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Recap: Complexity Class NP 

 Definition. A language L ⊆ {0,1}* is in NP if there’s a 
polynomial function p: and a polynomial-time 
TM M (called the verifier) such that for every x, 

 

       x ∈ L             ∃u  ∈ {0,1}p(|x|)    s.t.  M(x, u) = 1 

u is called a certificate or witness 

for x (w.r.t L and M), if x ∈ L . 



Recap: Complexity Class NP 

 Definition. A language L ⊆ {0,1}* is in NP if there’s a 
polynomial function p: and a polynomial-time 
TM M (called the verifier) such that for every x, 

 

       x ∈ L             ∃u  ∈ {0,1}p(|x|)    s.t.  M(x, u) = 1 
 

 

 Class NP contains those problems (languages) which 
have such efficient verifiers. 



Class NP :  Examples 

 Vertex cover 

 

 0/1 integer programming 

 

 Integer factoring 

 

 Graph isomorphism 

 

 2-Diophantine solvability 



Recap: Is P = NP ? 

 Obviously,  P ⊆ NP. 

 

 Whether or not P = NP is an outstanding open 
question in mathematics and TCS! 

 

 Solving a problem does seem harder than verifying 
its solution, so most people believe that P ≠ NP.  



Recap: Polynomial-time reduction 

 Definition. We say a language L1 ⊆ {0,1}* is polynomial-
time (Karp) reducible to a language L2 ⊆ {0,1}* if there’s 
a polynomial-time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

L1 

L1 

L2 

L2 

f(L1) 

f(L1) 



Recap: NP-completeness 

 Definition.  A language L’ is NP-hard if for every L in 
NP,  L  ≤p  L’.  Further,  L’ is NP-complete if L’ is in NP 
and is NP-hard. 

 

 Observe.  If L’ is NP-hard and L’ is in P then P = NP.  If 
L’ is NP-complete then L’ in P if and only if P = NP.  

   

    

 

P 

NPC 

NP 

Hardest problems inside NP in the sense 
that if one NPC problem is in P then all 
problems in NP is in P. 



Recap: Few words on reductions 

 As to how we define a reduction from one language 
to the other (or one function to the other) is usually 
guided by a question on whether two complexity classes 
are different or identical. 

 

 For polynomial-time reductions, the question is 
whether or not P equals NP. 

 

 Reductions help us define complete problems (the 
‘hardest’ problems in a class) which in turn help us 
compare the complexity classes under consideration.  



Class NP :  Examples 

 Vertex cover  (NP-complete) 
 

 0/1 integer programming  (NP-complete) 
 

 3-coloring planar graphs (NP-complete) 
 

 2-Diophantine solvability  (NP-complete) 
 

 Integer factoring  (unlikely to be NP-complete) 
 

 Graph isomorphism  (Quasi-P) 



Recap: How to show existence of an 
NPC problem? 

 Let L’ = { (α, x, 1m, 1t ) :  there exists a u ∈{0,1}m s.t.  Mα 
accepts (x, u) in t steps } 

 

 Observation.  L’ is NP-complete. 

 

 The language L’ involves Turing machine in its definition. 
Next, we’ll see an example of an NP-complete problem 
that is arguably more natural. 

 

 



A natural NP-complete problem 

 

 Definition. A Boolean formula on variables x1, …, xn 

consists of AND, OR and NOT operations.  

             e.g.  ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 

 Definition.  A Boolean formula ϕ is satisfiable if there’s a 
{0,1}-assignment to its variables that makes ϕ evaluate 
to 1. 

 

 

 



A natural NP-complete problem 

 Definition. A Boolean formula is in Conjunctive Normal 
Form (CNF) if it is an AND of OR of literals.  

             e.g.  ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 

 

 literals 
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A natural NP-complete problem 

 Definition. A Boolean formula is in Conjunctive Normal 
Form (CNF) if it is an AND of OR of literals.  

             e.g.  ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 

 Definition. Let SAT be the language consisting of all 
satisfiable CNF formulae.  

 

 Theorem. (Cook 1971, Levin 1973) SAT is NP-complete. 

                               Easy to see that SAT is in NP.   

                                    Need to show that SAT is NP-hard. 

 



Proof of Cook-Levin Theorem 



Cook-Levin theorem:  Proof 

 Main idea:  Computation is local; i.e., every step of 
computation looks at and changes only constantly many 
bits;  and this step can be implemented by a small CNF 
formula.   
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Cook-Levin theorem:  Proof 

 Main idea:  Computation is local; i.e., every step of 
computation looks at and changes only constantly many 
bits;  and this step can be implemented by a small CNF 
formula.   

 

 Let L ∈ NP.  We intend to come up with a polynomial-
time computable function f:  x        ϕx   s.t., 

    x ∈ L          ϕx ∈ SAT   

 

 Notation:   |ϕx| := size of ϕx  

                                            = number of ∨ or ∧ in ϕx            



Cook-Levin theorem:  Proof 
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Cook-Levin theorem:  Proof 

 Language L has a poly-time verifier M such that 

              x∈L         ∃u ∈{0,1}p(|x|)  s.t.  M(x, u) = 1 

 

 Idea: For any fixed x, we can capture the computation 
of M(x, ..) by a CNF ϕx such that   

  

    ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1               ϕx is satisfiable 

 

 For any fixed x,   M(x, ..) is a deterministic TM that 
takes u as input and runs in time polynomial in |u|. 



Cook-Levin theorem:  Proof 

 Main Theorem.  Let N be a deterministic TM that runs 
in time T(n) on every input u of length n, and outputs 
0/1. Then,     (think of N = M(x, ..) for a fixed x.) 

 



Cook-Levin theorem:  Proof 

 Main Theorem.  Let N be a deterministic TM that runs 
in time T(n) on every input u of length n, and outputs 
0/1. Then,     

1. There’s a CNF ϕ(u, “auxiliary variables”) of size 
poly(T(n)) such that for every u, ϕ(u, “auxiliary 
variables”) is satisfiable as a function of the 
“auxiliary variables”  if and only if N(u) =1. 

2. ϕ is computable in time poly(T(n)) from N, T & n. 
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Cook-Levin theorem:  Proof 

 Main Theorem.  Let N be a deterministic TM that runs 
in time T(n) on every input u of length n, and outputs 
0/1. Then,     

1. There’s a CNF ϕ(u, “auxiliary variables”) of size 
poly(T(n)) such that for every u, ϕ(u, “auxiliary 
variables”) is satisfiable as a function of the 
“auxiliary variables”  if and only if N(u) =1. 

2. ϕ is computable in time poly(T(n)) from N, T & n. 

 

  Cook-Levin theorem follows from above! 

 



Proof of Main Theorem 



Main theorem:  Proof 

 Step 1.  Let N be a deterministic TM that runs in time 
T(n) on every input u of length n, and outputs 0/1. 
Then,     

1. There’s a Boolean circuit ψ of size poly(T(n)) 
such that ψ(u) = 1 if and only if N(u) =1. 

2. ψ is computable in time poly(T(n)) from N, T & n. 

 

 Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by 
introducing auxiliary variables. 

 



Main theorem:  Proof 

 Step 1.  Let N be a deterministic TM that runs in time 
T(n) on every input u of length n, and outputs 0/1. 
Then,     

1. There’s a Boolean circuit ψ of size poly(T(n)) 
such that ψ(u) = 1 if and only if N(u) =1. 

2. ψ is computable in time poly(T(n)) from N, T & n. 

 

 Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by 
introducing auxiliary variables. 

 

The key insight:  ψ  “encodes” N. 



Main theorem:  Step 1 

 Assume (w.l.o.g) that N has a single tape and it writes 
its output on the first cell at the end of computation. 



Main theorem:  Step 1 

 Assume (w.l.o.g) that N has a single tape and it writes 
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 A step of computation of N consists of  

 Changing the content of the current cell 

 Changing state 

 Changing head position 



Main theorem:  Step 1 

 Assume (w.l.o.g) that N has a single tape and it writes 
its output on the first cell at the end of computation. 

 

 A step of computation of N consists of  

 Changing the content of the current cell 

 Changing state 

 Changing head position 

 

 Think of a ‘compound’ tape: Every cell stores the 
current state, a bit content and head indicator. 



Main theorem:  Step 1 

…. …. 

A compound tape 

a cell 

h b Q 



Main theorem:  Step 1 

…. …. 

A compound tape 

a cell 

h b Q 

h = 1    if head points to this cell 
   = 0    otherwise 



Main theorem:  Step 1 

…. …. 

A compound tape 

a cell 

h b Q 

0/1 bit content of this cell 



Main theorem:  Step 1 

…. …. 

A compound tape 

a cell 

h b Q 

Current state when h = 1 



Main theorem:  Step 1 

…. …. 

A compound tape 

a cell 

h b Q 

Constant number of bits 



Main theorem:  Step 1 

…. …. 

A compound tape 

a cell 

• Computation of N on inputs of length n can be 
completely described by a sequence of T(n) 
compound tapes, the i-th of which captures a 
`snapshot’ of N’s computation at the i-th step.  



Main theorem:  Step 1 

…. …. 

A compound tape 

a cell qstart     u1    1 1 

first input bit 



Main theorem:  Step 1 

…. …. 

A compound tape 

a cell qstart     u1    1 1 

…. …. qstart     u1    0 2 



Main theorem:  Step 1 

…. …. 

A compound tape 

a cell qstart     u1    1 1 

…. …. qstart     u1    0 2 

…. …. T(n) qaccept   o/p   1 

. 

. 

. 

T(n)  cells 



Main theorem:  Step 1 

…. 

cell j 

qi,j       bi,j     hi,j i …. 

• hi,j  =  1  iff  head points to cell j at i-th step 
• bi,j  =  bit content of cell j at i-th step 
• qi,j  =  a sequence of log |Q| bits which contains the 

current state info if hi,j = 1; otherwise we don’t care 



Main theorem:  Step 1 

…. 

cell j 

qi,j       bi,j     hi,j i …. 

• Locality of computation:  The bits in hi,j, 
bi,j and qi,j depend only on the bits in  
 hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , 
 hi-1,j ,  bi-1,j ,  qi-1,j ,      
 hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1 

…. 

cell j 

qi-1,j    bi-1,j    hi-1,j i-1 …. qi-1,j-1 bi-1,j-1  hi-1,j-1 qi-1,j+1 bi-1,j+1   hi-1,j+1 

cell j-1 cell j+1 
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…. qi,j       bi,j     hi,j i …. 

• Locality of computation:  The bits in hi,j, 
bi,j and qi,j depend only on the bits in  
 hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , 
 hi-1,j ,  bi-1,j ,  qi-1,j , 
 hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1 

…. 

cell j 

qi-1,j    bi-1,j    hi-1,j i-1 …. qi-1,j-1 bi-1,j-1  hi-1,j-1 qi-1,j+1 bi-1,j+1   hi-1,j+1 

cell j-1 cell j+1 

constant size circuit 



Main theorem:  Step 1 

…. …. 

Circuit ψ 

a cell qstart     u1    1 1 

…. …. qstart     u1    0 2 

…. …. T(n) qaccept   o/p   1 

. 

. 

. 

Output of ψ 

…. 

Input u-variables of ψ 



Main theorem:  Step 1 

…. …. 

Observe:  ψ(u) = 1 iff N(u) = 1 

a cell qstart     u1    1 1 

…. …. qstart     u1    0 2 

…. …. T(n) qaccept   o/p   1 

. 

. 

. 

Output of ψ 

…. 

Input u-variables of ψ 



Recall Steps 1 and 2 

 Step 1.  Let N be a deterministic TM that runs in time 
T(n) on every input u of length n, and outputs 0/1. 
Then,     

1. There’s a Boolean circuit ψ of size poly(T(n)) 
such that ψ(u) = 1 if and only if N(u) =1. 

2. ψ is computable in time poly(T(n)) from N, T & n. 

 

 Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by 
introducing auxiliary variables. 

 



Main theorem:  Step 2 

…. 

cell j 

qi,j       bi,j     hi,j i …. 

• Think of hi,j, bi,j and the bits of qi,j as formal 
Boolean variables. 

auxiliary variables 



Main theorem:  Step 2 

…. 

cell j 

qi,j       bi,j     hi,j i …. 

• Locality of computation:  The variables hi,j, bi,j 
and qi,j depend only on the variables  
 hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , 
 hi-1,j ,  bi-1,j ,  qi-1,j , and 
 hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1 

…. 

cell j 

qi-1,j    bi-1,j    hi-1,j i-1 …. qi-1,j-1 bi-1,j-1  hi-1,j-1 qi-1,j+1 bi-1,j+1   hi-1,j+1 

cell j-1 cell j+1 



Main theorem:  Step 2 

 Hence, 

    bij = Bij(hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , hi-1,j ,  bi-1,j ,  qi-1,j , hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1) 

        = a fixed function of the arguments depending only 

           on N’s transition function δ. 

 

 The above equality can be captured by a constant size 
CNF Ψij .  Also, Ψij is easily computable from δ. 
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    bij = Bij(hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , hi-1,j ,  bi-1,j ,  qi-1,j , hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1) 

        = a fixed function of the arguments depending only 

           on N’s transition function δ. 

 

 The above equality can be captured by a constant size 
CNF Ψij .  Also, Ψij is easily computable from δ. 

 
x = y   iff   (x ∧ y) ∨ (¬x ∧ ¬y) = 1. 



Main theorem:  Step 2 

 Similarly, 

    hij = Hij(hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , hi-1,j ,  bi-1,j ,  qi-1,j , hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1) 

        = a fixed function of the arguments depending only 

           on N’s transition function δ. 

 

 The above equality can be captured by a constant size 
CNF Φij .  Also, Φij is easily computable from δ. 

 



Main theorem:  Step 2 

 Similarly, 

  qijk = Cijk(hi-1,j-1 ,  bi-1,j-1 ,  qi-1,j-1 , hi-1,j ,  bi-1,j ,  qi-1,j , hi-1,j+1 ,  bi-1,j+1 ,  qi-1,j+1) 

       = a fixed function of the arguments depending only 

           on N’s transition function δ. 

 

 The above equality can be captured by a constant size 
CNF θijk .  Also, θijk is easily computable from δ. 

 

k-th bit of qij where  1  ≤  k  ≤  log |Q| 



Main theorem:  Step 2 

 Let λ be the conjunction of Ψij , Φij and θijk for all   i, j, 
k.   

 i ∈ [1, T(n)] , 

 j ∈ [1, T(n)] , and 

 k ∈ [1, log |Q|]  

 

 λ is a CNF in the u-variables and the auxiliary variables 
hi,j, bi,j and qi,j,k. for all i,j,k.   |λ| is O(T(n)2).  
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 Let λ be the conjunction of Ψij , Φij and θijk for all   i, j, 
k.   

 i ∈ [1, T(n)] , 

 j ∈ [1, T(n)] , and 

 k ∈ [1, log |Q|]  

 

 λ is a CNF in the u-variables and the auxiliary variables 
hi,j, bi,j and qi,j,k. for all i,j,k.   |λ| is O(T(n)2).  

 

 Define ϕ = λ ∧ bT(n),1 . 

 

 



Main theorem:  Step 2 

 Observe: An assignment to u and the auxiliary variables 
satisfies λ if and only if it “captures” the computation of 
N on the assigned input u for T(n) steps.  

 

 

 

   



Main theorem:  Step 2 

 Observe: An assignment to u and the auxiliary variables 
satisfies λ if and only if it “captures” the computation of 
N on the assigned input u for T(n) steps.   

 

 Hence, an assignment to u and the auxiliary variables 
satisfies ϕ if and only if N(u) = 1, i.e.,  for every u,  

 

 

   

ϕ(u, “auxiliary variables”) ∈ SAT         N(u) =1. 



Recall the Main Theorem 

 Main Theorem.  Let N be a deterministic TM that runs 
in time T(n) on every input u of length n, and outputs 
0/1. Then,     

1. There’s a CNF ϕ(u, “auxiliary variables”) of size 
poly(T(n)) such that for every u, ϕ(u, “auxiliary 
variables”) is satisfiable as a function of the 
“auxiliary variables”  if and only if N(u) =1. 

2. ϕ is computable in time poly(T(n)) from N, T & n. 

  

 ϕ(u, “auxiliary variables”) is satisfiable as a function of all 
the variables if and only if ∃u s.t N(u) =1. 

 



Main theorem:  Comments 

 ϕ is a CNF of size O(T(n)2) and is also computable 
from N, T and n in O(T(n)2) time. 

 

 Remark 1. With some more effort, size ϕ can be 
brought down to O(T(n). log T(n)). 

 

 Remark 2. The reduction from x to ϕx is not just a 
poly-time reduction, it is actually a log-space reduction 
(we’ll define this later). 

 

 

 



Main theorem:  Comments 

 ϕ is a function of u and some “auxiliary variables”  (the 
bij, hij and qijk variables). 

 

 Observe that once u is fixed the values of the “auxiliary 
variables” are also determined in any satisfying 
assignment for ϕ. 

 

 Each clause of ϕ has only constantly many 
literals! 

 



3SAT is NP-complete 

 Definition. A CNF is a called a k-CNF if every clause 
has at most k literals. 

             e.g.    a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 

 Definition. k-SAT is the language consisting of all 
satisfiable k-CNFs.  

 

 



3SAT is NP-complete 

 Definition. A CNF is a called a k-CNF if every clause 
has at most k literals. 

             e.g.    a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 

 Definition. k-SAT is the language consisting of all 
satisfiable k-CNFs.  

 

 Theorem.  3-SAT is NP-complete.  

 Proof sketch:    (x1 ∨ x2 ∨ x3 ∨ ¬x4 ) is satisfiable iff   (x1 ∨ 
x2 ∨ z) ∧ ( x3 ∨ ¬x4 ∨ ¬z) is satisfiable. 

 

 


