
Computational Complexity Theory 

 

Lecture 7:  Class co-NP and EXP; 

      Diagonalization 

 

Department of Computer Science, 
Indian Institute of Science 



Recap: Search version of NP 

 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 

 

• Example:  Given a 3CNF ϕ, find a satisfying assignment 
for ϕ if such an assignment exists. 

 



Recap: Decision versus Search 

 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 

 

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

w.r.t any verifier M ! 



Recap: Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 



Recap: Cook reductions 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Karp or many-one) reducible to a language L2 ⊆ {0,1}* 
if there’s a polynomial time computable function f  s.t.  

                 x∈L1          f(x)∈L2 

 

 Definition. A language L1 ⊆ {0,1}* is polynomial-time 
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if 
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 . 

 

Will be called an Oracle later 



Recap:  NTMs 

 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
special state qaccept in addition to qstart and qhalt. 

 At every step of computation, the machine applies 
one of two functions δ0 and δ1 arbitrarily. 

 

also called nondeterministically 



Recap:  NTMs 

 A nondeterministic Turing machine is like a deterministic 
Turing machines but with two transition functions. 

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a 
special state qaccept in addition to qstart and qhalt. 

 At every step of computation, the machine applies 
one of two functions δ0 and δ1 arbitrarily. 

 Unlike DTMs,  NTMs are not intended to be 
physically realizable (because of the arbitrary 
nature of application of the transition functions). 



Recap:  NTMs 

 Definition.  An NTM M accepts a string x∈{0,1}* iff on 
input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
start configuration) that makes M reach qaccept.  

 

 Defintion.  An NTM M decides a language L ⊆ {0,1}* if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt. 



Recap:  NTMs 

 Definition.  An NTM M accepts a string x∈{0,1}* iff on 
input x there exists a sequence of applications of the 
transition functions δ0 and δ1 (beginning from the 
start configuration) that makes M reach qaccept.  

 

 Defintion.  An NTM M decides L in T(|x|) time if 

 M accepts x        x∈L 

 On every sequence of applications of the transition 
functions on input x, M either reaches qaccept or qhalt 
within T(|x|) steps of computation. 



Recap:  A characterization of NP 

 Definition.  A language L is in NTIME(T(n)) if there’s 
an NTM M that decides L in c. T(n) time on inputs of 
length n, where c is a constant.  

 

 Theorem.  NP = ∪ NTIME (nc). 

    
c > 0 



Class co-NP and EXP 



Class co-NP 

 Definition.   For every L ⊆ {0,1}* let L = {0,1}* \ L.   

   A language L is in co-NP if  L is in NP. 

 

 Example.   SAT  =  {ϕ : ϕ is not satisfiable}. 
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 Example.   SAT  =  {ϕ : ϕ is not satisfiable}. 

 

 Note: co-NP is not complement of NP. Every language 
in P is in both NP and co-NP. 
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Class co-NP 

 Definition.   For every L ⊆ {0,1}* let L = {0,1}* \ L.   

   A language L is in co-NP if  L is in NP. 

 

 Example.   SAT  =  {ϕ : ϕ is not satisfiable}. 

 

 Note:  SAT is Cook reducible to SAT. But, there’s a 
fundamental difference between the two problems that 
is captured by the fact that SAT is not known to be 
Karp reducible to SAT. In other words, there’s no known 
poly-time verification process for SAT.   

 

 



Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 
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Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 
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M outputs the 
opposite of M 



Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 0 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 

 

 

 

M is a poly-time TM 



Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 0 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 
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Class co-NP :  Alternate definition 

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time 
verifier M such that 

            x∈L        ∃u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 0 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 Definition.  A language L ⊆ {0,1}* is in co-NP if there’s a 
polynomial function p and a poly-time TM M such that 

            x∈L        ∀u ∈{0,1}p(|x|) s.t.  M(x, u) = 1 

 

 
for NP this was ∃ 



co-NP-completeness 

 Definition.  A language L’ ⊆ {0,1}* is co-NP-complete if 

 L’ is in co-NP 

 Every language L in co-NP is polynomial-time (Karp) 
reducible to L’. 
 

• Theorem.  SAT is co-NP-complete. 
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co-NP-completeness 

 Definition.  A language L’ ⊆ {0,1}* is co-NP-complete if 

 L’ is in co-NP 

 Every language L in co-NP is polynomial-time (Karp) 
reducible to L’. 
 

• Theorem.  Let  

         TAUTOLOGY = {ϕ :  every assignment satisfies ϕ }. 

   TAUTOLOGY is co-NP-complete.  

   Proof.   Similar (homework) 



co-NP-completeness 

 Definition.  A language L’ ⊆ {0,1}* is co-NP-complete if 

 L’ is in co-NP 

 Every language L in co-NP is polynomial-time (Karp) 
reducible to L’. 
 

• Theorem. If L in NP-complete then L is co-NP-complete  

   Proof.   Similar (homework) 



The diagram again 

NP co-NP 

P 

NPC co-NPC 

If a co-NP-complete language 
belongs to NP then 
 
        co-NP  ⊆ NP  
        co-NP   = NP 
 
              

Let C1 and C2 be two 
complexity classes. 
 
If C1 ⊆ C2 , then  
co-C1 ⊆ co-C2. 
 
Obs. co-(co-C) = C . 
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NPC co-NPC 

If an NP-complete language 
belongs to co-NP then 
 
 NP  ⊆ co-NP  
             NP   = co-NP 
 
              

Let C1 and C2 be two 
complexity classes. 
 
If C1 ⊆ C2 , then  
co-C1 ⊆ co-C2. 
 
Obs. co-(co-C) = C . 



The diagram again 

NP co-NP 

P 

NPC co-NPC 

If an NP-complete language 
belongs to co-NP then 
 
 NP  ⊆ co-NP  
             NP   = co-NP 
 
              

Let C1 and C2 be two 
complexity classes. 
 
If C1 ⊆ C2 , then  
co-C1 ⊆ co-C2. 
 
Obs. co-(co-C) = C . 

?? 



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 

 So, FACT is NP-complete implies NP = co-NP. 



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 Proof. FACT ∈ NP :  Give p as a certificate. The 
verifier checks if p is prime (AKS test), 1 ≤ p ≤ U and 
p divides N.   



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 Proof. FACT ∈ NP : Give the complete prime 
factorization of N as a certificate. The verifier checks 
the correctness of the factorization, and then checks if 
none of the prime factors is in [U].   



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Claim.   FACT ∈ NP ∩ co-NP 

 Proof. FACT ∈ NP : Give the complete prime 
factorization of N as a certificate. The verifier checks 
the correctness of the factorization, and then checks if 
none of the prime factors is in [U].   
 

 Homework: If FACT ∈ P, then there’s a algorithm to find the 
prime factorization a given n-bit integers in poly(n) time. 



Integer factoring in NP ∩ co-NP 

 Integer factoring.   

   FACT = {(N, U): there’s a prime in [U] dividing N} 

 

 Factoring algorithm. Dixon’s randomized algorithm 
factors an n-bit number in exp(O(√n log n)) time. 



Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  
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Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

 

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) 
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0 
is some fixed constant and n is the no. of variables.  

c 

c ≥ 1 

In other words, δ cannot be made arbitrarily close to 0. 
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Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

 

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) 
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0 
is some fixed constant and n is the no. of variables.  

c 

c ≥ 1 

Homework:  Read about Strong Exponential Time Hypothesis (SETH).           



Class EXP 

 Definition.  Class EXP is the exponential time 
analogue of class P.  

                   EXP  =  ∪ DTIME ( 2n   )  

 

 Observation.   P  ⊆ NP  ⊆  EXP 

 

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) 
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0 
is some fixed constant and n is the no. of variables.  

c 

c ≥ 1 

ETH          P ≠ NP 

Is P ⊊ EXP ?  
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strings α and x, simulates Mα on x with only a 
small overhead. 



Diagonalization 

 Diagonalization refers to a class of techniques used in 
complexity theory to separate complexity classes. 

 These techniques are characterized by two main 
features: 

1. There’s a universal TM U that when given 
strings α and x, simulates Mα on x with only a 
small overhead. 

If Mα takes T time on x then U takes 
O(T log T) time to simulate Mα on x.  



Diagonalization 

 Diagonalization refers to a class of techniques used in 
complexity theory to separate complexity classes. 

 These techniques are characterized by two main 
features: 

1. There’s a universal TM U that when given 
strings α and x, simulates Mα on x with only a 
small overhead. 

 

2. Every string represents some TM,  and every 
TM can be represented by infinitely many 
strings. 


