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Recap:  More NP complete problems 

 Independent Set 

 Clique 

 Vertex cover   

 0/1 integer programming  

 Max-Cut  (NP-hard) 
 

 

 3-coloring planar graphs    Stockmeyer 1973 

 2-Diophantine solvability   Adleman & Manders 1975 
 

Karp 1972 

Ref:  Garey & Johnson,  “Computers and Intractability”  1979 



Recap:  NPC problems from NT 

 SqRootMod: Given natural numbers a, b and c, check 
if there exists a natural number x ≤ c such that  

                       x2  =  a  (mod  b) .   

 

 Theorem:   SqRootMod is NP-complete. 

                              Manders & Adleman 1976 



Recap:  NPC problems from NT 

 Variant_IntFact : Given natural numbers L, U and N, 
check if there exists a natural number d ∈ [L, U] 
such that d divides N. 

 

 Claim: Variant_IntFact is NP-hard under randomized 
poly-time reduction. 

 

 Reference: 
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785 



Recap:  A peculiar NP problem 

 Minimum Circuit Size Problem (MCSP):  Given the 
truth table of a Boolean function f and an integer s, 
check if there is a circuit of size ≤ s that computes f. 

 

 Easy to see that MCSP is in NP. 

 

 Is  MCSP  NP-complete?  Not known!  

 Multi-output MCSP & Partial fn. MCSP are NP-hard 
under poly-time randomized reductions.   



Search versus Decision 



Search version of NP problems 

 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 
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• Remark:  Search version of L only makes sense once we 
have a verifier M in mind. 
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 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 

 

• Example:  Given a 3CNF ϕ, find a satisfying assignment 
for ϕ if such an assignment exists. 
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 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 

 

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

w.r.t any verifier M ! 
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 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
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 Proof.   (search       decision)  Obvious.  

 



Decision versus Search 

 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 

 

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

 

 Proof.   (decision        search)  We’ll prove this for  

                                                L = SAT first. 
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SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 

 We can find a satisfying assignment of ϕ with at most 2n 
calls to A. 
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Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 

From Cook-Levin theorem, we can 
find a certificate of x∈L (w.r.t. M) 
from a satisfying assignment of ϕx. 

Important note:  
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Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 
ϕ           f(ϕ) 

How to find a satisfying assignment for ϕx using algorithm B ? 
  
...we know how using  A, which is a poly-time decider for SAT 
 
Take    A(ϕ)  =  B( f(ϕ) ). 
 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Graph Isomorphism (GI) is in NP and (we’ll see later 
that) it is unlikely to be NP-complete. 

 Yet, the natural search version of GI reduces in 
polynomial-time to the decision version (homework). 
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 Is search equivalent to decision for every NP problem? 

 
Probably not! 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Let EE = ∪ DTIME (2c.2  )    and  

      

      NEE = ∪ NTIME (2c.2  ) 

 

 

 Class NTIME(T(n)) will be defined formally in the next 
lecture. 

c ≥ 0 

n 

c ≥ 0 

n 

Doubly exponential 
analogues of P and NP 
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Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 

 Checking if a number n is composite can be done in 
polynomial-time, but finding a factor of n is not known 
to be solvable in polynomial-time.  

 We’ll show that Intfact is unlikely to be NP-complete. 

 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 

 Sometimes, the decision version of a problem can be 
trivial but the search version is possibly hard. E.g., 
Computing Nash Equilibrium (see class PPAD).  

 
Homework:  Read about total NP functions 



Two types of poly-time reductions 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Karp or many-one) reducible to a language L2 ⊆ {0,1}* 
if there’s a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if 
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 . 
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there’s a TM that decides L1 in poly-time using poly-
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Karp reduction  implies  Cook reduction 



Two types of poly-time reductions 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Karp or many-one) reducible to a language L2 ⊆ {0,1}* 
if there’s a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if 
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 . 

 
Homework:  Read about Levin reduction 



NTM:  An alternate characterization of NP 



Nondeterministic Turing Machines 

 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
special state qaccept in addition to qstart and qhalt. 
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 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
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this is different from randomly 



Nondeterministic Turing Machines 

 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
special state qaccept in addition to qstart and qhalt. 

 At every step of computation, the machine applies 
one of two functions δ0 and δ1 arbitrarily. 

 Unlike DTMs,  NTMs are not intended to be 
physically realizable (because of the arbitrary 
nature of application of the transition functions). 
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input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
start configuration) that makes M reach qaccept.  
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 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt. 
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input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
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 Defintion.  An NTM M decides a language L ⊆ {0,1}* if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt. 

remember in this course we’ll always be dealing with TMs 
that halt on every input. 



Nondeterministic Turing Machines 

 Definition.  An NTM M accepts a string x∈{0,1}* iff on 
input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
start configuration) that makes M reach qaccept.  

 

 Defintion.  An NTM M decides L in T(|x|) time if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt 
within T(|x|) steps of computation. 



Class NTIME 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  
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   Proof sketch:  Let L be a language in NP.  Then, there’s 
a poly-time verifier M s.t,   

        x∈L         ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

Think of an NTM M’ that on input x, at first guesses a u ∈{0,1}p(|x|) by applying δ0 and δ1 nondeterministically 
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 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  
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   Proof sketch:  Let L be a language in NP.  Then, there’s 
a poly-time verifier M s.t,   

        x∈L         ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

…. and then simulates M on (x, u) to verify M(x,u) = 1. 

c > 0 
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Alternate characterization of NP 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  

 

 Theorem.  NP = ∪ NTIME (nc). 

   Proof sketch:  Let L be in NTIME (nc).  Then, there’s an 
NTM M’ that decides L in p(n) = O(nc) time.    (|x| = n)  

Think of a verifier M that takes x and u ∈{0,1}p(n) as 
input, and simulates M’ on x with u as the sequence of 
choices for applying δ0 and δ1 . 

c > 0 


