
Computational Complexity Theory

Lecture 6: Decision vs. Search; NTMs

Department of Computer Science,

Indian Institute of Science

Recap: More NP complete problems

 Independent Set

 Clique

 Vertex cover

 0/1 integer programming

 Max-Cut (NP-hard)

 3-coloring planar graphs Stockmeyer 1973

 2-Diophantine solvability Adleman & Manders 1975

Karp 1972

Ref: Garey & Johnson, “Computers and Intractability” 1979

Recap: NPC problems from NT

 SqRootMod: Given natural numbers a, b and c, check
if there exists a natural number x ≤ c such that

 x2 = a (mod b) .

 Theorem: SqRootMod is NP-complete.

 Manders & Adleman 1976

Recap: NPC problems from NT

 Variant_IntFact : Given natural numbers L, U and N,
check if there exists a natural number d ∈ [L, U]
such that d divides N.

 Claim: Variant_IntFact is NP-hard under randomized
poly-time reduction.

 Reference:
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785

Recap: A peculiar NP problem

 Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size ≤ s that computes f.

 Easy to see that MCSP is in NP.

 Is MCSP NP-complete? Not known!

 Multi-output MCSP & Partial fn. MCSP are NP-hard
under poly-time randomized reductions.

Search versus Decision

Search version of NP problems

 Recall: A language L ⊆ {0,1}* is in NP if

 There’s a poly-time verifier M and poly. function p s.t.

 x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

Search version of NP problems

 Recall: A language L ⊆ {0,1}* is in NP if

 There’s a poly-time verifier M and poly. function p s.t.

 x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Remark: Search version of L only makes sense once we
have a verifier M in mind.

Search version of NP problems

 Recall: A language L ⊆ {0,1}* is in NP if

 There’s a poly-time verifier M and poly. function p s.t.

 x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Example: Given a 3CNF ϕ, find a satisfying assignment
for ϕ if such an assignment exists.

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

w.r.t any verifier M !

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

 Proof. (search decision) Obvious.

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

 Proof. (decision search) We’ll prove this for

 L = SAT first.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y
.
.
.
.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y
.
.
.
.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

 We can find a satisfying assignment of ϕ with at most 2n
calls to A.

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

From Cook-Levin theorem, we can
find a certificate of x∈L (w.r.t. M)
from a satisfying assignment of ϕx.

Important note:

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

How to find a satisfying assignment for ϕx using algorithm B ?

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

How to find a satisfying assignment for ϕx using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx
ϕ f(ϕ)

How to find a satisfying assignment for ϕx using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Take A(ϕ) = B(f(ϕ)).

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Graph Isomorphism (GI) is in NP and (we’ll see later
that) it is unlikely to be NP-complete.

 Yet, the natural search version of GI reduces in
polynomial-time to the decision version (homework).

Decision versus Search

 Is search equivalent to decision for every NP problem?

Probably not!

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Let EE = ∪ DTIME (2c.2) and

 NEE = ∪ NTIME (2c.2)

 Class NTIME(T(n)) will be defined formally in the next
lecture.

c ≥ 0

n

c ≥ 0

n

Doubly exponential
analogues of P and NP

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

 Checking if a number n is composite can be done in
polynomial-time, but finding a factor of n is not known
to be solvable in polynomial-time.

 We’ll show that Intfact is unlikely to be NP-complete.

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

 Sometimes, the decision version of a problem can be
trivial but the search version is possibly hard. E.g.,
Computing Nash Equilibrium (see class PPAD).

Homework: Read about total NP functions

Two types of poly-time reductions

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Two types of poly-time reductions

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Will be called an Oracle later

Two types of poly-time reductions

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Karp reduction implies Cook reduction

Two types of poly-time reductions

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Homework: Read about Levin reduction

NTM: An alternate characterization of NP

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

also called nondeterministically

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

this is different from randomly

Nondeterministic Turing Machines

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

 Unlike DTMs, NTMs are not intended to be
physically realizable (because of the arbitrary
nature of application of the transition functions).

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides a language L ⊆ {0,1}* if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt.

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides a language L ⊆ {0,1}* if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt.

remember in this course we’ll always be dealing with TMs
that halt on every input.

Nondeterministic Turing Machines

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides L in T(|x|) time if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt
within T(|x|) steps of computation.

Class NTIME

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

Think of an NTM M’ that on input x, at first guesses a u ∈{0,1}p(|x|) by applying δ0 and δ1 nondeterministically

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be a language in NP. Then, there’s
a poly-time verifier M s.t,

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

…. and then simulates M on (x, u) to verify M(x,u) = 1.

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

Think of a verifier M that takes x and u ∈{0,1}p(n) as
input,

c > 0

Alternate characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

 Proof sketch: Let L be in NTIME (nc). Then, there’s an
NTM M’ that decides L in p(n) = O(nc) time. (|x| = n)

Think of a verifier M that takes x and u ∈{0,1}p(n) as
input, and simulates M’ on x with u as the sequence of
choices for applying δ0 and δ1 .

c > 0

