
Computational Complexity Theory

Lecture 4: Cook-Levin theorem

Department of Computer Science,
Indian Institute of Science

Recap: Complexity Class NP

 Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

 x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

u is called a certificate or witness

for x (w.r.t L and M), if x ∈ L .

Recap: Complexity Class NP

 Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

 x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

 Class NP contains those problems (languages) which
have such efficient verifiers.

Class NP : Examples

 Vertex cover

 0/1 integer programming

 Integer factoring

 Graph isomorphism

 2-Diophantine solvability

Recap: Is P = NP ?

 Obviously, P ⊆ NP.

 Whether or not P = NP is an outstanding open
question in mathematics and TCS!

 Solving a problem does seem harder than verifying
its solution, so most people believe that P ≠ NP.

Recap: Polynomial-time reduction

 Definition. We say a language L1 ⊆ {0,1}* is polynomial-
time (Karp) reducible to a language L2 ⊆ {0,1}* if there’s
a polynomial-time computable function f s.t.

 x∈L1 f(x)∈L2

L1

L1

L2

L2

f(L1)

f(L1)

Recap: NP-completeness

 Definition. A language L’ is NP-hard if for every L in
NP, L ≤p L’. Further, L’ is NP-complete if L’ is in NP
and is NP-hard.

 Observe. If L’ is NP-hard and L’ is in P then P = NP. If
L’ is NP-complete then L’ in P if and only if P = NP.

P

NPC

NP

Hardest problems inside NP in the sense
that if one NPC problem is in P then all
problems in NP is in P.

Recap: Few words on reductions

 As to how we define a reduction from one language
to the other (or one function to the other) is usually
guided by a question on whether two complexity classes
are different or identical.

 For polynomial-time reductions, the question is
whether or not P equals NP.

 Reductions help us define complete problems (the
‘hardest’ problems in a class) which in turn help us
compare the complexity classes under consideration.

Class NP : Examples

 Vertex cover (NP-complete)

 0/1 integer programming (NP-complete)

 3-coloring planar graphs (NP-complete)

 2-Diophantine solvability (NP-complete)

 Integer factoring (unlikely to be NP-complete)

 Graph isomorphism (Quasi-P)

Recap: How to show existence of an
NPC problem?

 Let L’ = { (α, x, 1m, 1t) : there exists a u ∈{0,1}m s.t. Mα
accepts (x, u) in t steps }

 Observation. L’ is NP-complete.

 The language L’ involves Turing machine in its definition.
Next, we’ll see an example of an NP-complete problem
that is arguably more natural.

A natural NP-complete problem

 Definition. A Boolean formula on variables x1, …, xn

consists of AND, OR and NOT operations.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 Definition. A Boolean formula ϕ is satisfiable if there’s a
{0,1}-assignment to its variables that makes ϕ evaluate
to 1.

A natural NP-complete problem

 Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 literals

A natural NP-complete problem

 Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 clauses

A natural NP-complete problem

 Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

A natural NP-complete problem

 Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

 Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

A natural NP-complete problem

 Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

 Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

 Easy to see that SAT is in NP.

 Need to show that SAT is NP-hard.

Proof of Cook-Levin Theorem

Cook-Levin theorem: Proof

 Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF
formula.

Cook-Levin theorem: Proof

 Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF
formula.

 Let L ∈ NP. We intend to come up with a polynomial-
time computable function f: x ϕx s.t.,

 x ∈ L ϕx ∈ SAT

Cook-Levin theorem: Proof

 Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF
formula.

 Let L ∈ NP. We intend to come up with a polynomial-
time computable function f: x ϕx s.t.,

 x ∈ L ϕx ∈ SAT

 Notation: |ϕx| := size of ϕx

 = number of ∨ or ∧ in ϕx

Cook-Levin theorem: Proof

 Language L has a poly-time verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

Cook-Levin theorem: Proof

 Language L has a poly-time verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 Idea: For any fixed x, we can capture the computation
of M(x, ..) by a CNF ϕx such that

 ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1 ϕx is satisfiable

Cook-Levin theorem: Proof

 Language L has a poly-time verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 Idea: For any fixed x, we can capture the computation
of M(x, ..) by a CNF ϕx such that

 ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1 ϕx is satisfiable

 For any fixed x, M(x, ..) is a deterministic TM that
takes u as input and runs in time polynomial in |u|.

Cook-Levin theorem: Proof

 Main Theorem. Let N be a deterministic TM that runs
in time T(n) on every input u of length n, and outputs
0/1. Then, (think of N = M(x, ..) for a fixed x.)

Cook-Levin theorem: Proof

 Main Theorem. Let N be a deterministic TM that runs
in time T(n) on every input u of length n, and outputs
0/1. Then,

1. There’s a CNF ϕ(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ϕ(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ϕ is computable in time poly(T(n)) from N, T & n.

Cook-Levin theorem: Proof

 Main Theorem. Let N be a deterministic TM that runs
in time T(n) on every input u of length n, and outputs
0/1. Then,

1. There’s a CNF ϕ(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ϕ(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ϕ is computable in time poly(T(n)) from N, T & n.

 ϕ(u, “auxiliary variables”) is satisfiable as a function of all
the variables if and only if ∃u s.t N(u) =1.

Cook-Levin theorem: Proof

 Main Theorem. Let N be a deterministic TM that runs
in time T(n) on every input u of length n, and outputs
0/1. Then,

1. There’s a CNF ϕ(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ϕ(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ϕ is computable in time poly(T(n)) from N, T & n.

 Cook-Levin theorem follows from above!

Proof of Main Theorem

Main theorem: Proof

 Step 1. Let N be a deterministic TM that runs in time
T(n) on every input u of length n, and outputs 0/1.
Then,

1. There’s a Boolean circuit ψ of size poly(T(n))
such that ψ(u) = 1 if and only if N(u) =1.

2. ψ is computable in time poly(T(n)) from N, T & n.

 Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by
introducing auxiliary variables.

Main theorem: Proof

 Step 1. Let N be a deterministic TM that runs in time
T(n) on every input u of length n, and outputs 0/1.
Then,

1. There’s a Boolean circuit ψ of size poly(T(n))
such that ψ(u) = 1 if and only if N(u) =1.

2. ψ is computable in time poly(T(n)) from N, T & n.

 Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by
introducing auxiliary variables.

The key insight: ψ “encodes” N.

Main theorem: Step 1

 Assume (w.l.o.g) that N has a single tape and it writes
its output on the first cell at the end of computation.

Main theorem: Step 1

 Assume (w.l.o.g) that N has a single tape and it writes
its output on the first cell at the end of computation.

 A step of computation of N consists of

 Changing the content of the current cell

 Changing state

 Changing head position

Main theorem: Step 1

 Assume (w.l.o.g) that N has a single tape and it writes
its output on the first cell at the end of computation.

 A step of computation of N consists of

 Changing the content of the current cell

 Changing state

 Changing head position

 Think of a ‘compound’ tape: Every cell stores the
current state, a bit content and head indicator.

Main theorem: Step 1

…. ….

A compound tape

a cell

h b Q

Main theorem: Step 1

…. ….

A compound tape

a cell

h b Q

h = 1 if head points to this cell
 = 0 otherwise

Main theorem: Step 1

…. ….

A compound tape

a cell

h b Q

0/1 bit content of this cell

Main theorem: Step 1

…. ….

A compound tape

a cell

h b Q

Current state when h = 1

Main theorem: Step 1

…. ….

A compound tape

a cell

h b Q

Constant number of bits

Main theorem: Step 1

…. ….

A compound tape

a cell

• Computation of N on inputs of length n can be
completely described by a sequence of T(n)
compound tapes, the i-th of which captures a
`snapshot’ of N’s computation at the i-th step.

Main theorem: Step 1

…. ….

A compound tape

a cell qstart u1 1 1

first input bit

Main theorem: Step 1

…. ….

A compound tape

a cell qstart u1 1 1

…. …. qstart u1 0 2

Main theorem: Step 1

…. ….

A compound tape

a cell qstart u1 1 1

…. …. qstart u1 0 2

…. …. T(n) qaccept o/p 1

.

.

.

T(n) cells

Main theorem: Step 1

….

cell j

qi,j bi,j hi,j i ….

• hi,j = 1 iff head points to cell j at i-th step
• bi,j = bit content of cell j at i-th step
• qi,j = a sequence of log |Q| bits which contains the

current state info if hi,j = 1; otherwise we don’t care

Main theorem: Step 1

….

cell j

qi,j bi,j hi,j i ….

• Locality of computation: The bits in hi,j,
bi,j and qi,j depend only on the bits in
 hi-1,j-1 , bi-1,j-1 , qi-1,j-1 ,
 hi-1,j , bi-1,j , qi-1,j ,
 hi-1,j+1 , bi-1,j+1 , qi-1,j+1

….

cell j

qi-1,j bi-1,j hi-1,j i-1 …. qi-1,j-1 bi-1,j-1 hi-1,j-1 qi-1,j+1 bi-1,j+1 hi-1,j+1

cell j-1 cell j+1

Main theorem: Step 1

…. qi,j bi,j hi,j i ….

• Locality of computation: The bits in hi,j,
bi,j and qi,j depend only on the bits in
 hi-1,j-1 , bi-1,j-1 , qi-1,j-1 ,
 hi-1,j , bi-1,j , qi-1,j ,
 hi-1,j+1 , bi-1,j+1 , qi-1,j+1

….

cell j

qi-1,j bi-1,j hi-1,j i-1 …. qi-1,j-1 bi-1,j-1 hi-1,j-1 qi-1,j+1 bi-1,j+1 hi-1,j+1

cell j-1 cell j+1

constant size circuit

Main theorem: Step 1

…. ….

Circuit ψ

a cell qstart u1 1 1

…. …. qstart u1 0 2

…. …. T(n) qaccept o/p 1

.

.

.

Output of ψ

….

Input u-variables of ψ

Main theorem: Step 1

…. ….

Observe: ψ(u) = 1 iff N(u) = 1

a cell qstart u1 1 1

…. …. qstart u1 0 2

…. …. T(n) qaccept o/p 1

.

.

.

Output of ψ

….

Input u-variables of ψ

Recall Steps 1 and 2

 Step 1. Let N be a deterministic TM that runs in time
T(n) on every input u of length n, and outputs 0/1.
Then,

1. There’s a Boolean circuit ψ of size poly(T(n))
such that ψ(u) = 1 if and only if N(u) =1.

2. ψ is computable in time poly(T(n)) from N, T & n.

 Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by
introducing auxiliary variables.

Main theorem: Step 2

….

cell j

qi,j bi,j hi,j i ….

• Think of hi,j, bi,j and the bits of qi,j as formal
Boolean variables.

auxiliary variables

Main theorem: Step 2

….

cell j

qi,j bi,j hi,j i ….

• Locality of computation: The variables hi,j, bi,j
and qi,j depend only on the variables
 hi-1,j-1 , bi-1,j-1 , qi-1,j-1 ,
 hi-1,j , bi-1,j , qi-1,j , and
 hi-1,j+1 , bi-1,j+1 , qi-1,j+1

….

cell j

qi-1,j bi-1,j hi-1,j i-1 …. qi-1,j-1 bi-1,j-1 hi-1,j-1 qi-1,j+1 bi-1,j+1 hi-1,j+1

cell j-1 cell j+1

Main theorem: Step 2

 Hence,

 bij = Bij(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)

 = a fixed function of the arguments depending only

 on N’s transition function δ.

 The above equality can be captured by a constant size
CNF Ψij . Also, Ψij is easily computable from δ.

Main theorem: Step 2

 Hence,

 bij = Bij(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)

 = a fixed function of the arguments depending only

 on N’s transition function δ.

 The above equality can be captured by a constant size
CNF Ψij . Also, Ψij is easily computable from δ.

x = y iff (x ∧ y) ∨ (¬x ∧ ¬y) = 1.

Main theorem: Step 2

 Similarly,

 hij = Hij(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)

 = a fixed function of the arguments depending only

 on N’s transition function δ.

 The above equality can be captured by a constant size
CNF Φij . Also, Φij is easily computable from δ.

Main theorem: Step 2

 Similarly,

 qijk = Cijk(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)

 = a fixed function of the arguments depending only

 on N’s transition function δ.

 The above equality can be captured by a constant size
CNF θijk . Also, θijk is easily computable from δ.

k-th bit of qij where 1 ≤ k ≤ log |Q|

Main theorem: Step 2

 Let λ be the conjunction of Ψij , Φij and θijk for all i, j,
k.

 i ∈ [1, T(n)] ,

 j ∈ [1, T(n)] , and

 k ∈ [1, log |Q|]

 λ is a CNF in the u-variables and the auxiliary variables
hi,j, bi,j and qi,j,k. for all i,j,k. |λ| is O(T(n)2).

Main theorem: Step 2

 Let λ be the conjunction of Ψij , Φij and θijk for all i, j,
k.

 i ∈ [1, T(n)] ,

 j ∈ [1, T(n)] , and

 k ∈ [1, log |Q|]

 λ is a CNF in the u-variables and the auxiliary variables
hi,j, bi,j and qi,j,k. for all i,j,k. |λ| is O(T(n)2).

 Define ϕ = λ ∧ bT(n),1 .

Main theorem: Step 2

 Observe: An assignment to u and the auxiliary variables
satisfies λ if and only if it “captures” the computation of
N on the assigned input u for T(n) steps.

Main theorem: Step 2

 Observe: An assignment to u and the auxiliary variables
satisfies λ if and only if it “captures” the computation of
N on the assigned input u for T(n) steps.

 Hence, an assignment to u and the auxiliary variables
satisfies ϕ if and only if N(u) = 1, i.e., for every u,

ϕ(u, “auxiliary variables”) ∈ SAT N(u) =1.

Recall the Main Theorem

 Main Theorem. Let N be a deterministic TM that runs
in time T(n) on every input u of length n, and outputs
0/1. Then,

1. There’s a CNF ϕ(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ϕ(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ϕ is computable in time poly(T(n)) from N, T & n.

 ϕ(u, “auxiliary variables”) is satisfiable as a function of all
the variables if and only if ∃u s.t N(u) =1.

Main theorem: Comments

 ϕ is a CNF of size O(T(n)2) and is also computable
from N, T and n in O(T(n)2) time.

 Remark 1. With some more effort, size ϕ can be
brought down to O(T(n). log T(n)).

 Remark 2. The reduction from x to ϕx is not just a
poly-time reduction, it is actually a log-space reduction
(we’ll define this later).

Main theorem: Comments

 ϕ is a function of u and some “auxiliary variables” (the
bij, hij and qijk variables).

 Observe that once u is fixed the values of the “auxiliary
variables” are also determined in any satisfying
assignment for ϕ.

 Each clause of ϕ has only constantly many
literals!

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

 e.g. a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

 e.g. a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

 Theorem. 3-SAT is NP-complete.

 Proof sketch: (x1 ∨ x2 ∨ x3 ∨ ¬x4) is satisfiable iff (x1 ∨
x2 ∨ z) ∧ (x3 ∨ ¬x4 ∨ ¬z) is satisfiable.

