Computational Complexity Theory

Lecture 4: Cook-Levin theorem

Department of Computer Science, Indian Institute of Science

Recap: Complexity Class NP

Definition. A language L ⊆ {0,1}* is in NP if there's a polynomial function p: N → N and a polynomial-time TM M (called the <u>verifier</u>) such that for every x,

 $x \in L \iff \exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x, u) = I

u is called a <u>certificate or witness</u> for x (w.r.t L and M), if $x \in L$.

Recap: Complexity Class NP

Definition. A language L ⊆ {0,1}* is in NP if there's a polynomial function p: N → N and a polynomial-time TM M (called the <u>verifier</u>) such that for every x,

 $x \in L \iff \exists u \in \{0, I\}^{p(|x|)}$ s.t. M(x, u) = I

 Class NP contains those problems (languages) which have such efficient verifiers.

Class NP : Examples

- Vertex cover
- 0/1 integer programming
- Integer factoring
- Graph isomorphism
- 2-Diophantine solvability

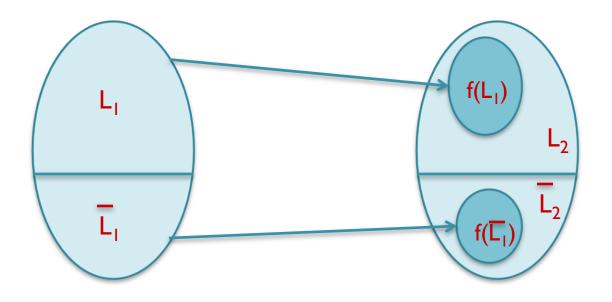
Recap: Is P = NP?

- Obviously, $P \subseteq NP$.
- Whether or not P = NP is an outstanding open question in mathematics and TCS!
- Solving a problem does seem harder than verifying its solution, so most people believe that $P \neq NP$.

Recap: Polynomial-time reduction

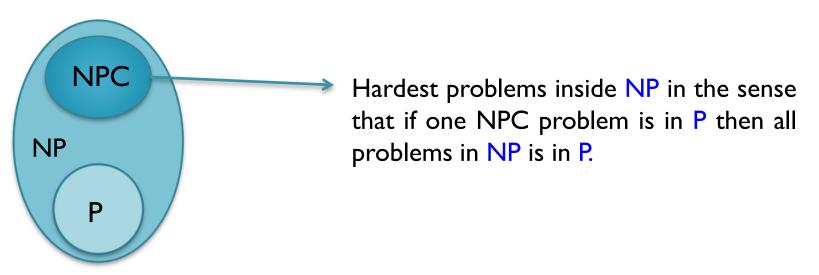
• Definition. We say a language $L_1 \subseteq \{0, I\}^*$ is <u>polynomial-time (Karp) reducible</u> to a language $L_2 \subseteq \{0, I\}^*$ if there's a polynomial-time computable function f s.t.

 $x \in L_1 \iff f(x) \in L_2$



Recap: NP-completeness

- Definition. A language L' is NP-hard if for every L in NP, L ≤_p L'. Further, L' is NP-complete if L' is in NP and is NP-hard.
- Observe. If L' is NP-hard and L' is in P then P = NP. If
 L' is NP-complete then L' in P if and only if P = NP.



Recap: Few words on reductions

- As to how we define a reduction from one language to the other (or one function to the other) is usually guided by a <u>question on</u> whether two <u>complexity classes</u> are different or identical.
- For polynomial-time reductions, the question is whether or not P equals NP.
- Reductions help us define complete problems (the 'hardest' problems in a class) which in turn help us compare the complexity classes under consideration.

Class NP : Examples

- Vertex cover (NP-complete)
- 0/1 integer programming (NP-complete)
- 3-coloring planar graphs (NP-complete)
- 2-Diophantine solvability (NP-complete)
- Integer factoring (unlikely to be NP-complete)
- Graph isomorphism (Quasi-P)

Recap: How to show existence of an NPC problem?

- Let L' = { (α, x, I^m, I^t) : there exists a $u \in \{0, I\}^m$ s.t. M_{α} accepts (x, u) in t steps }
- Observation. L' is NP-complete.
- The language L' involves Turing machine in its definition. Next, we'll see an example of an NP-complete problem that is arguably more natural.

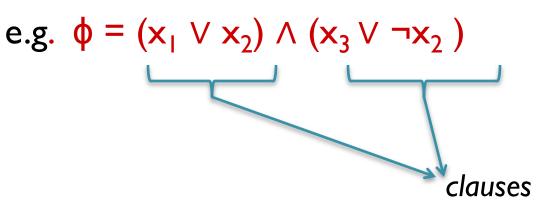
- Definition. A <u>Boolean formula</u> on variables $x_1, ..., x_n$ consists of AND, OR and NOT operations. e.g. $\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$
- Definition. A Boolean formula \$\ophi\$ is satisfiable if there's a {0,1}-assignment to its variables that makes \$\ophi\$ evaluate to 1.

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> <u>Form</u> (CNF) if it is an AND of OR of literals.

e.g. $\phi = (\mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\mathbf{x}_3 \vee \neg \mathbf{x}_2)$

literals

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> <u>Form</u> (CNF) if it is an AND of OR of literals.



 Definition. A Boolean formula is in <u>Conjunctive Normal</u> <u>Form</u> (CNF) if it is an AND of OR of literals.

e.g. $\phi = (\mathbf{x}_1 \lor \mathbf{x}_2) \land (\mathbf{x}_3 \lor \neg \mathbf{x}_2)$

• Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> <u>Form</u> (CNF) if it is an AND of OR of literals.

e.g. $\phi = (\mathbf{x}_1 \lor \mathbf{x}_2) \land (\mathbf{x}_3 \lor \neg \mathbf{x}_2)$

- Definition. Let SAT be the language consisting of all satisfiable CNF formulae.
- Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> <u>Form</u> (CNF) if it is an AND of OR of literals.

e.g. $\phi = (\mathbf{x}_1 \lor \mathbf{x}_2) \land (\mathbf{x}_3 \lor \neg \mathbf{x}_2)$

- Definition. Let SAT be the language consisting of all satisfiable CNF formulae.
- Theorem. (Cook 1971, Levin 1973) SAT is NP-complete. Easy to see that SAT is in NP. Need to show that SAT is NP-hard.

Proof of Cook-Levin Theorem

 Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.

- Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.
- Let $L \in NP$. We intend to come up with a polynomialtime computable function f: $x \mapsto \phi_x$ s.t.,

 \succ x \in L \iff $\phi_x \in$ SAT

- Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.
- Let $L \in NP$. We intend to come up with a polynomialtime computable function f: $x \mapsto \phi_x$ s.t.,

 \succ x \in L \iff $\phi_x \in$ SAT

• <u>Notation</u>: $|\phi_{x}| :=$ size of ϕ_{x}

= number of V or \wedge in ϕ_x

• Language L has a poly-time verifier M such that $x \in L \iff \exists u \in \{0, I\}^{p(|x|)}$ s.t. M(x, u) = I

• Language L has a poly-time verifier M such that $x \in L \iff \exists u \in \{0, I\}^{p(|x|)}$ s.t. M(x, u) = I

• Idea: For any fixed x, we can <u>capture the computation</u> of M(x, ..) by a CNF ϕ_x such that

 $\exists u \in \{0, I\}^{p(|x|)}$ s.t. $M(x, u) = I \qquad \Longleftrightarrow \phi_x$ is satisfiable

• Language L has a poly-time verifier M such that $x \in L \iff \exists u \in \{0, I\}^{p(|x|)}$ s.t. M(x, u) = I

• Idea: For any fixed x, we can <u>capture the computation</u> of M(x, ..) by a CNF ϕ_x such that

 $\exists u \in \{0, I\}^{p(|x|)}$ s.t. $M(x, u) = I \qquad \Longleftrightarrow \phi_x$ is satisfiable

 For any fixed x, M(x, ..) is a deterministic TM that takes u as input and runs in time polynomial in |u|.

Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then, (think of N = M(x, ...) for a fixed x.)

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1.Then,
 - I. There's a CNF $\phi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \phi(u, "auxiliary variables")$ is satisfiable <u>as a function of the</u> <u>"auxiliary variables"</u> if and only if N(u) = I.
 - 2. ϕ is computable in time poly(T(n)) from N,T & n.

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1.Then,
 - I. There's a CNF $\phi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \phi(u, "auxiliary variables")$ is satisfiable <u>as a function of the</u> <u>"auxiliary variables"</u> if and only if N(u) = I.
 - 2. ϕ is computable in time poly(T(n)) from N,T & n.
- $\phi(u, "auxiliary variables")$ is satisfiable <u>as a function of **all**</u> <u>the variables</u> if and only if $\exists u$ s.t N(u) = I.

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1.Then,
 - I. There's a CNF $\phi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \phi(u, "auxiliary variables")$ is satisfiable <u>as a function of the</u> <u>"auxiliary variables"</u> if and only if N(u) = I.
 - 2. ϕ is computable in time poly(T(n)) from N,T & n.
- Cook-Levin theorem follows from above!

Proof of Main Theorem

Main theorem: Proof

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a Boolean circuit ψ of size poly(T(n))such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.
- Step 2. "Convert" circuit ψ to a CNF φ efficiently by introducing <u>auxiliary variables</u>.

Main theorem: Proof

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a Boolean circuit ψ of size poly(T(n))such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.

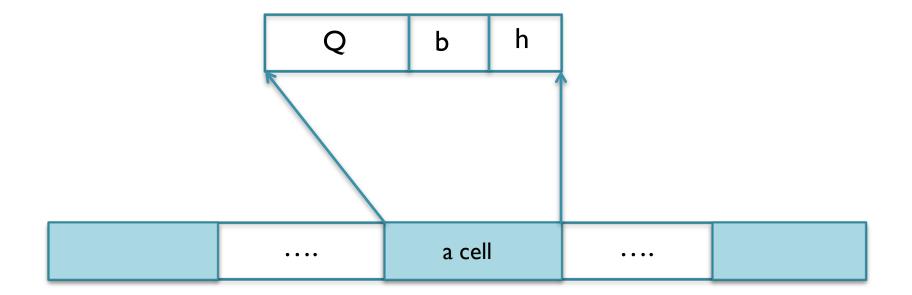
The key insight: ψ "encodes" N.

 Step 2. "Convert" circuit ψ to a CNF φ efficiently by introducing <u>auxiliary variables</u>.

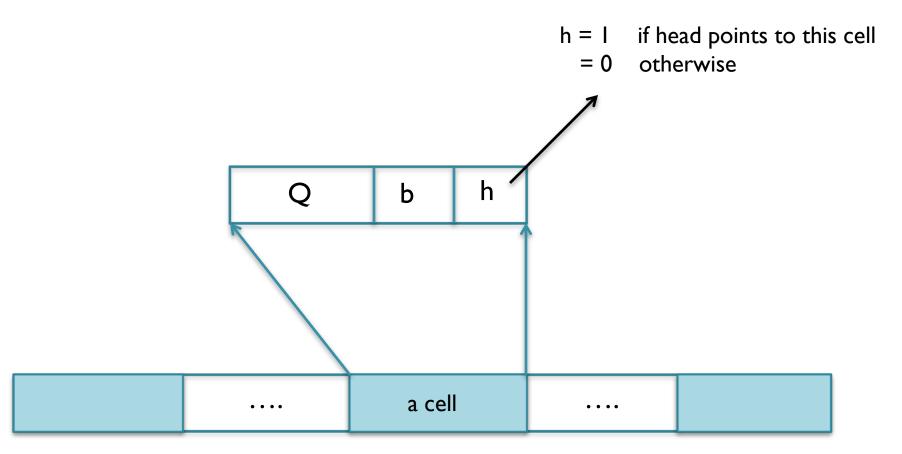
• Assume (w.l.o.g) that N has a single tape and it writes its output on the first cell at the end of computation.

- Assume (w.l.o.g) that N has a single tape and it writes its output on the first cell at the end of computation.
- A step of computation of N consists of
 - Changing the content of the current cell
 - Changing state
 - Changing head position

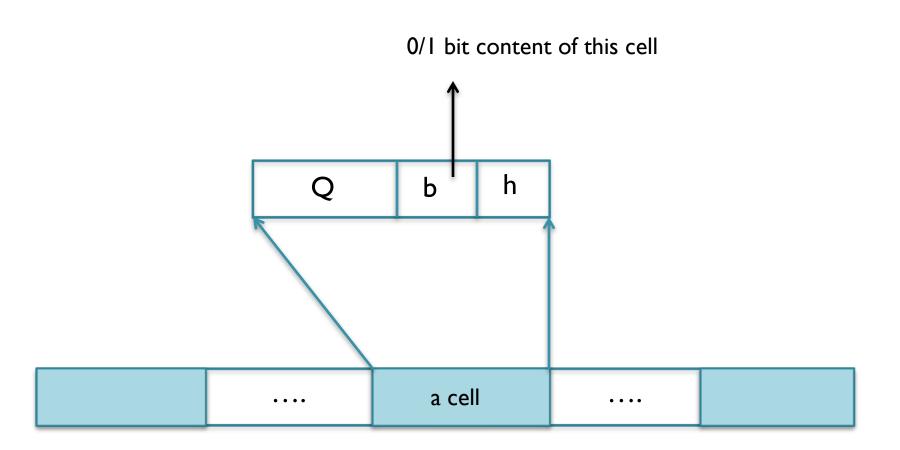
- Assume (w.l.o.g) that N has a single tape and it writes its output on the first cell at the end of computation.
- A step of computation of N consists of
 - Changing the content of the current cell
 - Changing state
 - Changing head position
- Think of a '<u>compound</u>' tape: Every cell stores the current state, a bit content and head indicator.



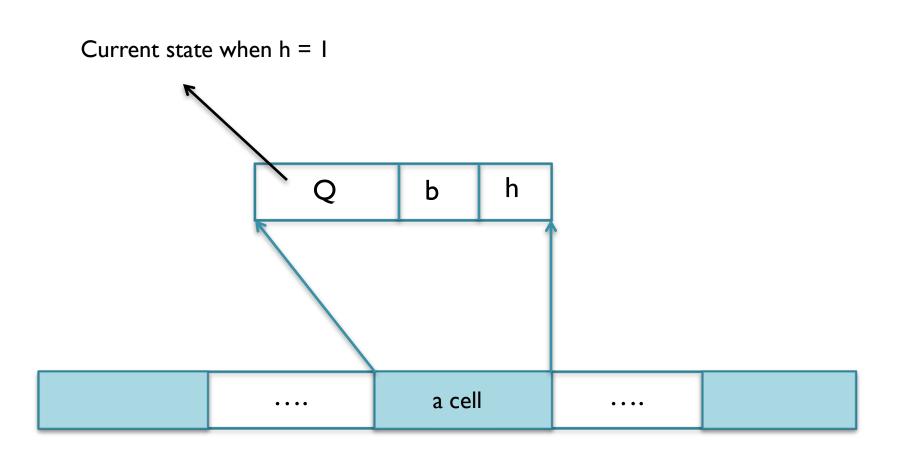
A compound tape

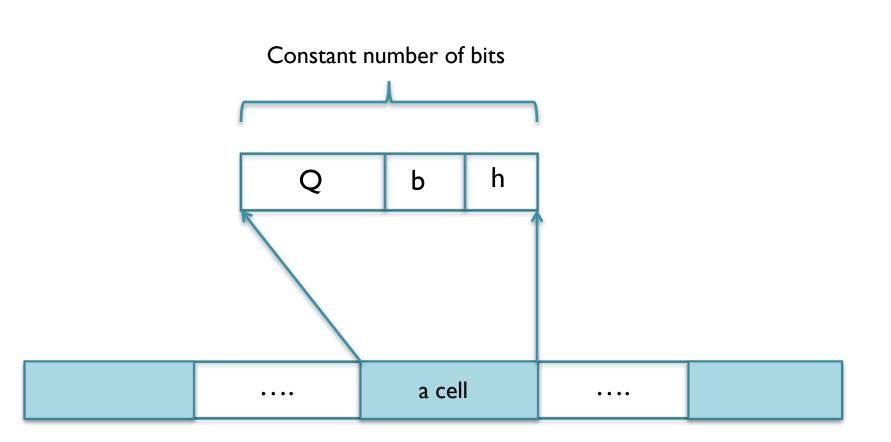


A compound tape



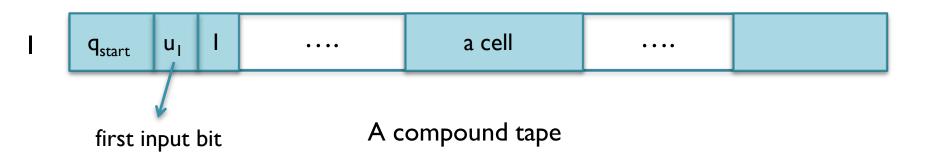
A compound tape





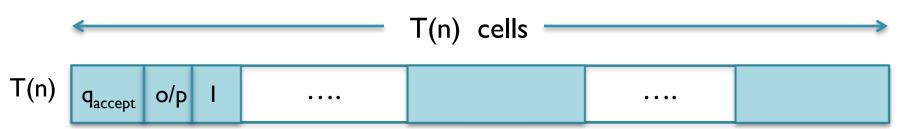
 Computation of N on inputs of length n can be <u>completely described</u> by a sequence of T(n) compound tapes, the i-th of which captures a `snapshot' of N's computation at the i-th step.

	a cell		
--	--------	--	--



2	q _{start}	u	0				
---	---------------------------	---	---	--	--	--	--

q _{start} u _l I	a cell		
-------------------------------------	--------	--	--



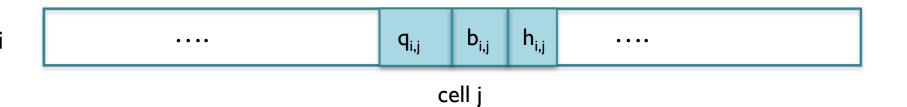
•

•

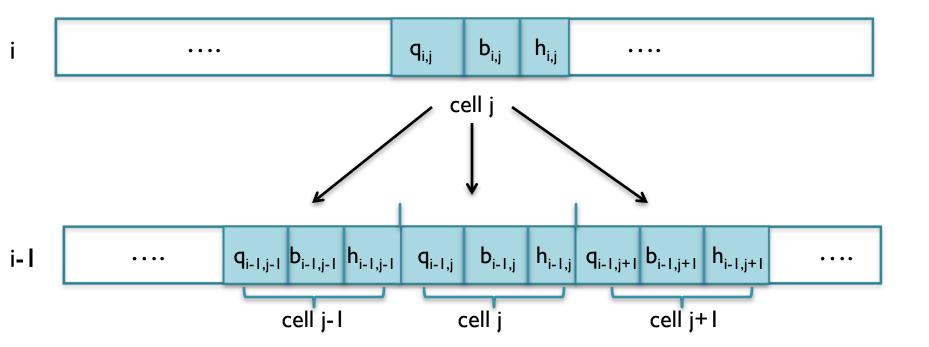
2	q _{start}	u	0				
---	---------------------------	---	---	--	--	--	--

q _{start} u _l l	a cell		
-------------------------------------	--------	--	--

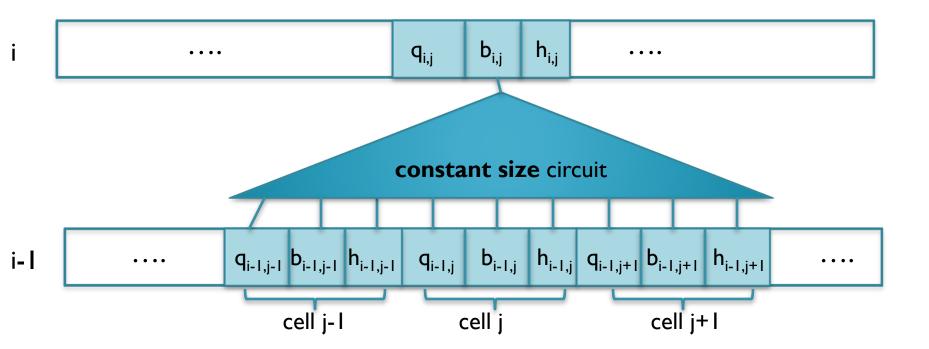
- $h_{i,j} = I$ iff head points to cell j at i-th step
- **b**_{i,i} = bit content of cell j at i-th step
- q_{i,j} = a sequence of log |Q| bits which contains the current state info if h_{i,j} = I; otherwise we don't care



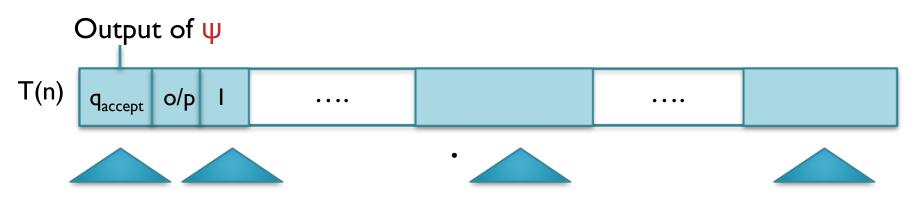
Locality of computation: The bits in h_{i,j},
 b_{i,j} and q_{i,j} depend <u>only on</u> the bits in
 > h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},
 > h_{i-1,j}, b_{i-1,j}, q_{i-1,j},
 > h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}



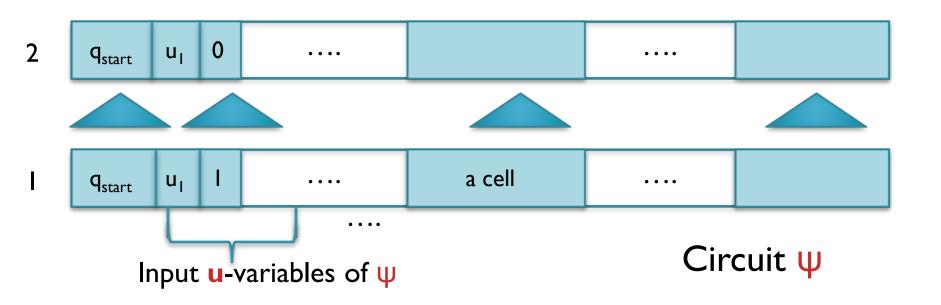
Locality of computation: The bits in h_{i,j},
 b_{i,j} and q_{i,j} depend <u>only on</u> the bits in
 > h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},
 > h_{i-1,j}, b_{i-1,j}, q_{i-1,j},
 > h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}



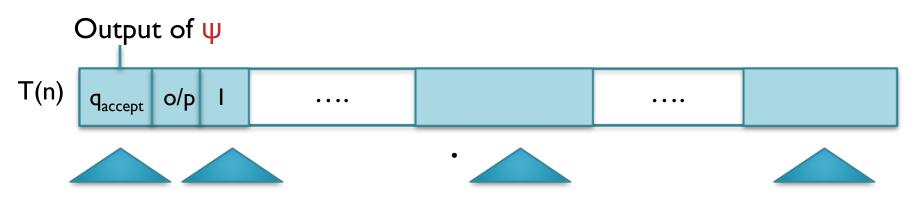
Main theorem: Step I

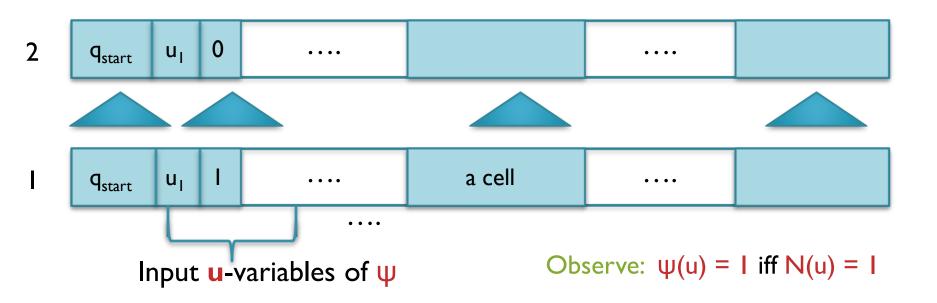


.



Main theorem: Step I



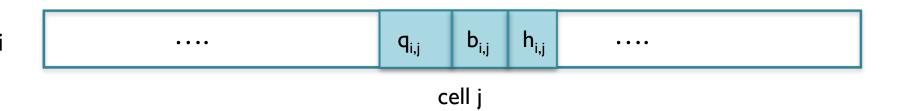


Recall Steps I and 2

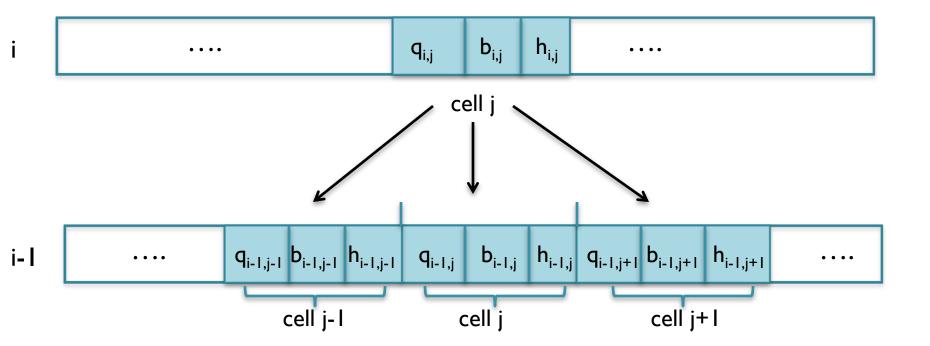
- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a Boolean circuit ψ of size poly(T(n))such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.
- <u>Step 2.</u> "Convert" circuit ψ to a CNF φ efficiently by introducing <u>auxiliary variables</u>.

• Think of $h_{i,j}$, $b_{i,j}$ and the bits of $q_{i,j}$ as <u>formal</u> <u>Boolean variables</u>.

auxiliary variables



Locality of computation: The variables h_{i,j}, b_{i,j} and q_{i,j} depend only on the variables
> h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},
> h_{i-1,j}, b_{i-1,j}, q_{i-1,j}, and
> h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}



- Hence,
 - $$\begin{split} \mathbf{b}_{ij} &= \mathbf{B}_{ij}(\mathbf{h}_{i-1,j-1}, \mathbf{b}_{i-1,j-1}, \mathbf{q}_{i-1,j}, \mathbf{b}_{i-1,j}, \mathbf{q}_{i-1,j}, \mathbf{h}_{i-1,j}, \mathbf{b}_{i-1,j+1}, \mathbf{b}_{i-1,j+1}, \mathbf{q}_{i-1,j+1}) \\ &= \text{a fixed function of the arguments depending only} \\ &\text{on N's transition function } \boldsymbol{\delta}. \end{split}$$
- The above equality can be captured by a <u>constant size</u> CNF Ψ_{ij} . Also, Ψ_{ij} is easily computable from δ .

- Hence,
 - $$\begin{split} \mathbf{b}_{ij} &= \mathbf{B}_{ij}(\mathbf{h}_{i-1,j-1}, \mathbf{b}_{i-1,j-1}, \mathbf{q}_{i-1,j}, \mathbf{b}_{i-1,j}, \mathbf{q}_{i-1,j}, \mathbf{h}_{i-1,j+1}, \mathbf{b}_{i-1,j+1}, \mathbf{q}_{i-1,j+1}) \\ &= \text{a fixed function of the arguments depending only} \\ &\text{on N's transition function } \boldsymbol{\delta}. \end{split}$$
- The above equality can be captured by a constant size CNF Ψ_{ij} . Also, Ψ_{ij} is easily computable from δ .

x = y iff $(x \land y) \lor (\neg x \land \neg y) = 1$.

- Similarly,
 - $$\begin{split} h_{ij} &= H_{ij}(h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j}, b_{i-1,j}, q_{i-1,j}, h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}) \\ &= a \text{ fixed function of the arguments depending only} \\ &\text{ on N's transition function } \delta. \end{split}$$
- The above equality can be captured by a <u>constant size</u> CNF Φ_{ij} . Also, Φ_{ij} is easily computable from δ .

• Similarly, $\begin{aligned} & \text{Similarly,} \quad \text{k-th bit of q_{ij} where $1 \leq k \leq \log |Q|$} \\ & \textbf{q}_{ijk} = C_{ijk}(h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1}, h_{i-1,j}, b_{i-1,j}, q_{i-1,j}, h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}) \\ & = a \text{ fixed function of the arguments depending only} \\ & \text{ on N's transition function } \delta. \end{aligned}$

• The above equality can be captured by a <u>constant size</u> CNF θ_{ijk} . Also, θ_{ijk} is easily computable from δ .

• Let λ be the conjunction of Ψ_{ij} , Φ_{ij} and θ_{ijk} for all i,j,k.

i ∈ [1,T(n)],
j ∈ [1,T(n)], and
k ∈ [1, log |Q|]

• λ is a CNF in the u-variables and the <u>auxiliary variables</u> $h_{i,i}$, $b_{i,j}$ and $q_{i,j,k}$. for all i,j,k. $|\lambda|$ is $O(T(n)^2)$.

• Let λ be the conjunction of Ψ_{ij} , Φ_{ij} and θ_{ijk} for all i,j,k.

i ∈ [1,T(n)],
j ∈ [1,T(n)], and
k ∈ [1, log |Q|]

- λ is a CNF in the u-variables and the <u>auxiliary variables</u> $h_{i,j}$, $b_{i,j}$ and $q_{i,j,k}$. for all i,j,k. $|\lambda|$ is O(T(n)²).
- Define $\phi = \lambda \wedge b_{T(n),I}$.

Observe: An assignment to u and the auxiliary variables satisfies λ if and only if it "captures" the computation of N on the assigned input u for T(n) steps.

- Observe: An assignment to u and the auxiliary variables satisfies λ if and only if it "captures" the computation of N on the assigned input u for T(n) steps.
- Hence, an assignment to u and the auxiliary variables satisfies \$\ophi\$ if and only if N(u) = 1, i.e., for every u,

 $\phi(u, \text{``auxiliary variables''}) \in SAT \iff N(u) = I.$

Recall the Main Theorem

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1.Then,
 - I. There's a CNF $\phi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \phi(u, "auxiliary variables")$ is satisfiable <u>as a function of the</u> <u>"auxiliary variables"</u> if and only if N(u) = I.
 - 2. ϕ is computable in time poly(T(n)) from N,T & n.
- $\phi(u, "auxiliary variables")$ is satisfiable <u>as a function of all</u> <u>the variables</u> if and only if $\exists u$ s.t N(u) = I.

Main theorem: Comments

- ϕ is a CNF of size O(T(n)²) and is also computable from N,T and n in O(T(n)²) time.
- Remark I. With some more effort, size \$\oplus can be brought down to O(T(n). log T(n)).
- Remark 2. The reduction from x to ϕ_x is not just a poly-time reduction, it is actually a <u>log-space reduction</u> (we'll define this later).

Main theorem: Comments

- φ is a function of u and some "auxiliary variables" (the b_{ij}, h_{ij} and q_{ijk} variables).
- Observe that once u is fixed <u>the values of the "auxiliary</u> <u>variables" are also determined</u> in any satisfying assignment for \$\overline\$.

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause has at most k literals.

e.g. a 2-CNF $\phi = (\mathbf{x}_1 \lor \mathbf{x}_2) \land (\mathbf{x}_3 \lor \neg \mathbf{x}_2)$

• Definition. k-SAT is the language consisting of all satisfiable k-CNFs.

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause has at most k literals.

e.g. a 2-CNF $\phi = (\mathbf{x}_1 \lor \mathbf{x}_2) \land (\mathbf{x}_3 \lor \neg \mathbf{x}_2)$

- Definition. k-SAT is the language consisting of all satisfiable k-CNFs.
- Theorem. **3-SAT** is NP-complete.

Proof sketch: $(x_1 \lor x_2 \lor x_3 \lor \neg x_4)$ is satisfiable iff $(x_1 \lor x_2 \lor z) \land (x_3 \lor \neg x_4 \lor \neg z)$ is satisfiable.