)𝛍 then Pr[Y < m/2] ≤ Pr[Y ≤ (1-𝝳)𝛍].

 Picking 𝝳 ≤ 2/(nc+2) is sufficient. Set 𝝳 = n-c.

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. m = 4n2c+d, p ≥ ½ + n-c, 𝛍 = mp ≥ m/2.(1+2n-c).

 Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2), and 𝝳 = n-c.

 Therefore, Pr[M’(x) ≠ L(x)] ≤ exp(-(𝝳2𝛍)/2),

Error reduction for BPP

 Lemma. Let c > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] ≥ ½ + |x|-c.
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] ≥ 1 – exp(-|x|d).

 Proof. m = 4n2c+d, p ≥ ½ + n-c, 𝛍 = mp ≥ m/2.(1+2n-c).

 Pr[Y ≤ (1-𝝳)𝛍] ≤ exp(-(𝝳2𝛍)/2), and 𝝳 = n-c.

 Therefore, Pr[M’(x) ≠ L(x)] ≤ exp(-(𝝳2𝛍)/2),

 ≤ exp(-nd).

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 2/3 can be replaced by 1 – exp(-|x|d) as before.

r ∈R {0,1}q(|x|)

(Easy Homework)

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 Hence, P ⊆ BPP ⊆ EXP.

r ∈R {0,1}q(|x|)

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 Hence, P ⊆ BPP ⊆ EXP.

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this)

r ∈R {0,1}q(|x|)

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 Hence, P ⊆ BPP ⊆ EXP.

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this)

 How large is BPP? Is NP ⊆ BPP? i.e., is SAT ∈ BPP?

r ∈R {0,1}q(|x|)

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 Hence, P ⊆ BPP ⊆ EXP.

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this)

 How large is BPP? Is NP ⊆ BPP? i.e., is SAT ∈ BPP?

 Next we show that BPP ⊆ P/poly. So, if NP ⊆ BPP
then PH = ∑2 . (Karp-Lipton)

r ∈R {0,1}q(|x|)

Alternative definition of BPP

 Definition. A language L in BPP if there’s a poly-time
DTM M(. , .) and a polynomial function q(.) s.t. for
every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 2/3.

 Hence, P ⊆ BPP ⊆ EXP.

 Sipser-Gacs-Lautemann. BPP ⊆∑2 . (We’ll prove this)

 Most complexity theorist believe that P = BPP!
(More on this later.)

r ∈R {0,1}q(|x|)

BPP is in P/poly

 Theorem. (Adleman 1978) BPP ⊆ P/poly .

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-(|x|+1) .

r ∈R {0,1}q(|x|)

BPP is in P/poly

 Theorem. (Adleman 1978) BPP ⊆ P/poly .

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-(|x|+1) .

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s
are “bad”. (r is bad for x if M(x,r) ≠ L(x)).

r ∈R {0,1}q(|x|)

BPP is in P/poly

 Theorem. (Adleman 1978) BPP ⊆ P/poly .

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-(|x|+1) .

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s
are “bad”. (r is bad for x if M(x,r) ≠ L(x)).

 Summing over all x∈{0,1}n, at most 2n.2-(n+1) = ½
fraction of the r’s are “bad” for some n-bit string x.

r ∈R {0,1}q(|x|)

BPP is in P/poly

 Theorem. (Adleman 1978) BPP ⊆ P/poly .

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-(|x|+1) .

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s
are “bad”. (r is bad for x if M(x,r) ≠ L(x)).

 There’s an r0∈{0,1}q(n) that is “good” for all x∈{0,1}n,
i.e., M(x, r0) = L(x) for all x∈{0,1}n.

r ∈R {0,1}q(|x|)

BPP is in P/poly

 Theorem. (Adleman 1978) BPP ⊆ P/poly .

 Proof. Let L ∈ BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x∈{0,1}*,

 Pr [M(x, r) = L(x)] ≥ 1- 2-(|x|+1) .

 For every x∈{0,1}n, at most 2-(n+1) fraction of the r’s
are “bad”. (r is bad for x if M(x,r) ≠ L(x)).

 There’s an r0∈{0,1}q(n) that is “good” for all x∈{0,1}n,
i.e., M(x, r0) = L(x) for all x∈{0,1}n.

 By hardwiring this r0, the computation of M(. , r0) can
be viewed as a poly(n)-size circuit C. (Cook-Levin)

r ∈R {0,1}q(|x|)

Why truly random bits?

 A PTM is defined using truly random bits. Is the
definition sufficiently powerful? Do biased random bits
give any additional computational power?

Why truly random bits?

 A PTM is defined using truly random bits. Is the
definition sufficiently powerful? Do biased random bits
give any additional computational power?

 Claim. A random bit with Pr[1] = p can be simulated
by a PTM in expected O(1) time if the i-th bit of p can
be computed in poly(i) time. (Homework)

Why truly random bits?

 A PTM is defined using truly random bits. Is the
definition sufficiently powerful? Do biased random bits
give any additional computational power?

 Claim. A random bit with Pr[1] = p can be simulated
by a PTM in expected O(1) time if the i-th bit of p can
be computed in poly(i) time. (Homework)

 There’s a p and a PTM M with access to p-biased
random bits s.t. M decides an undecidable language!

Why truly random bits?

 On the other hand, we can obtain truly random bits
from biased random bits.

 Claim. (von-Neumann 1951) A truly random bit can be
simulated by a PTM with access to p-biased random
bits in expected O(p-1(1-p)-1) time. (Homework)

