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Recap: BPP is in PH 

 We saw that  P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP ? Not 
known!  (Yes, people still believe BPP = P.) 

 

 Sipser showed BPP ⊆ PH, Gacs strengthened it to 
BPP ⊆ ∑2∩∏2 , Lautemann gave a simpler proof. 

 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2∩∏2.  

 

 



Recap: Derandomization of BPP ? 

 Can the Sipser-Gacs-Lautemann theorem be 
strengthened? How low in the PH does BPP lie ? 

 

 Theorem. (Nisan & Wigderson 1988,…, Umans 2003)   
If there’s a L ∈ DTIME(2O(n)) and a constant 𝜀 > 0 
such that any circuit Cn that decides L∩{0,1}n requires 
size 2𝜀n, then BPP = P . 

 

 Lower bounds           Derandomization ! 

 Caution: Shouldn’t interpret this result as 
“randomness is useless”. 



Recap: Class RP 

 Class RP is the one-sided error version of BPP. 

 

 Definition. A language L is in RTIME(T(n)) if there’s a 
PTM M that decides L in O(T(n)) time such that  

            x ∈  L            Pr[M(x) = 1] ≥ 2/3 

            x ∉  L            Pr[M(x) = 0] = 1. 

 

 Definition.  RP  = ∪ RTIME (nc). 

 

 Clearly, RP ⊆ BPP.    Obs. RP ⊆ NP.   

c > 0 



Recap: Class co-RP 

 Definition.  co-RP = {L :  L ∈ RP} . 

 

 Obs. A language L is in co-RP if there’s a PTM M that 
decides L in poly-time such that  

            x ∈  L            Pr[M(x) = 1] = 1 

            x ∉  L            Pr[M(x) = 0] ≥ 2/3. 

 

 Obs.  co-RP ⊆ BPP . 

 

 Is RP∩co-RP  in  P ? Not known! 

 



Recap: Class ZPP 

 Definition. A language L is in ZTIME(T(n)) if there’s a 
PTM M s.t. on every input x, M(x) = L(x) whenever M 
halts, and M has expected running time O(T(n)).   

 Definition. ZPP  = ∪ ZTIME (nc). 

 Problems in ZPP are said to have poly-time Las Vegas 
algorithms, whereas those in BPP are said to have poly-
time Monte-Carlo algorithms. 

 

 Theorem.  ZPP = RP∩co-RP  ⊆  BPP.  (Assignment) 

 

 Note. If P = BPP then P = ZPP = BPP. 

 

c > 0 



Perfect Matching in RNC 



Randomness brings in simplicity 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 



Class RNC 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 Definition. A language L is in RNCi if there’s a 
randomized O((log n)i)-time parallel algorithm M that 
uses nO(1) parallel processors s.t. for every x ∈ {0,1}*,   

           x ∈ L         Pr[M(x) = 1] ≥ 2/3, 

           x ∉ L         Pr[M(x) = 0] = 1. 

   Here, n is the input length. 

 



Class RNC 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 

 Definition.  RNC = ∪ RNCi . 

 

 RNC stands for Randomized NC. We can 
alternatively define RNC using (uniform) circuits. 

i > 0 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 

 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 

 

 
aij = 1 if there’s an edge from 
the i-th vertex in L to the j-th 
vertex in R, otherwise aij = 0. 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 Algorithm. 

1. Construct B = (bij)i,j∈n  as follows: If aij=0, then bij=0. 
Else, pick bij independently and uniformly at random 
from [2n].     

2. Compute det(B).   

3. If det(B) ≠ 0 output “yes”, else output “no”. 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 Algorithm.    (RNC2 algorithm) 

1. Construct B = (bij)i,j∈n  as follows: If aij=0, then bij=0. 
Else, pick bij independently and uniformly at random 
from [2n].       (This can be done using n2 processors.) 

2. Compute det(B).   (determinant is in NC2, Csanky ’76) 

3. If det(B) ≠ 0 output “yes”, else output “no”. 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Sn is the set of all permutations on [n]. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

𝞂∈Sn i∈[n] 

Polynomial in the xij variables. 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 In the algorithm, we set xij = bij, where bij is picked 
randomly from [2n] if xij ≠ 0, otherwise bij = 0. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) = 0 then det(B) = 0. (So, the algorithm has 
one-sided error.) 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) ≠ 0, what is the probability that det(B) ≠ 0 ?  

𝞂∈Sn i∈[n] 

The answer is given by the Schwartz-Zippel lemma 



Schwartz-Zippel lemma 

 Lemma. (Schwartz 1980, Zippel 1979) Let f(x1, …, xn) 
≠ 0 be a multivariate polynomial of (total) degree at 
most d over a field F. Let S ⊆ F be finite, and (a1, …, 
an) ∈ Sn such that each ai is chosen independently 
and uniformly at random from S. Then, 

                 Pr      [f(a1, …, an) = 0]  ≤  d/|S|. 

 

 Proof idea. Roots are far fewer than non-roots. Use 
induction on the number of variables.  

                                (Homework / reading exercise) 

(a1, …, an) ∈r S
n 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) ≠ 0, then Pr[det(B) ≠ 0] ≥ ½ as degree of 
det(X) = n   (by the Schwartz-Zippel lemma). 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a 
maximum matching in a general graph is in RNC2.  

 

 Is finding maximum matching in NC ? Open! 



Perfect matching in RNC 

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a 
maximum matching in a general graph is in RNC2.  

 

 Is finding maximum matching in NC ? Open! 

 Theorem. (Fenner, Gurjar, Thierauf 2016; Svensson, 
Tarnawski 2017) Finding a maximum matching in a 
general graph is in quasi-NC. 

In O((log n)3) time using exp( O((log n)3) ) processors,   



Randomized space bounded 
computation 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in BPL if there’s a PTM M 
such that M uses O(log n)-space and for every x ∈ 
{0,1}*,  Pr[M(x) = L(x)] ≥ 2/3. 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in BPL if there’s a PTM M 
such that M uses O(log n)-space and for every x ∈ 
{0,1}*,  Pr[M(x) = L(x)] ≥ 2/3. 

 

 The success probability can be amplied as before as 
the BPP error reduction trick can be implemented 
using log-space.     (Homework) 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in RL if there’s a PTM M 
s.t. M uses O(log n)-space and for every x ∈ {0,1}*, 

               x ∈ L           Pr[M(x) = 1] ≥ 2/3 

               x ∉ L             Pr[M(x) = 0] = 1. 

 

 Clearly,  RL ⊆ NL ⊆ P  and  BPL ⊆ BPP. 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Claim.  BPL ⊆ P . 

 Proof idea. Think of the adjancency matrix A of the 
configuration graph of the O(log n)-space PTM. 
Compute the probability of acceptance by taking 
powers of A.     (Assignment problem) 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Claim.  BPL ⊆ P . 

 Proof idea. Think of the adjancency matrix A of the 
configuration graph of the O(log n)-space PTM. 
Compute the probability of acceptance by taking 
powers of A.     (Assignment problem) 

 

 Is BPL = L ? Many believe that the answer is “Yes” ! 



Space bounded PTMs 

 Theorem. (Nisan ’92, ’94)  If L ∈ BPL then there’s a 
poly-time, O((log n)2)-space TM that decides L. 

 

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a 
nO(√log n)-time, O((log n)1.5)-space TM that decides L. 

 

 Theorem. (Hoza ’21) If L ∈ BPL then there’s a O((log 
n)1.5(√loglog n)-1)-space TM that decides L. 

 

 The last two results extend Nisan’s techniques on 
read-once branching programs. 

 



Space bounded PTMs 

 Theorem. (Nisan ’92, ’94)  If L ∈ BPL then there’s a 
poly-time, O((log n)2)-space TM that decides L. 

 

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a 
nO(√log n)-time, O((log n)1.5)-space TM that decides L. 

 

 Theorem. (Hoza ’21) If L ∈ BPL then there’s a O((log 
n)1.5(√loglog n)-1)-space TM that decides L. 

 

 “Recent Progress on Derandomizing Space-Bounded 
Computation”  survey by Hoza (2022). 

 



Randomized reductions 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 For arbitrary L1 and L2, we may not be able to boost 
the success probability 2/3, and so, the above kind of 
reductions needn’t be transitive. 

Success 
probability 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 For arbitrary L1 and L2, we may not be able to boost 
the success probability 2/3, and so, the above kind of 
reductions needn’t be transitive. However, 

 Obs.  If L1 ≤r L2 and L2 ∈ BPP, then L1 ∈ BPP. 

                                           (Easy homework) 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Proof idea.  BPP error reduction trick + Cook-Levin. 

                                               (homework) 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 

 Recall, NP = {L : L ≤p SAT}. It makes sense to define a 
similar class using randomized poly-time reduction. 

                                               



Class BP.NP 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Class BP.NP is also known as AM (Arthur-Merlin 
protocol) in the literature.  



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ?  



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 Theorem. If certain reasonable circuit lower bounds 
hold, then BP.NP = NP. 

 Proof idea. Similar to Nisan & Wigderson’s conditional 
BPP = P result. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 We may further ask: 

1. Is BP.NP in PH? Recall, BPP is in PH. 

 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 We may further ask: 

1. Is BP.NP in PH? Recall, BPP is in PH. 

 

2. Is SAT ∈ BP.NP? Recall, if SAT ∈ BPP then PH 
collapses. (SAT ∈ BP.NP as NP ⊆ BP.NP .) 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem.  BP.NP is in ∑3.  (In fact, BP.NP is in ∏2.) 

 Proof idea. Similar to the Sipser-Gacs-Lautemann 
theorem.       (Assignment problem) 

 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem.  BP.NP is in ∑3.  (In fact, BP.NP is in ∏2.) 

 Proof idea. Similar to the Sipser-Gacs-Lautemann 
theorem.       (Assignment problem) 

 

 Wondering if BP.NP ⊆ ∏2 implies BP.NP ⊆ ∑2 ? Is 
BP.NP = co-BP.NP ? (Recall, BPP = co-BPP).  

 If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next 
theorem shows that this would lead to PH collapse. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑3 (in fact, PH = 
∑2). 

 Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem.     (Assignment problem) 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Thus, even without designing an efficient algorithm 
for GI, we know GI is unlikely to be NP-complete! 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad, 
Zachos ‘87)  GNI ∈ BP.NP. 

 Proof.  We’ll prove it. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad, 
Zachos ‘87)  GNI ∈ BP.NP. 

 If GI is NP-complete then GNI is co-NP-complete. If 
so, then the above two theorems imply PH = ∑2. 



Graph Isomorphism in Quasi-P 

 

 

 

 Theorem. (Babai 2015) There’s a deterministic 
exp(O((log n)3)) time algorithm to solve the graph 
isomorphism problem. 


