
Computational Complexity Theory

Lecture 6: Decision vs. Search; NTMs

Department of Computer Science,

Indian Institute of Science

Recap: More NP complete problems

 Independent Set

 Clique

 Vertex cover

 0/1 integer programming

 Max-Cut (NP-hard)

 3-coloring planar graphs Stockmeyer 1973

 2-Diophantine solvability Adleman & Manders 1975

Karp 1972

Ref: Garey & Johnson, “Computers and Intractability” 1979

Recap: NPC problems from NT

 SqRootMod: Given natural numbers a, b and c, check
if there exists a natural number x ≤ c such that

 x2 = a (mod b) .

 Theorem: SqRootMod is NP-complete.

 Manders & Adleman 1976

Recap: NPC problems from NT

 Variant_IntFact : Given natural numbers L, U and N,
check if there exists a natural number d ∈ [L, U]
such that d divides N.

 Claim: Variant_IntFact is NP-hard under randomized
poly-time reduction.

 Reference:
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785

Recap: A peculiar NP problem

 Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size ≤ s that computes f.

 Easy to see that MCSP is in NP.

 Is MCSP NP-complete? Not known!

 Multi-output MCSP & Partial fn. MCSP are NP-hard
under poly-time randomized reductions.

Search versus Decision

Search version of NP problems

 Recall: A language L ⊆ {0,1}* is in NP if

 There’s a poly-time verifier M and poly. function p s.t.

 x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

Search version of NP problems

 Recall: A language L ⊆ {0,1}* is in NP if

 There’s a poly-time verifier M and poly. function p s.t.

 x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Remark: Search version of L only makes sense once we
have a verifier M in mind.

Search version of NP problems

 Recall: A language L ⊆ {0,1}* is in NP if

 There’s a poly-time verifier M and poly. function p s.t.

 x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Example: Given a 3CNF ϕ, find a satisfying assignment
for ϕ if such an assignment exists.

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

w.r.t any verifier M !

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

 Proof. (search decision) Obvious.

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

 Proof. (decision search) We’ll prove this for

 L = SAT first.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y
.
.
.
.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y
.
.
.
.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

 We can find a satisfying assignment of ϕ with at most 2n
calls to A.

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

From Cook-Levin theorem, we can
find a certificate of x∈L (w.r.t. M)
from a satisfying assignment of ϕx.

Important note:

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

How to find a satisfying assignment for ϕx using algorithm B ?

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

How to find a satisfying assignment for ϕx using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx
ϕ f(ϕ)

How to find a satisfying assignment for ϕx using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Take A(ϕ) = B(f(ϕ)).

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Graph Isomorphism (GI) is in NP and (we’ll see later
that) it is unlikely to be NP-complete.

 Yet, the natural search version of GI reduces in
polynomial-time to the decision version (homework).

Decision versus Search

 Is search equivalent to decision for every NP problem?

Probably not!

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Let EE = ∪ DTIME (2c.2) and

 NEE = ∪ NTIME (2c.2)

 Class NTIME(T(n)) will be defined formally in the next
lecture.

c ≥ 0

n

c ≥ 0

n

Doubly exponential
analogues of P and NP

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

 Checking if a number n is composite can be done in
polynomial-time, but finding a factor of n is not known
to be solvable in polynomial-time.

 We’ll show that Intfact is unlikely to be NP-complete.

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

 Sometimes, the decision version of a problem can be
trivial but the search version is possibly hard. E.g.,
Computing Nash Equilibrium (see class PPAD).

Homework: Read about total NP functions

Two types of poly-time reductions

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Two types of poly-time reductions

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Will be called an Oracle later

Two types of poly-time reductions

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Karp reduction implies Cook reduction

Two types of poly-time reductions

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Homework: Read about Levin reduction

NTM: An alternate characterization of NP

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

also called nondeterministically

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

this is different from randomly

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

 Unlike DTMs, NTMs are not intended to be
physically realizable (because of the arbitrary
nature of application of the transition functions).

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides a language L ⊆ {0,1}* if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt.

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides a language L ⊆ {0,1}* if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt.

remember in this course we’ll always be dealing with TMs
that halt on every input.

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides L in T(|x|) time if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt
within T(|x|) steps of computation.

Class NTIME

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

Think of an NTM M’ that on input x, at first guesses a u ∈{0,1}p(|x|) by applying δ0 and δ1 nondeterministically

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

…. and then simulates M on (x, u) to verify M(x,u) = 1.

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

Think of a verifier M that takes x and u ∈{0,1}p(n) as
input,

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

Think of a verifier M that takes x and u ∈{0,1}p(n) as
input, and simulates M’ on x with u as the sequence of
choices for applying δ0 and δ1 .

c > 0

