
Computational Complexity Theory

Lecture 23: Perfect matching in RNC;

 Class BPL;

 Randomized reductions

Department of Computer Science,
Indian Institute of Science

Recap: BPP is in PH

 We saw that P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP ? Not
known! (Yes, people still believe BPP = P.)

 Sipser showed BPP ⊆ PH, Gacs strengthened it to
BPP ⊆ ∑2∩∏2 , Lautemann gave a simpler proof.

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2∩∏2.

Recap: Derandomization of BPP ?

 Can the Sipser-Gacs-Lautemann theorem be
strengthened? How low in the PH does BPP lie ?

 Theorem. (Nisan & Wigderson 1988,…, Umans 2003)
If there’s a L ∈ DTIME(2O(n)) and a constant 𝜀 > 0
such that any circuit Cn that decides L∩{0,1}n requires
size 2𝜀n, then BPP = P .

 Lower bounds Derandomization !

 Caution: Shouldn’t interpret this result as
“randomness is useless”.

Recap: Class RP

 Class RP is the one-sided error version of BPP.

 Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

 x ∈ L Pr[M(x) = 1] ≥ 2/3

 x ∉ L Pr[M(x) = 0] = 1.

 Definition. RP = ∪ RTIME (nc).

 Clearly, RP ⊆ BPP. Obs. RP ⊆ NP.

c > 0

Recap: Class co-RP

 Definition. co-RP = {L : L ∈ RP} .

 Obs. A language L is in co-RP if there’s a PTM M that
decides L in poly-time such that

 x ∈ L Pr[M(x) = 1] = 1

 x ∉ L Pr[M(x) = 0] ≥ 2/3.

 Obs. co-RP ⊆ BPP .

 Is RP∩co-RP in P ? Not known!

Recap: Class ZPP

 Definition. A language L is in ZTIME(T(n)) if there’s a
PTM M s.t. on every input x, M(x) = L(x) whenever M
halts, and M has expected running time O(T(n)).

 Definition. ZPP = ∪ ZTIME (nc).

 Problems in ZPP are said to have poly-time Las Vegas
algorithms, whereas those in BPP are said to have poly-
time Monte-Carlo algorithms.

 Theorem. ZPP = RP∩co-RP ⊆ BPP. (Assignment)

 Note. If P = BPP then P = ZPP = BPP.

c > 0

Perfect Matching in RNC

Randomness brings in simplicity

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

Class RNC

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

 Definition. A language L is in RNCi if there’s a
randomized O((log n)i)-time parallel algorithm M that
uses nO(1) parallel processors s.t. for every x ∈ {0,1}*,

 x ∈ L Pr[M(x) = 1] ≥ 2/3,

 x ∉ L Pr[M(x) = 0] = 1.

 Here, n is the input length.

Class RNC

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

 Definition. RNC = ∪ RNCi .

 RNC stands for Randomized NC. We can
alternatively define RNC using (uniform) circuits.

i > 0

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

aij = 1 if there’s an edge from
the i-th vertex in L to the j-th
vertex in R, otherwise aij = 0.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

 Algorithm.

1. Construct B = (bij)i,j∈n as follows: If aij=0, then bij=0.
Else, pick bij independently and uniformly at random
from [2n].

2. Compute det(B).

3. If det(B) ≠ 0 output “yes”, else output “no”.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

 Algorithm. (RNC2 algorithm)

1. Construct B = (bij)i,j∈n as follows: If aij=0, then bij=0.
Else, pick bij independently and uniformly at random
from [2n]. (This can be done using n2 processors.)

2. Compute det(B). (determinant is in NC2, Csanky ’76)

3. If det(B) ≠ 0 output “yes”, else output “no”.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Sn is the set of all permutations on [n].

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

𝞂∈Sn i∈[n]

Polynomial in the xij variables.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 In the algorithm, we set xij = bij, where bij is picked
randomly from [2n] if xij ≠ 0, otherwise bij = 0.

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) = 0 then det(B) = 0. (So, the algorithm has
one-sided error.)

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) ≠ 0, what is the probability that det(B) ≠ 0 ?

𝞂∈Sn i∈[n]

The answer is given by the Schwartz-Zippel lemma

Schwartz-Zippel lemma

 Lemma. (Schwartz 1980, Zippel 1979) Let f(x1, …, xn)
≠ 0 be a multivariate polynomial of (total) degree at
most d over a field F. Let S ⊆ F be finite, and (a1, …,
an) ∈ Sn such that each ai is chosen independently
and uniformly at random from S. Then,

 Pr [f(a1, …, an) = 0] ≤ d/|S|.

 Proof idea. Roots are far fewer than non-roots. Use
induction on the number of variables.

 (Homework / reading exercise)

(a1, …, an) ∈r S
n

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) ≠ 0, then Pr[det(B) ≠ 0] ≥ ½ as degree of
det(X) = n (by the Schwartz-Zippel lemma).

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a
maximum matching in a general graph is in RNC2.

 Is finding maximum matching in NC ? Open!

Perfect matching in RNC

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a
maximum matching in a general graph is in RNC2.

 Is finding maximum matching in NC ? Open!

 Theorem. (Fenner, Gurjar, Thierauf 2016; Svensson,
Tarnawski 2017) Finding a maximum matching in a
general graph is in quasi-NC.

In O((log n)3) time using exp(O((log n)3)) processors,

Randomized space bounded
computation

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in BPL if there’s a PTM M
such that M uses O(log n)-space and for every x ∈
{0,1}*, Pr[M(x) = L(x)] ≥ 2/3.

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in BPL if there’s a PTM M
such that M uses O(log n)-space and for every x ∈
{0,1}*, Pr[M(x) = L(x)] ≥ 2/3.

 The success probability can be amplied as before as
the BPP error reduction trick can be implemented
using log-space. (Homework)

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in RL if there’s a PTM M
s.t. M uses O(log n)-space and for every x ∈ {0,1}*,

 x ∈ L Pr[M(x) = 1] ≥ 2/3

 x ∉ L Pr[M(x) = 0] = 1.

 Clearly, RL ⊆ NL ⊆ P and BPL ⊆ BPP.

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Claim. BPL ⊆ P .

 Proof idea. Think of the adjancency matrix A of the
configuration graph of the O(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A. (Assignment problem)

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Claim. BPL ⊆ P .

 Proof idea. Think of the adjancency matrix A of the
configuration graph of the O(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A. (Assignment problem)

 Is BPL = L ? Many believe that the answer is “Yes” !

Space bounded PTMs

 Theorem. (Nisan ’92, ’94) If L ∈ BPL then there’s a
poly-time, O((log n)2)-space TM that decides L.

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a
nO(√log n)-time, O((log n)1.5)-space TM that decides L.

 Theorem. (Hoza ’21) If L ∈ BPL then there’s a O((log
n)1.5(√loglog n)-1)-space TM that decides L.

 The last two results extend Nisan’s techniques on
read-once branching programs.

Space bounded PTMs

 Theorem. (Nisan ’92, ’94) If L ∈ BPL then there’s a
poly-time, O((log n)2)-space TM that decides L.

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a
nO(√log n)-time, O((log n)1.5)-space TM that decides L.

 Theorem. (Hoza ’21) If L ∈ BPL then there’s a O((log
n)1.5(√loglog n)-1)-space TM that decides L.

 “Recent Progress on Derandomizing Space-Bounded
Computation” survey by Hoza (2022).

Randomized reductions

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 For arbitrary L1 and L2, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive.

Success
probability

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 For arbitrary L1 and L2, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive. However,

 Obs. If L1 ≤r L2 and L2 ∈ BPP, then L1 ∈ BPP.

 (Easy homework)

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Proof idea. BPP error reduction trick + Cook-Levin.

 (homework)

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Recall, NP = {L : L ≤p SAT}. It makes sense to define a
similar class using randomized poly-time reduction.

Class BP.NP

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Definition. BP.NP = {L : L ≤r SAT}.

 Class BP.NP is also known as AM (Arthur-Merlin
protocol) in the literature.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ?

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ? Many believe that the answer is “yes”.

 Theorem. If certain reasonable circuit lower bounds
hold, then BP.NP = NP.

 Proof idea. Similar to Nisan & Wigderson’s conditional
BPP = P result.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ? Many believe that the answer is “yes”.

 We may further ask:

1. Is BP.NP in PH? Recall, BPP is in PH.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ? Many believe that the answer is “yes”.

 We may further ask:

1. Is BP.NP in PH? Recall, BPP is in PH.

2. Is SAT ∈ BP.NP? Recall, if SAT ∈ BPP then PH
collapses. (SAT ∈ BP.NP as NP ⊆ BP.NP .)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. BP.NP is in ∑3. (In fact, BP.NP is in ∏2.)

 Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. BP.NP is in ∑3. (In fact, BP.NP is in ∏2.)

 Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

 Wondering if BP.NP ⊆ ∏2 implies BP.NP ⊆ ∑2 ? Is
BP.NP = co-BP.NP ? (Recall, BPP = co-BPP).

 If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next
theorem shows that this would lead to PH collapse.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑3 (in fact, PH =
∑2).

 Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem. (Assignment problem)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Thus, even without designing an efficient algorithm
for GI, we know GI is unlikely to be NP-complete!

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad,
Zachos ‘87) GNI ∈ BP.NP.

 Proof. We’ll prove it.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad,
Zachos ‘87) GNI ∈ BP.NP.

 If GI is NP-complete then GNI is co-NP-complete. If
so, then the above two theorems imply PH = ∑2.

Graph Isomorphism in Quasi-P

 Theorem. (Babai 2015) There’s a deterministic
exp(O((log n)3)) time algorithm to solve the graph
isomorphism problem.

