Computational Complexity Theory

Lecture 6: Decision vs. Search; NTMs

Department of Computer Science,
Indian Institute of Science

Recap: More NP complete problems

—

* Independent Set
e Clique

* Vertex cover p—
e 0/] integer programming
e Max-Cut

e 3-coloring planar graphs
e 2-Diophantine solvability

Ref:

Recap: NPC problems from NT

e SqRootMod: Given natural numbers a, b and c, check
if there exists a natural number x = ¢ such that

x> = a (mod b).

e Theorem: SqRootMod is NP-complete.

Recap: NPC problems from NT

e Variant IntFact : Given natural numbers L, U and N,

check if there exists a natural number d € [L, U]
such that d divides N.

e Claim: Variant IntFact is NP-hard under randomized
boly-time reduction.

e Reference:
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785

Recap: A peculiar NP problem

e Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size = s that computes f.

* Easy to see that MCSP is in NP.

e Is MCSP NP-complete? Not known!

e Multi-output MCSP & Partial fn. MCSP are NP-hard
under poly-time randomized reductions.

Search versus Decision

Search version of NP problems

» Recall: A language L € {0,1}*is in NP if
» There’s a poly-time verifier M and poly. function p s.t.
» x€eL iff there’s a ue{0,1}PX) s.t M(x,u) = 1.

- Search version of L: Given an input x € {0,1}, find a u
€{0, I }P(x) such that M(x, u) = 1, if such a u exists.

Search version of NP problems

» Recall: A language L € {0,1}*is in NP if
» There’s a poly-time verifier M and poly. function p s.t.
» x€eL iff there’s a ue{0,1}PX) s.t M(x,u) = 1.

- Search version of L: Given an input x € {0,1}), find a u
€{0, I }P(x) such that M(x, u) = 1, if such a u exists.

- Remark: Search version of L only makes sense once we
have a verifier M in mind.

Search version of NP problems

» Recall: A language L € {0,1}*is in NP if
» There’s a poly-time verifier M and poly. function p s.t.
» x€eL iff there’s a ue{0,1}PX) s.t M(x,u) = 1.

- Search version of L: Given an input x € {0,1}, find a u
€{0, I }P(x) such that M(x, u) = 1, if such a u exists.

- Example: Given a 3CNF ¢, find a satisfying assighment
for ¢ if such an assignment exists.

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version!?

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version!?

e Let L € {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and

only if the decisio%irsion can be solved in poly-time.

w.r.t any verifier M !

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version!?

e Let L € {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

* Proof. (search == decision) Obvious.

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version!?

e Let L € {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

* Proof. (decision == search) We’'ll prove this for
L = SAT first.

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

d(X;,...,X,)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

d(X;,...,X,) Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

d(X;,...,X,) Y

s

N §(0,....x,) o(l,...,x,)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

d(X;,...,X,) Y

s

N 0(0,....x,) o(l,...,x,) Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

R Y
N 0(0,....x,) o(l,...,x,) Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

O(Xps--0X,) A) =Y

s

AC00.)) =N §(0,....x) O(l,....x) A1) =Y

/

A($(1,0,.)) =Y ¢(1,0,...,x.)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

O(Xps--0X,) A) =Y
AC00.)) =N §(0,....x) O(l,....x) A1) =Y

A($(1,0,.)) =Y ¢(1,0,...,x.)

¢(1,0,0,...,x.)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

O(Xps--0X,) A) =Y
AC00.)) =N §(0,....x) O(l,....x) A1) =Y

A($(1,0,.)) =Y ¢(1,0,...,x.)

ACO(1,00.))=N ¢(1,0,0,...,x.)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

O(Xps--0X,) A) =Y

s

AC00.)) =N §(0,....x) O(l,....x) A1) =Y

/

A($(1,0,.)) =Y ¢(1,0,...,x.)

T~

ACO(1,00.))=N ¢(1,0,0,...,x.) ¢(1,0,1,...,x.)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

O(Xps--0X,) A) =Y

s

AC00.)) =N §(0,....x) O(l,....x) A1) =Y

/

A($(1,0,.)) =Y ¢(1,0,...,x.)

T~

ACO(1,00.))=N ¢(1,0,0,...,x.) o(1,0,1,...,x.) A(6(1,00.))=Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

O(Xps--0X,) A) =Y

s

AC00.)) =N §(0,....x) O(l,....x) A1) =Y

/

A($(1,0,.)) =Y ¢(1,0,...,x.)

T~

ACO(1,00.))=N ¢(1,0,0,...,x.) o(1,0,1,...,x.) A(6(1,00.))=Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

O(Xps--0X,) A) =Y

/T

AC00.)) =N §(0,....x) O(l,....x) A1) =Y

/

A($(1,0,.)) =Y ¢(1,0,...,x.)

T,

ACO(1,00.))=N ¢(1,0,0,...,x.) o(1,0,1,...,x.) A(6(1,00.))=Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

* We can find a satisfying assignment of ¢ with at most 2n
calls to A.

Decision = Search for NPC problems

e Proof. (decision == search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

Decision = Search for NPC problems

e Proof. (decision == search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <. L L <, SAT

Decision = Search for NPC problems

e Proof. (decision == search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <. L L <, SAT

X|_>¢x

Decision = Search for NPC problems

e Proof. (decision == search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to

decide if xEL.
SAT <, L

Important note:

L <, SAT

X|_>¢x

From Cook-Levin theorem,we can
find a certificate of xEL (w.rt. M)
from a satisfying assignment of ¢..

Decision = Search for NPC problems

e Proof. (decision == search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <. L L <, SAT

X —> ¢,

How to find a satisfying assignment for ¢, using algorithm B ?

Decision = Search for NPC problems

e Proof. (decision == search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <. L L <, SAT

X|_>¢x

How to find a satisfying assignment for ¢, using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Decision = Search for NPC problems

e Proof. (decision == search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <. L L <, SAT

¢ — f(9) X pb—> ¢X

How to find a satisfying assignment for ¢, using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Take A(0) = B(f(0)).

Decision versus Search

e Is search equivalent to decision for every NP problem!?

e Graph Isomorphism (Gl) is in NP and (we’ll see later
that) it is unlikely to be NP-complete.

e Yet, the natural search version of Gl reduces in
polynomial-time to the decision version (homework).

Decision versus Search

e Is search equivalent to decision for every NP problem!?

Probably not!

Decision versus Search

e Is search equivalent to decision for every NP problem!?

e Let EE = U DTIME (2¢2') _ and

c=20
Doubly exponential
NEE = U NTIME (2c.2n) analogues of P and NP

c=20

e Class NTIME(T(n)) will be defined formally in the next
lecture.

Decision versus Search

e Is search equivalent to decision for every NP problem!?

e If EE # NEE then
there’s a language in NP for which search does not
reduce to decision.

Decision versus Search

* Is search equivalent to decision for every NP problem?

e If EE # NEE then
there’s a language in NP for which search does not
reduce to decision.

e Checking if a number n is composite can be done in
polynomial-time, but finding a factor of n is not known
to be solvable in polynomial-time.

* WEe'll show that Intfact is unlikely to be NP-complete.

Decision versus Search

e Is search equivalent to decision for every NP problem!?

e Theorem. If EE # NEE then
there’s a language in NP for which search does not
reduce to decision.

e Sometimes, the decision version of a problem can be
trivial but the search version is possibly hard. E.g.,
Computing Nash Equilibrium (see class PPAD).

Read about total NP functions

Two types of poly-time reductions

° A language L, < {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

x€EL, e f(x)EL,

o A language L, < {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0,1}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subroutine” for deciding L, .

Two types of poly-time reductions

° A language L, < {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

x€EL, e f(x)EL,

o A language L, < {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0,1}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subr{cine” for deciding L, .

Will be called an Oracle later

Two types of poly-time reductions

° A language L, < {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

x€EL, e f(x)EL,

o A language L, < {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0,1}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subroutine” for deciding L, .

Karp reduction implies Cook reduction

Two types of poly-time reductions

° A language L, < {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

x€EL, e f(x)EL,

o A language L, < {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0,1}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subroutine” for deciding L, .

Read about Levin reduction

NTM: An alternate characterization of NP

Nondeterministic Turing Machines

* A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

e |t is formally defined by a tuple (I', Q, 0,, 0)). It has a
special state q,..,, in addition to q, and qj,.

Nondeterministic Turing Machines

* A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

e |t is formally defined by a tuple (I', Q, 0,, 0)). It has a
special state q,..,, in addition to q, and qj,.

* At every step of computation, the machine applies
one of two functions 0,and O, arbitrarily.

/

also called nondeterministically

Nondeterministic Turing Machines

* A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

e |t is formally defined by a tuple (I', Q, 0,, 0)). It has a
special state q,..,, in addition to q, and qj,.

* At every step of computation, the machine applies
one of two functions 0,and O, arbitrarily.

/

this is different from randomly

Nondeterministic Turing Machines

* A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

e |t is formally defined by a tuple (I', Q, 0,, 0)). It has a
special state q,..,, in addition to q, and qj,.

* At every step of computation, the machine applies
one of two functions 0,and O, arbitrarily.

e Unlike DTMs, NTMs are not intended to be
physically realizable (because of the arbitrary
nature of application of the transition functions).

Nondeterministic Turing Machines

° An NTM M accepts a string x€{0, | }* iff on
input x there exists a sequence of applications of the
transition functions 0, and 0, (beginning from the
start configuration) that makes M reach q, .,

o . An NTM M decides a language L < {0, }* if
» M accepts x = xEL

» On every sequence of applications of the transition
functions on input x, M either reaches q, .., OF Q.

Nondeterministic Turing Machines

° An NTM M accepts a string x€{0, | }* iff on
input x there exists a sequence of applications of the
transition functions 0, and 0, (beginning from the
start configuration) that makes M reach q, .,

o . An NTM M decides a language L < {0, | }* if
» M accepts x = xEL

» On every sequence of applications of the transition

functions on input x, M either reaches q, .., OF Q.
¢

remember in this course we’ll always be dealing with TMs
that halt on every input.

Nondeterministic Turing Machines

° An NTM M accepts a string x€{0, | }* iff on
input x there exists a sequence of applications of the
transition functions 0, and 0, (beginning from the
start configuration) that makes M reach q, .,

° . An NTM M decides L in T(|x|) time if
» M accepts x = xEL

» On every sequence of applications of the transition
functions on input x, M either reaches q, ... Or G,
within T(|x|) steps of computation.

Class NTIME

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = UONTIME (n°).

Proof sketch: Let L be a language in NF. Then, there’s
a poly-time verifier M s.t,

x€L e 3Ju €{0,1}Px) s.t. M(x,u) = |

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = UONTIME (n°).

Proof sketch: Let L be a language in NF. Then, there’s
a poly-time verifier M s.t,

x€EL e 3Ju €{0,1}PX) s.t. M(x,u) = |

Think of an NTM M’ that on input X, at first guesses a u
€{0,1}P(x) by applying &,and ®, nondeterministically

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = UONTIME (n°).

Proof sketch: Let L be a language in NF. Then, there’s
a poly-time verifier M s.t,

x€EL e 3Ju €{0,1}PX) s.t. M(x,u) = |

....and then simulates M on (x, u) to verify M(x,u) = I.

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = UONTIME (n°).

Proof sketch: Let L be in NTIME (n¢). Then, there’s an
NTM M’ that decides L in p(n) = O(n°) time. (|x| = n)

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP =CL>JONTIME (n°).

Proof sketch: Let L be in NTIME (n¢). Then, there’s an
NTM M’ that decides L in p(n) = O(n) time. (|x| = n)
Think of a verifier M that takes x and u €{0,[}P(" as
Input,

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP =CL>JONTIME (n°).

Proof sketch: Let L be in NTIME (n¢). Then, there’s an
NTM M’ that decides L in p(n) = O(n) time. (|x| = n)
Think of a verifier M that takes x and u €{0,[}P(" as

input, and simulates M’ on x with u as the sequence of
choices for applying 0,and 0, .

