Computational Complexity Theory

Lecture 23: Perfect matching in RNC;
Class BPL;
Randomized reductions

Department of Computer Science, Indian Institute of Science

Recap: BPP is in PH

- We saw that P⊆BPP⊆EXP. But, is BPP⊆NP? Not known! (Yes, people still believe BPP = P.)
- Sipser showed BPP \subseteq PH, Gacs strengthened it to BPP $\subseteq \sum_{2} \cap \bigcap_{2}$, Lautemann gave a simpler proof.
- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2} \cap \prod_{2}$.

Recap: Derandomization of BPP?

- Can the Sipser-Gacs-Lautemann theorem be strengthened? How low in the PH does BPP lie?
- Theorem. (Nisan & Wigderson 1988,..., Umans 2003) If there's a $L \in DTIME(2^{O(n)})$ and a constant $\varepsilon > 0$ such that any circuit C_n that decides $L \cap \{0,1\}^n$ requires size $2^{\varepsilon n}$, then BPP = P.

- Caution: Shouldn't interpret this result as "randomness is useless".

Recap: Class RP

Class RP is the <u>one-sided error</u> version of BPP.

Definition. A language L is in RTIME(T(n)) if there's a
 PTM M that decides L in O(T(n)) time such that

$$x \in L \longrightarrow Pr[M(x) = 1] \ge 2/3$$

$$x \notin L \longrightarrow Pr[M(x) = 0] = I.$$

- Definition. RP = $\bigcup_{c>0}$ RTIME (n^c).
- Clearly, $RP \subseteq BPP$. Obs. $RP \subseteq NP$.

Recap: Class co-RP

- Definition. $co-RP = \{L : \overline{L} \in RP\}$.
- Obs. A language L is in co-RP if there's a PTM M that decides L in poly-time such that

```
x \in L \longrightarrow Pr[M(x) = I] = I

x \notin L \longrightarrow Pr[M(x) = 0] \ge 2/3.
```

• Obs. co-RP ⊆ BPP.

Is RP∩co-RP in P? Not known!

Recap: Class ZPP

- Definition. A language L is in ZTIME(T(n)) if there's a PTM M s.t. on every input x, M(x) = L(x) whenever M halts, and M has expected running time O(T(n)).
- Definition. ZPP = $\bigcup_{c>0}$ ZTIME (n^c).
- Problems in ZPP are said to have poly-time <u>Las Vegas</u> <u>algorithms</u>, whereas those in BPP are said to have polytime <u>Monte-Carlo algorithms</u>.
- Theorem. $ZPP = RP \cap co RP \subseteq BPP$. (Assignment)
- Note. If P = BPP then P = ZPP = BPP.

Randomness brings in simplicity

- The use of randomness helps in designing simple and efficient algorithms for many problems.
- We'll see one such algorithm in this lecture, namely an efficient randomized, <u>parallel</u> algorithm to check if a given bipartite graph has a perfect matching.

Class RNC

- The use of randomness helps in designing simple and efficient algorithms for many problems.
- We'll see one such algorithm in this lecture, namely an efficient randomized, <u>parallel</u> algorithm to check if a given bipartite graph has a perfect matching.
- Definition. A language L is in RNCⁱ if there's a randomized $O((\log n)^i)$ -time parallel algorithm M that uses $n^{O(1)}$ parallel processors s.t. for every $x \in \{0,1\}^*$,

$$x \in L$$
 \longrightarrow $Pr[M(x) = I] \ge 2/3, $x \notin L$ \longrightarrow $Pr[M(x) = 0] = I.$$

Here, n is the input length.

Class RNC

- The use of randomness helps in designing simple and efficient algorithms for many problems.
- We'll see one such algorithm in this lecture, namely an efficient randomized, <u>parallel</u> algorithm to check if a given bipartite graph has a perfect matching.
- Definition. RNC = $\bigcup_{i>0}$ RNCⁱ.
- RNC stands for Randomized NC. We can alternatively define RNC using (uniform) circuits.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.

 $a_{ij} = I$ if there's an edge from the i-th vertex in L to the j-th vertex in R, otherwise $a_{ii} = 0$.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.
- Algorithm.
- 1. Construct $B = (b_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $b_{ij} = 0$. Else, pick b_{ij} independently and uniformly <u>at random</u> from [2n].
- 2. Compute det(B).
- 3. If $det(B) \neq 0$ output "yes", else output "no".

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.
- Algorithm. (RNC² algorithm)
- 1. Construct $B = (b_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $b_{ij} = 0$. Else, pick b_{ij} independently and uniformly <u>at random</u> from [2n]. (This can be done using n^2 processors.)
- 2. Compute det(B). (determinant is in NC², Csanky '76)
- 3. If $det(B) \neq 0$ output "yes", else output "no".

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $\det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- S_n is the set of all permutations on [n].

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.

Polynomial in the x_{ii} variables.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $\det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- In the algorithm, we set $x_{ij} = b_{ij}$, where b_{ij} is picked randomly from [2n] if $x_{ij} \neq 0$, otherwise $b_{ii} = 0$.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $\det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- If det(X) = 0 then det(B) = 0. (So, the algorithm has one-sided error.)

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $\det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- If $det(X) \neq 0$, what is the probability that $det(B) \neq 0$?

Schwartz-Zippel lemma

• Lemma. (Schwartz 1980, Zippel 1979) Let $f(x_1, ..., x_n) \neq 0$ be a multivariate polynomial of (total) degree at most d over a field F. Let $S \subseteq F$ be finite, and $(a_1, ..., a_n) \in S^n$ such that each a_i is chosen independently and uniformly at random from S. Then,

$$\Pr_{(a_1,...,a_n)\in_r S^n} [f(a_1,...,a_n) = 0] \le d/|S|.$$

 Proof idea. Roots are far fewer than non-roots. Use induction on the number of variables.

(Homework / reading exercise)

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $\det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- If det(X) ≠ 0, then Pr[det(B) ≠ 0] ≥ ½ as degree of det(X) = n (by the Schwartz-Zippel lemma).

• Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a maximum matching in a general graph is in RNC².

Is finding maximum matching in NC? Open!

- Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a maximum matching in a general graph is in RNC².
- Is finding maximum matching in NC? Open!
- Theorem. (Fenner, Gurjar, Thierauf 2016; Svensson, Tarnawski 2017) Finding a maximum matching in a general graph is in quasi-NC.

In $O((\log n)^3)$ time using exp($O((\log n)^3)$) processors,

Randomized space bounded computation

- We say a PTM M uses S(n) space if on a length-n input, M halts using at most S(n) cells of it work-tape regardless of its random choices.
- Definition. A language L is in BPL if there's a PTM M such that M uses $O(\log n)$ -space and for every $x \in \{0,1\}^*$, $Pr[M(x) = L(x)] \ge 2/3$.

- We say a PTM M <u>uses S(n)</u> space if on a length-n input, M halts using at most S(n) cells of it work-tape regardless of its random choices.
- Definition. A language L is in BPL if there's a PTM M such that M uses $O(\log n)$ -space and for every $x \in \{0,1\}^*$, $Pr[M(x) = L(x)] \ge 2/3$.
- The success probability can be amplied as before as the BPP error reduction trick can be implemented using log-space. (Homework)

- We say a PTM M <u>uses S(n) space</u> if on a length-n input, M halts using at most S(n) cells of it work-tape regardless of its random choices.
- Definition. A language L is in RL if there's a PTM M s.t. M uses O(log n)-space and for every x ∈ {0,1}*,

$$x \in L \longrightarrow Pr[M(x) = 1] \ge 2/3$$

$$x \notin L$$
 \longrightarrow $Pr[M(x) = 0] = I.$

• Clearly, $RL \subseteq NL \subseteq P$ and $BPL \subseteq BPP$.

- We say a PTM M uses S(n) space if on a length-n input, M halts using at most S(n) cells of it work-tape regardless of its random choices.
- Claim. BPL \subseteq P.
- *Proof idea*. Think of the adjancency matrix A of the configuration graph of the O(log n)-space PTM. Compute the probability of acceptance by taking powers of A. (Assignment problem)

- We say a PTM M <u>uses S(n)</u> space if on a length-n input, M halts using at most S(n) cells of it work-tape regardless of its random choices.
- Claim. BPL \subseteq P.
- *Proof idea*. Think of the adjancency matrix A of the configuration graph of the O(log n)-space PTM. Compute the probability of acceptance by taking powers of A. (Assignment problem)
- Is BPL = L? Many believe that the answer is "Yes"!

- Theorem. (Nisan '92, '94) If L ∈ BPL then there's a poly-time, O((log n)²)-space TM that decides L.
- Theorem. (Saks, Zhou '99) If $L \in BPL$ then there's a $n^{O(\sqrt{\log n})}$ -time, $O((\log n)^{1.5})$ -space TM that decides L.
- Theorem. (Hoza '21) If $L \in BPL$ then there's a $O((log n)^{1.5}(\sqrt{loglog n})^{-1})$ -space TM that decides L.
- The last two results extend Nisan's techniques on read-once branching programs.

- Theorem. (Nisan '92, '94) If L ∈ BPL then there's a poly-time, O((log n)²)-space TM that decides L.
- Theorem. (Saks, Zhou '99) If $L \in BPL$ then there's a $n^{O(\sqrt{\log n})}$ -time, $O((\log n)^{1.5})$ -space TM that decides L.
- Theorem. (Hoza '21) If $L \in BPL$ then there's a $O((log n)^{1.5}(\sqrt{loglog n})^{-1})$ -space TM that decides L.
- "Recent Progress on Derandomizing Space-Bounded Computation" survey by Hoza (2022).

Randomized reductions

Randomized reduction

• Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \le_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$

$$Pr[L_1(x) = L_2(M(x))] \ge 2/3.$$
 Success probability

• For arbitrary L_1 and L_2 , we may not be able to boost the success probability 2/3, and so, the above kind of reductions **needn't be transitive**.

Randomized reduction

• Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \le_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$

$$Pr[L_1(x) = L_2(M(x))] \ge 2/3.$$

- For arbitrary L_1 and L_2 , we may not be able to boost the success probability 2/3, and so, the above kind of reductions **needn't be transitive**. However,
- Obs. If $L_1 \le_r L_2$ and $L_2 \in BPP$, then $L_1 \in BPP$.

 (Easy homework)

Randomized reduction

• Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \le_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$

$$Pr[L_1(x) = L_2(M(x))] \ge 2/3.$$

- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |x|^{-c}$ to $|-exp(-|x|^d)$.
- Proof idea. BPP error reduction trick + Cook-Levin.

(homework)

Randomized reduction

• Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \le_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$

$$Pr[L_1(x) = L_2(M(x))] \ge 2/3.$$

- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |x|^{-c}$ to $|-exp(-|x|^d)$.
- Recall, $NP = \{L : L \leq_p SAT\}$. It makes sense to define a similar class using randomized poly-time reduction.

• Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \le_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$

$$Pr[L_1(x) = L_2(M(x))] \ge 2/3.$$

- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |x|^{-c}$ to $|-exp(-|x|^d)$.
- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Class BP.NP is also known as AM (Arthur-Merlin protocol) in the literature.

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
 = NP ?

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
 = NP ? Many believe that the answer is "yes".
- Theorem. If certain reasonable circuit lower bounds hold, then BP.NP = NP.
- Proof idea. Similar to Nisan & Wigderson's conditional
 BPP = P result.

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
 = NP ? Many believe that the answer is "yes".

- We may further ask:
- I. Is BP.NP in PH? Recall, BPP is in PH.

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
 = NP ? Many believe that the answer is "yes".
- We may further ask:
- I. Is BP.NP in PH? Recall, BPP is in PH.
- 2. Is SAT \in BP.NP? Recall, if SAT \in BPP then PH collapses. (SAT \in BP.NP as NP \subseteq BP.NP.)

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Theorem. BP.NP is in \sum_3 . (In fact, BP.NP is in \prod_2 .)
- Proof idea. Similar to the Sipser-Gacs-Lautemann theorem. (Assignment problem)

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Theorem. BP.NP is in \sum_3 . (In fact, BP.NP is in \prod_2 .)
- Proof idea. Similar to the Sipser-Gacs-Lautemann theorem. (Assignment problem)
- Wondering if BP.NP $\subseteq \prod_2$ implies BP.NP $\subseteq \sum_2$? Is BP.NP = co-BP.NP? (Recall, BPP = co-BPP).
- If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next theorem shows that this would lead to PH collapse.

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Theorem. If $\overline{SAT} \in BP.NP$ then $PH = \sum_3$ (in fact, $PH = \sum_2$).
- Proof idea. Similar to Adleman's theorem + Karp-Lipton theorem. (Assignment problem)

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Theorem. If $\overline{\mathsf{SAT}} \in \mathsf{BP.NP}$ then $\mathsf{PH} = \sum_2$.
- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Thus, even without designing an efficient algorithm for GI, we know GI is unlikely to be NP-complete!

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Theorem. If $\overline{\mathsf{SAT}} \in \mathsf{BP.NP}$ then $\mathsf{PH} = \sum_{2}$.

- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Theorem. (Goldwasser-Sipser '87, Boppana, Hastad, Zachos '87) GNI ∈ BP.NP.
- Proof. We'll prove it.

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Theorem. If $\overline{SAT} \in BP.NP$ then $PH = \sum_{2}$.

- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Theorem. (Goldwasser-Sipser '87, Boppana, Hastad, Zachos '87) GNI ∈ BP.NP.
- If GI is NP-complete then GNI is co-NP-complete. If so, then the above two theorems imply PH = \sum_{2} .

Graph Isomorphism in Quasi-P

• Theorem. (Babai 2015) There's a deterministic $\exp(O((\log n)^3))$ time algorithm to solve the graph isomorphism problem.