Computational Complexity Theory

Lecture 22: Sipser-Gacs-Lautemann theorem; Classes RP and ZPP

Department of Computer Science, Indian Institute of Science

Recap: Probabilistic Turing Machines

- Definition. A probabilistic Turing machine (PTM) M has two transition functions δ₀ and δ₁. At each step of computation on input x∈{0,1}*, M applies one of δ₀ and δ₁ uniformly at random (independent of the previous steps). M outputs either I (accept) or 0 (reject). M runs in T(n) time if M always halts within T(|x|) steps regardless of its random choices.
- Note. PTMs and NTMs are syntatically similar both have two transition functions. But, semantically, they are quite different

Recap: Probabilistic Turing Machines

- Definition. A probabilistic Turing machine (PTM) M has two transition functions δ₀ and δ₁. At each step of computation on input x∈{0,1}*, M applies one of δ₀ and δ₁ uniformly at random (independent of the previous steps). M outputs either I (accept) or 0 (reject). M runs in T(n) time if M always halts within T(|x|) steps regardless of its random choices.
- Note. The above definition allows a PTM M to not halt on some computation paths defined by its random choices (unless we explicitly say that M runs in T(n) time). More on this later when we define ZPP.

Recap: Class BPP

Definition. A PTM M <u>decides</u> a language L in time T(n) if M runs in T(n) time, and for every x∈{0,1}*,

 $\Pr[M(x) = L(x)] \ge 2/3.$

Success probability

- Definition. A language L is in BPTIME(T(n)) if there's PTM that decides L in O(T(n)) time.
- Definition. BPP = $\bigcup_{c>0}$ BPTIME (n^c).
- Clearly, $P \subseteq BPP$.

Recap: Class BPP

- Definition. A PTM M <u>decides</u> a language L in time T(n) if M runs in T(n) time, and for every x∈{0,1}*, Pr[M(x) = L(x)] ≥ 2/3.
- Definition. A language L is in BPTIME(T(n)) if there's PTM that decides L in O(T(n)) time.
- Definition. BPP = $\bigcup_{c > 0}$ BPTIME (n^c). Bounded-error Probabilistic Polynomial-time
- Clearly, $P \subseteq BPP$.

Remark. The defn of class BPP is robust. The class remains unaltered if we replace 2/3 by any constant strictly greater than (i.e., <u>bounded</u> away from) ¹/₂. We'll discuss this next.

Recap: Error reduction for BPP

• Lemma. Let $c \ge 0$ be a constant. Suppose L is decided by a poly-time PTM M s.t. $Pr[M(x) = L(x)] \ge \frac{1}{2} + |x|^{-c}$. Then, for every constant $d \ge 0$, L is decided by a polytime PTM M' s.t. $Pr[M'(x) = L(x)] \ge 1 - exp(-|x|^d)$.

Recap: Alternative definition of BPP

 Definition. A language L in BPP if there's a poly-time <u>DTM</u> M(., .) and a polynomial function q(.) s.t. for every x∈{0,1}*,

$$\Pr_{r \in_{R} \{0,1\}^{q(|x|)}} [M(x,r) = L(x)] \ge 2/3.$$

• 2/3 can be replaced by $I - \exp(-|x|^d)$ as before.

Recap: Alternative definition of BPP

 Definition. A language L in BPP if there's a poly-time <u>DTM</u> M(., .) and a polynomial function q(.) s.t. for every x∈{0,1}*,

 $\Pr_{r \in_{R} \{0,1\}^{q(|x|)}} [M(x, r) = L(x)] \ge 2/3.$

- Hence, $P \subseteq BPP \subseteq EXP$.
- Sipser-Gacs-Lautemann. BPP $\subseteq \sum_{2}$. (We'll prove this)
- How large is BPP? Is NP \subseteq BPP? i.e., is SAT \in BPP?
- Theorem. (Adleman 1978) BPP \subseteq P/poly.
- So, if NP \subseteq BPP then PH = \sum_{2} . (*Karp-Lipton*)

Recap: Alternative definition of BPP

 Definition. A language L in BPP if there's a poly-time <u>DTM</u> M(., .) and a polynomial function q(.) s.t. for every x∈{0,1}*,

 $\Pr_{r \in_{R} \{0,1\}^{q(|x|)}} [M(x,r) = L(x)] \ge 2/3.$

- Hence, $P \subseteq BPP \subseteq EXP$.
- Sipser-Gacs-Lautemann. BPP $\subseteq \sum_{2}$. (We'll prove this)
- Most complexity theorist believe that P = BPP! (More on this later.)

Sipser-Gacs-Lautemann theorem

- We saw that P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP ? Not known! (Yes, people still believe BPP = P.)
- Sipser showed BPP \subseteq PH, Gacs strengthened it to BPP $\subseteq \sum_2 \bigcap_2 \bigcap_2$, Lautemann gave a simpler proof.
- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_2 \bigcap_2$.

- We saw that P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP ? Not known! (Yes, people still believe BPP = P.)
- Sipser showed BPP \subseteq PH, Gacs strengthened it to BPP $\subseteq \sum_2 \bigcap_2 \bigcap_2$, Lautemann gave a simpler proof.
- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_2 \bigcap_2$.
- **Proof.** Observe that BPP = co-BPP (homework). So, it is sufficient to show $BPP \subseteq \sum_{2}$.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. Let $L \in BPP$. Then, there's a poly-time \underline{DTM} M and a polynomial function q(.) s.t. for every $x \in \{0, I\}^*$, $Pr_{r \in_{R} \{0, I\}^{q(|x|)}} [M(x, r) = L(x)] \ge |I - 2^{-|x|}$.
- Let n = |x| and m = q(n).

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. Let $L \in BPP$. Then, there's a poly-time <u>DTM</u> M and a polynomial function q(.) s.t. for every $x \in \{0, I\}^*$, $Pr_{r \in P} \{0, I\}^{q(|x|)} [M(x, r) = L(x)] \ge |I - 2^{-|x|}$.
- Let n = |x| and m = q(n). Let $A_x \subseteq \{0, I\}^m$ such that $r \in A_x$ iff M(x, r) = I. Observe that

 $\begin{array}{ll} x \in L & \implies & |A_x| \geq (1 - 2^{-n}).2^m & (A_x \text{ is large}) \\ x \notin L & \implies & |A_x| \leq 2^{-n}.2^m & (A_x \text{ is small}). \end{array}$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. Let $L \in BPP$. Then, there's a poly-time <u>DTM</u> M and a polynomial function q(.) s.t. for every $x \in \{0, I\}^*$, $\Pr_{r \in \mathbb{R}} \{0, I\}^{q(|x|)}$ $[M(x, r) = L(x)] \ge |I - 2^{-|x|}$.
- Let n = |x| and m = q(n). Let $A_x \subseteq \{0, I\}^m$ such that $r \in A_x$ iff M(x, r) = I. Observe that

 $\begin{array}{ll} x \in L & \implies & |A_x| \geq (1 - 2^{-n}).2^m & (A_x \text{ is large}) \\ x \notin L & \implies & |A_x| \leq 2^{-n}.2^m & (A_x \text{ is small}). \end{array}$

• Idea. If A_x is large then there exists a "small" collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. Let $L \in BPP$. Then, there's a poly-time <u>DTM</u> M and a polynomial function q(.) s.t. for every $x \in \{0, I\}^*$, $\Pr_{r \in [0, I]^{q(|x|)}} [M(x, r) = L(x)] \ge |I - 2^{-|x|}$.
- Let n = |x| and m = q(n). Let $A_x \subseteq \{0, I\}^m$ such that $r \in A_x$ iff M(x, r) = I. Observe that

 $\begin{array}{ll} x \in L & \implies & |A_x| \geq (1 - 2^{-n}).2^m & (A_x \text{ is large}) \\ x \notin L & \implies & |A_x| \leq 2^{-n}.2^m & (A_x \text{ is small}). \end{array}$

• Idea. If A_x is large then there exists a "small" collection $u_1, \ldots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$. No such collection exists if $|A_x|$ is small.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. Let $L \in BPP$. Then, there's a poly-time <u>DTM</u> M and a polynomial function q(.) s.t. for every $x \in \{0, I\}^*$, $Pr_{r \in P} \{0, I\}^{q(|x|)} [M(x, r) = L(x)] \ge |I - 2^{-|x|}$.
- Let n = |x| and m = q(n). Let $A_x \subseteq \{0, I\}^m$ such that $r \in A_x$ iff M(x, r) = I. Observe that

 $\begin{array}{ll} x \in L & \implies & |A_x| \geq (1 - 2^{-n}).2^m & (A_x \text{ is large}) \\ x \notin L & \implies & |A_x| \leq 2^{-n}.2^m & (A_x \text{ is small}). \end{array}$

• Idea. If A_x is large then there exists a "small" collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$. Capture this property with a $\sum_{i \in [k]} s$ statement.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. $r \in A_x$ iff M(x, r) = I. Then

x ∈ L \implies $|A_x| \ge (I - 2^{-n}).2^m$ (A_x is large) x ∉ L \implies $|A_x| \le 2^{-n}.2^m$ (A_x is small).

- Set $\mathbf{k} = \mathbf{m/n} + \mathbf{I}$
- Obs. If $|A_x| \leq 2^{-n} \cdot 2^m$ then for <u>every</u> collection $u_1, \ldots, u_k \in \{0,1\}^m$, $\bigcup_{i \in [k]} (A_x \bigoplus u_i) \subseteq \{0,1\}^m$.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. $r \in A_x$ iff M(x, r) = I. Then

 $\begin{array}{ll} x \in L & \implies & |A_x| \geq (1 - 2^{-n}).2^m & (A_x \text{ is large}) \\ x \notin L & \implies & |A_x| \leq 2^{-n}.2^m & (A_x \text{ is small}). \end{array}$

- Set k = m/n + 1.
- Obs. If $|A_x| \leq 2^{-n} \cdot 2^m$ then for <u>every</u> collection $u_1, \ldots, u_k \in \{0,1\}^m$, $\bigcup_{i \in [k]} (A_x \bigoplus u_i) \subseteq \{0,1\}^m$.
- Proof. As $|A_x| \le 2^{-n} \cdot 2^m$, $|\bigcup_{i \in [k]} (A_x \bigoplus u_i)| \le k \cdot 2^{m-n} < 2^m$ for sufficiently large n.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. $r \in A_x$ iff M(x, r) = I. Then

x ∈ L \implies $|A_x| \ge (I - 2^{-n}).2^m$ (A_x is large) x ∉ L \implies $|A_x| \le 2^{-n}.2^m$ (A_x is small).

- Set k = m/n + 1.
- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- Let us complete the proof of the theorem assuming the claim – we'll proof it shortly.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. $r \in A_x$ iff M(x, r) = I. Then

x ∈ L \implies $|A_x| \ge (I - 2^{-n}).2^m$ (A_x is large) x ∉ L \implies $|A_x| \le 2^{-n}.2^m$ (A_x is small).

- Set k = m/n + 1.
- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- The observation and the claim imply the following:

$$\begin{split} \mathbf{x} \in \mathbf{L} & \Longrightarrow \exists u_1, \dots, u_k \in \{0, 1\}^m \quad \bigcup_{i \in [k]} (\mathbf{A}_{\mathbf{x}} \bigoplus u_i) = \{0, 1\}^m \\ \mathbf{x} \notin \mathbf{L} & \Longrightarrow \forall u_1, \dots, u_k \in \{0, 1\}^m \quad \bigcup_{i \in [k]} (\mathbf{A}_{\mathbf{x}} \bigoplus u_i) \subsetneq \{0, 1\}^m. \end{split}$$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. $r \in A_x$ iff M(x, r) = I. Then

 $\begin{array}{ll} x \in L & \implies & |A_x| \geq (1 - 2^{-n}).2^m & (A_x \text{ is large}) \\ x \notin L & \implies & |A_x| \leq 2^{-n}.2^m & (A_x \text{ is small}). \end{array}$

- Set k = m/n + 1.
- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- The observation and the claim imply the following:

 $\mathbf{x} \in \mathbf{L} \iff \exists \mathbf{u}_{|}, ..., \mathbf{u}_{k} \in \{0, \mathbf{I}\}^{m} \quad \bigcup_{i \in [k]} (\mathbf{A}_{\mathbf{x}} \bigoplus \mathbf{u}_{i}) = \{0, \mathbf{I}\}^{m}.$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. $r \in A_x$ iff M(x, r) = 1. Set k = m/n + 1.

 $\mathbf{x} \in \mathbf{L} \Longleftrightarrow \exists u_1, \dots, u_k \in \{0, 1\}^m \quad \bigcup_{i \in [k]} (\mathbf{A}_x \bigoplus u_i) = \{0, 1\}^m$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. $r \in A_x$ iff M(x, r) = I. Set k = m/n + I. $x \in L \iff \exists u_1, ..., u_k \in \{0, I\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, I\}^m$ $x \in L \iff \exists u_1, ..., u_k \in \{0, I\}^m \quad \forall r \in \{0, I\}^m \quad r \in \bigcup_{i \in [k]} (A_x \bigoplus u_i)$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. $r \in A_x$ iff M(x, r) = I. Set k = m/n + I. $x \in L \Leftrightarrow \exists u_1, ..., u_k \in \{0, I\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, I\}^m$ $x \in L \Leftrightarrow \exists u_1, ..., u_k \in \{0, I\}^m \quad \forall r \in \{0, I\}^m \quad r \in \bigcup_{i \in [k]} (A_x \bigoplus u_i)$ $x \in L \Leftrightarrow \exists u_1, ..., u_k \in \{0, I\}^m \quad \forall r \in \{0, I\}^m \quad \bigvee_{i \in [k]} [r \bigoplus u_i \in A_x]$

• Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$. • Proof. $r \in A_x$ iff M(x, r) = I. Set k = m/n + I. $x \in L \Leftrightarrow \exists u_1, \dots, u_k \in \{0, I\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, I\}^m$ $x \in L \Leftrightarrow \exists u_1, \dots, u_k \in \{0, I\}^m \quad \forall r \in \{0, I\}^m \quad r \in \bigcup_{i \in [k]} (A_x \bigoplus u_i)$ $x \in L \Leftrightarrow \exists u_1, \dots, u_k \in \{0, I\}^m \quad \forall r \in \{0, I\}^m \quad \lor [r \bigoplus u_i \in A_x]$ $x \in L \Leftrightarrow \exists u_1, \dots, u_k \in \{0, I\}^m \quad \forall r \in \{0, I\}^m \quad \lor [r \bigoplus u_i \in A_x]$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$. • Proof. $r \in A_x$ iff M(x, r) = 1. Set k = m/n + 1. $x \in L \Leftrightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$ $x \in L \Leftrightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \quad \forall r \in \{0, 1\}^m \quad r \in \bigcup_{i \in [k]} (A_x \bigoplus u_i)$ $x \in L \Leftrightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \quad \forall r \in \{0, 1\}^m \quad \bigvee_{i \in [k]} [r \bigoplus u_i \in A_x]$ $x \in L \Leftrightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \quad \forall r \in \{0, 1\}^m \quad \bigvee_{i \in [k]} [r \bigoplus u_i \in A_x]$
- Think of a DTM N that takes input x, u₁, ..., u_m, r, and outputs I iff M(x, r⊕u_i) = I for some i ∈ [k]. Observe that N is a poly-time DTM.

• Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \Sigma_2$. • Proof. $r \in A_x$ iff M(x, r) = I. Set k = m/n + I. $\mathbf{x} \in \mathbf{L} \Longleftrightarrow \exists u_1, \dots, u_k \in \{\mathbf{0}, \mathbf{I}\}^m \quad \bigcup_{i \in \lceil k \rceil} (\mathbf{A}_x \bigoplus u_i) = \{\mathbf{0}, \mathbf{I}\}^m$ $\mathbf{x} \in \mathbf{L} \Longleftrightarrow \exists u_1, \dots, u_k \in \{0, 1\}^m \ \forall r \in \{0, 1\}^m \ r \in \bigcup_{i \in [k]} (\mathbf{A}_x \bigoplus u_i)$ $\begin{array}{l} \mathbf{x} \in \mathbf{L} \Longleftrightarrow \exists u_1, \dots, u_k \in \{0, 1\}^m \ \forall r \in \{0, 1\}^m \ \bigvee \left[r \bigoplus u_i \in \mathbf{A}_x \right] \\ \mathbf{x} \in \mathbf{L} \bigstar \exists u_1, \dots, u_k \in \{0, 1\}^m \ \forall r \in \{0, 1\}^m \ \mathsf{N}(\mathbf{x}, \underline{\mathbf{u}}, r) = \mathbf{I}. \end{array}$

 $\underline{\mathbf{u}} = \{u_1, ..., u_k\}$

• Therefore, $L \in \sum_2$.

- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in \lceil k \rceil} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- *Proof.* The proof of this uses the probabilistic method.

- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- Proof. We'll show if u₁, ..., u_k are picked independently and uniformly at random then

 $\Pr_{\underline{u}} \left[\forall r \in \{0, I\}^m \ r \in \bigcup_{i \in [k]} (A_x \bigoplus u_i) \right] > 0 .$

- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in l \nmid i} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- Proof. We'll show if u₁, ..., u_k are picked independently and uniformly at random then

 $\Pr_{\underline{u}} \left[\exists r \in \{0, I\}^m \ r \notin \bigcup_{i \in [k]} (A_x \bigoplus u_i) \right] < I.$

- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- **Proof.** We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then

 $\label{eq:pr_u_i} \mathsf{Pr}_{\underline{u}} \ [\exists r \in \{0, I\}^m \ r \not\in (\mathsf{A}_x \bigoplus u_i) \ \text{for every} \ i \in [k]] \ < \ I \ .$

- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- **Proof.** We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then

 $\Pr_{\underline{u}} [\exists r \in \{0, I\}^m \ r \bigoplus u_i \notin A_x \text{ for every } i \in [k]] < I$.

- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- **Proof.** We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then

 $\Pr_{\underline{u}} [\exists r \in \{0, I\}^m \ r \bigoplus u_i \notin A_x \text{ for every } i \in [k]] < I$.

Fix an r∈{0,1}^m (we'll apply a union bound later). Fix an i∈ [k]. Then, Pr_u [r ⊕ u_i ∉ A_x] ≤ 2⁻ⁿ.

Distributed uniformly inside $\{0, I\}^m$ as r is fixed and u_i is picked uniformly at random from $\{0, I\}^m$.

- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- **Proof.** We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then

 $\Pr_{\underline{u}} [\exists r \in \{0, I\}^m \ r \bigoplus u_i \notin A_x \text{ for every } i \in [k]] < I$.

• Fix an $r \in \{0, I\}^m$ (we'll apply a union bound later). Fix an $i \in [k]$. Then, $Pr_{\underline{u}} [r \bigoplus u_i \notin A_x] \leq 2^{-n}$. As u_1, \ldots, u_k are independent, $Pr_{\underline{u}} [r \bigoplus u_i \notin A_x$ for every $i \in [k]] \leq 2^{-kn}$.

- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- **Proof.** We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then

 $\Pr_{\underline{u}} [\exists r \in \{0, I\}^m \ r \bigoplus u_i \notin A_x \text{ for every } i \in [k]] < I$.

• Fix an $r \in \{0, I\}^m$ (we'll apply a union bound later). Fix an $i \in [k]$. Then, $Pr_{\underline{u}} [r \bigoplus u_i \notin A_x] \leq 2^{-n}$. As u_1, \ldots, u_k are independent, $Pr_{\underline{u}} [r \bigoplus u_i \notin A_x$ for every $i \in [k]] < 2^{-m}$.

Proof of the Claim

- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in l \nmid i} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- **Proof.** We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then

 $\Pr_{\underline{u}} [\exists r \in \{0, I\}^m \ r \bigoplus u_i \notin A_x \text{ for every } i \in [k]] < I$.

- Fix an $r \in \{0, I\}^m$ (we'll apply a union bound later). Fix an $i \in [k]$. Then, $Pr_{\underline{u}} [r \bigoplus u_i \notin A_x] \leq 2^{-n}$. As u_1, \ldots, u_k are independent, $Pr_{\underline{u}} [r \bigoplus u_i \notin A_x$ for every $i \in [k]] < 2^{-m}$.
- Applying union bound,
 Pr_u [∃r∈{0,1}^m r ⊕ u_i ∉ A_x for every i∈ [k]] < 2^m2^{-m}

Proof of the Claim

- Claim. If $|A_x| \ge (I 2^{-n}) \cdot 2^m$ then there <u>exists</u> a collection $u_1, \dots, u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- **Proof.** We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then

 $\Pr_{\underline{u}} [\exists r \in \{0, I\}^m \ r \bigoplus u_i \notin A_x \text{ for every } i \in [k]] < I$.

- Fix an $r \in \{0, I\}^m$ (we'll apply a union bound later). Fix an $i \in [k]$. Then, $Pr_{\underline{u}} [r \bigoplus u_i \notin A_x] \leq 2^{-n}$. As u_1, \ldots, u_k are independent, $Pr_{\underline{u}} [r \bigoplus u_i \notin A_x$ for every $i \in [k]] < 2^{-m}$.
- Applying union bound,
 Pr_u [∃r∈{0,1}^m r ⊕ u_i ∉ A_x for every i∈ [k]] < 1.

Complete derandomization of BPP ?

- Can the Sipser-Gacs-Lautemann theorem be strengthened? How low in the PH does BPP lie ?
- Theorem. (Nisan & Wigderson 1988,..., Umans 2003) If there's a $L \in DTIME(2^{O(n)})$ and a constant $\varepsilon > 0$ such that any circuit C_n that decides $L \cap \{0, I\}^n$ requires size $2^{\varepsilon n}$, then BPP = P.
- Lower bounds Derandomization !

Complete derandomization of BPP ?

- Can the Sipser-Gacs-Lautemann theorem be strengthened? How low in the PH does BPP lie ?
- Theorem. (Nisan & Wigderson 1988,..., Umans 2003) If there's a $L \in DTIME(2^{O(n)})$ and a constant $\varepsilon > 0$ such that any circuit C_n that decides $L \cap \{0, I\}^n$ requires size $2^{\varepsilon n}$, then BPP = P.
- Lower bounds \implies Derandomization !
- Caution: Shouldn't interpret this result as "randomness is useless".

Classes RP, co-RP and ZPP

Class RP

- Class RP is the <u>one-sided error</u> version of BPP.
- Definition. A language L is in RTIME(T(n)) if there's a PTM M that decides L in O(T(n)) time such that

$$x \in L \implies Pr[M(x) = I] \ge 2/3$$

 $x \notin L \implies Pr[M(x) = 0] = I.$

- Definition. RP = $\bigcup_{c>0}$ RTIME (n^c).
- Clearly, $RP \subseteq BPP$.

Class RP

- Class RP is the <u>one-sided error</u> version of BPP.
- Definition. A language L is in RTIME(T(n)) if there's a PTM M that decides L in O(T(n)) time such that

$$x \in L \implies \Pr[M(x) = I] \ge 2/3$$

$$x \notin L \implies \Pr[M(x) = 0] = I.$$

- Definition. $RP_{c>0} = \bigcup_{c>0} RTIME (n^c)$. Randomized Poly-time.
- Clearly, $RP \subseteq BPP$.

Remark. The defn of class RP is robust. The class remains unaltered if we replace 2/3 by $|x|^{-c}$ for any constant c > 0. The succ. prob. can then be amplified to $1-\exp(-|x|^d)$. *(Easy Homework)*

Class RP

- Class RP is the <u>one-sided error</u> version of BPP.
- Definition. A language L is in RTIME(T(n)) if there's a PTM M that decides L in O(T(n)) time such that

$$x \in L$$
 \implies $\Pr[M(x) = I] \ge 2/3$ $x \notin L$ \implies $\Pr[M(x) = 0] = I.$

- Definition. RP = $\bigcup_{c>0}$ RTIME (n^c).
- Clearly, $RP \subseteq BPP$. Obs. $RP \subseteq NP$. (Easy Homework)

Recall, we don't know whether $BPP \subseteq NP$.

Class co-RP

- Definition. $co-RP = \{L : \overline{L} \in RP\}$.
- Obs. A language L is in co-RP if there's a PTM M that decides L in poly-time such that

$$x \in L \implies Pr[M(x) = I] = I$$

 $x \notin L \implies Pr[M(x) = 0] \ge 2/3$

• Obs. $co-RP \subseteq BPP$.

Class co-RP

- Definition. $co-RP = \{L : \overline{L} \in RP\}$.
- Obs. A language L is in co-RP if there's a PTM M that decides L in poly-time such that

$$x \in L \implies Pr[M(x) = I] = I$$

 $x \notin L \implies Pr[M(x) = 0] \ge 2/3$

- Obs. $co-RP \subseteq BPP$.
- Is RP∩co-RP in P? Not known!

Class ZPP

- Recall that PTMs are allowed to <u>not</u> halt on some computation paths defined by its random choices.
- We say that a PTM M has expected running time T(n) if the expected running time of M on input x is at most T(n) for all x ∈ {0,1}ⁿ.

Class ZPP

- Recall that PTMs are allowed to <u>not</u> halt on some computation paths defined by its random choices.
- We say that a PTM M has expected running time T(n) if the expected running time of M on input x is at most T(n) for all x ∈ {0,1}ⁿ.
- Definition. A language L is in ZTIME(T(n)) if there's a PTM M s.t. on every input x, M(x) = L(x) whenever M halts, and M has expected running time O(T(n)).
- Definition. $ZPP = \bigcup_{c>0} ZTIME (n^{c}).$

Zero-error Probabilistic Poly-time.

Class ZPP

- Definition. A language L is in ZTIME(T(n)) if there's a PTM M s.t. on every input x, M(x) = L(x) whenever M halts, and M has expected running time O(T(n)).
- Definition. ZPP = $\bigcup_{c \ge 0} ZTIME (n^c)$.
- Problems in ZPP are said to have poly-time <u>Las Vegas</u> <u>algorithms</u>, whereas those in BPP are said to have polytime <u>Monte-Carlo algorithms</u>.
- Theorem. $ZPP = RP \cap co RP \subseteq BPP$. (Assignment)
- Note. If P = BPP then P = ZPP = BPP.