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Recap:  More NP complete problems 

 Independent Set 

 Clique 

 Vertex cover   

 0/1 integer programming  

 Max-Cut  (NP-hard) 
 

 

 3-coloring planar graphs    Stockmeyer 1973 

 2-Diophantine solvability   Adleman & Manders 1975 
 

Karp 1972 

Ref:  Garey & Johnson,  “Computers and Intractability”  1979 



Recap:  NPC problems from NT 

 SqRootMod: Given natural numbers a, b and c, check 
if there exists a natural number x ≤ c such that  

                       x2  =  a  (mod  b) .   

 

 Theorem:   SqRootMod is NP-complete. 

                              Manders & Adleman 1976 



Recap:  NPC problems from NT 

 Variant_IntFact : Given natural numbers L, U and N, 
check if there exists a natural number d ∈ [L, U] 
such that d divides N. 

 

 Claim: Variant_IntFact is NP-hard under randomized 
poly-time reduction. 

 

 Reference: 
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785 



Recap:  A peculiar NP problem 

 Minimum Circuit Size Problem (MCSP):  Given the 
truth table of a Boolean function f and an integer s, 
check if there is a circuit of size ≤ s that computes f. 

 

 Easy to see that MCSP is in NP. 

 

 Is  MCSP  NP-complete?  Not known!  

 Multi-output MCSP & Partial fn. MCSP are NP-hard 
under poly-time randomized reductions.   



Search versus Decision 



Search version of NP problems 

 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 
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• Remark:  Search version of L only makes sense once we 
have a verifier M in mind. 
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 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 

 

• Example:  Given a 3CNF ϕ, find a satisfying assignment 
for ϕ if such an assignment exists. 
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 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 

 

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

w.r.t any verifier M ! 
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 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

 

 Proof.   (search       decision)  Obvious.  
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 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

 

 Proof.   (decision        search)  We’ll prove this for  

                                                L = SAT first. 
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SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 

 We can find a satisfying assignment of ϕ with at most 2n 
calls to A. 
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Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 

From Cook-Levin theorem, we can 
find a certificate of x∈L (w.r.t. M) 
from a satisfying assignment of ϕx. 

Important note:  
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Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 
ϕ           f(ϕ) 

How to find a satisfying assignment for ϕx using algorithm B ? 
  
...we know how using  A, which is a poly-time decider for SAT 
 
Take    A(ϕ)  =  B( f(ϕ) ). 
 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Graph Isomorphism (GI) is in NP and (we’ll see later 
that) it is unlikely to be NP-complete. 

 Yet, the natural search version of GI reduces in 
polynomial-time to the decision version (homework). 
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Probably not! 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Let EE = ∪ DTIME (2c.2  )    and  

      

      NEE = ∪ NTIME (2c.2  ) 

 

 

 Class NTIME(T(n)) will be defined formally in the next 
lecture. 

c ≥ 0 

n 

c ≥ 0 

n 

Doubly exponential 
analogues of P and NP 
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 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
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reduce to decision. 

 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 

 Checking if a number n is composite can be done in 
polynomial-time, but finding a factor of n is not known 
to be solvable in polynomial-time.  

 We’ll show that Intfact is unlikely to be NP-complete. 

 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 

 Sometimes, the decision version of a problem can be 
trivial but the search version is possibly hard. E.g., 
Computing Nash Equilibrium (see class PPAD).  

 
Homework:  Read about total NP functions 



Two types of poly-time reductions 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Karp or many-one) reducible to a language L2 ⊆ {0,1}* 
if there’s a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if 
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 . 
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Will be called an Oracle later 



Two types of poly-time reductions 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Karp or many-one) reducible to a language L2 ⊆ {0,1}* 
if there’s a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if 
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Karp reduction  implies  Cook reduction 



Two types of poly-time reductions 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Karp or many-one) reducible to a language L2 ⊆ {0,1}* 
if there’s a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if 
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 . 

 
Homework:  Read about Levin reduction 
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Nondeterministic Turing Machines 
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special state qaccept in addition to qstart and qhalt. 
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Nondeterministic Turing Machines 

 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
special state qaccept in addition to qstart and qhalt. 

 At every step of computation, the machine applies 
one of two functions δ0 and δ1 arbitrarily. 

 Unlike DTMs,  NTMs are not intended to be 
physically realizable (because of the arbitrary 
nature of application of the transition functions). 



Nondeterministic Turing Machines 

 Definition.  An NTM M accepts a string x∈{0,1}* iff on 
input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
start configuration) that makes M reach qaccept.  
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 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt. 
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 Defintion.  An NTM M decides a language L ⊆ {0,1}* if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt. 

remember in this course we’ll always be dealing with TMs 
that halt on every input. 



Nondeterministic Turing Machines 

 Definition.  An NTM M accepts a string x∈{0,1}* iff on 
input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
start configuration) that makes M reach qaccept.  

 

 Defintion.  An NTM M decides L in T(|x|) time if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt 
within T(|x|) steps of computation. 



Class NTIME 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  
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   Proof sketch:  Let L be a language in NP.  Then, there’s 
a poly-time verifier M s.t,   

        x∈L         ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

Think of an NTM M’ that on input x, at first guesses a u ∈{0,1}p(|x|) by applying δ0 and δ1 nondeterministically 
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 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  

 

 Theorem.  NP = ∪ NTIME (nc). 

   Proof sketch:  Let L be a language in NP.  Then, there’s 
a poly-time verifier M s.t,   

        x∈L         ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

…. and then simulates M on (x, u) to verify M(x,u) = 1. 

c > 0 
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Alternate characterization of NP 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  

 

 Theorem.  NP = ∪ NTIME (nc). 

   Proof sketch:  Let L be in NTIME (nc).  Then, there’s an 
NTM M’ that decides L in p(n) = O(nc) time.    (|x| = n)  

Think of a verifier M that takes x and u ∈{0,1}p(n) as 
input, and simulates M’ on x with u as the sequence of 
choices for applying δ0 and δ1 . 

c > 0 


