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Recap: 3SAT is NP-complete

e Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

eg. a2-CNF o =(x; Vx)A(X3V 71%,)

e Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

e Theorem. 3-SAT is NP-complete.



NP complete problems: Examples

—

* Independent Set
e Clique

* Vertex cover p—
e 0/] integer programming
e Max-Cut

e 3-coloring planar graphs
e 2-Diophantine solvability

Ref:



NPC problems from number theory

e SqRootMod: Given natural numbers a, b and c, check
if there exists a natural number x = ¢ such that

x> = a (mod b).

e Theorem: SqRootMod is NP-complete.



NPC problems from number theory

e Variant IntFact : Given natural numbers L, U and N,

check if there exists a natural number d € [L, U]
such that d divides N.

e Claim: Variant IntFact is NP-hard under randomized
boly-time reduction.

e Reference:
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785



A peculiar NP problem

e Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size = s that computes f.

* Easy to see that MCSP is in NP.

e Is MCSP NP-complete? Not known!
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A peculiar NP problem

e Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size = s that computes f.

* Easy to see that MCSP is in NP.

e Is MCSP NP-complete? Not known!

e Partial fn. MCSP is NP-hard under poly-time
randomized reductions. (Hirahara 2022)



More NP-complete problems



Example |: Independent Set

o INDSET :={(G, k): G has independent set of size k}

e Goal: Design a poly-time reduction f s.t.
x € 3SAT e f(x) € INDSET

e Reduction from 3SAT: Recall, a reduction is just an
efficient algorithm that takes input a 3CNF ¢ and
outputs a (G, k) tuple s.t

¢ € 3SAT 4= (G, k) € INDSET



Example |: Independent Set

0 Let & be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.



Example |: Independent Set

0 Let & be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

A vertex stands for a partial
assignment of the variables in
C, that satisfies the clause

For every clause C. form a complete
graph (cluster) on 7 vertices



Example |: Independent Set

e Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

G
Add an edge between two
vertices in two different clusters if

C, the partial assignments they stand C,
for are incompatible.




Example |: Independent Set

e Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Graph G on 7m vertices



Example |: Independent Set

e Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

o Obs: ¢ is satisfiable iff G has an ind. set of size m.



Example 2: Clique

e CLIQUE :={(H, k): H has a clique of size k}

e Goal: Design a poly-time reduction f s.t.

x € INDSET  «= f(x) € CLIQUE

* Reduction from INDSET: The reduction algorithm
computes G from G

(G, k) € INDSET &= (G, k) € CLIQUE



Example 3: Vertex Cover

e VCover := {(H, k): H has a vertex cover of size k}

e Goal: Design a poly-time reduction f s.t.

x € INDSET &= f(x) €VCover

e Reduction from INDSET: Let n be the number of
vertices in G. The reduction algorithm maps (G, k) to

(G, n-k).
(G, k) € INDSET &= (G,n-k) €VCover



Example 4: 0/1 Integer Programming

e 0/1 IProg := Set of satisfiable 0/| integer programs

* A 0O/l integer program is a set of linear inequalities
with rational coefficients and the variables are
allowed to take only 0/1 values.

° A clause is mapped to a linear
inequality as follows



Example 5: Max Cut

e MaxCut : Given a graph find a cut with the max size.

° Acutof G=(V,E)is atuple (UV\U),U CV. Size of a
cut (U,V\U) is the number of edges from U to V\U.

e MinVCover: Given a graph H, find a vertex cover in
H that has the min size.

e Obs: From MinVCover(H), we can readily check if (H,
k) € VCover, for any k.



Example 5: Max Cut

e MaxCut : Given a graph find a cut with the max size.

e Acutof G = (V,E) is a tuple (U,V\U),U C V. Size of a
cut (U,V\U) is the number of edges from U to V\U.

o GGoal:A poly-time reduction from MinVCover to
MaxCut.

f
H = G s.t

Size of a MaxCut(G) = 2.|E(H)| - [MinVCover(H)|




Example 5: Max Cut

f
e The reduction: H = G

deg,(u) — | edges
between u and w

H G

e G is formed by adding a new vertex w and adding
deg,,(u) — | edges between every u € V(H) and w.



Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - [MinVCover(H)|
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e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.
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o Let S;(U) := no. of edges in G with exactly one end
vertex incident on a vertex in U.
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e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Let S;(U) = no. of edges going out of U in G.



Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

o Let S;(U) = size of the cut (U,V\U + w).
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uelU

=5y(U) + uzeglegH(U) - [U]



Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then Sc(U) = S,(U) + £ (deg,(u) — 1)

uelU

=Sp(U) + uzeglegH(U) U

Obs: Twice the number of
edges in H with at least one
end vertex in U.




Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then Sc(U) = S,(U) + £ (deg,(u) — 1)

uelU

=5y(U) + uzeglegH(U) - [U]

= 2|EH(U)| - |U| E,,(U) := Set of edges in H with at
least one end vertex in U.



Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|Sc(U) = 2[E4(U)] - U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.
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Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|S.(U) = 2[E(U)| - |U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U

IS a yertex cover in H U must be a minVCover in H

B
= S_(U) = |MaxCut(G)| = 2.|[E(H)| - |U]



Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|S.(U) = 2[E(U)| - |U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.
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Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|Sc(U) = 2[E4(U)] - U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.

Thus, the proof of the above claim follows from the proposition



Example 5: Max Cut

e Proof of the Proposition: Suppose U is not a vertex

cover Fm o
VWU +w o \ degu(u)-! edges

\
. w

U

I' "




Example 5: Max Cut

e Proof of the Proposition: Suppose U is not a vertex

cover
V\U + w

Gain: deg,(u)-1 + | edges.
Loss: At most deg,,(u)-| edges, these are the edges going from U to u.
Net gain: At least | edge. Hence the cut is not a max cut.



