
Computational Complexity Theory

Lecture 7: Class co-NP and EXP;

 Diagonalization

Department of Computer Science,
Indian Institute of Science

Recap: Search version of NP

 Recall: A language L ⊆ {0,1}* is in NP if

 There’s a poly-time verifier M and poly. function p s.t.

 x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Example: Given a 3CNF ϕ, find a satisfying assignment
for ϕ if such an assignment exists.

Recap: Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

w.r.t any verifier M !

Recap: Decision versus Search

 Is search equivalent to decision for every NP problem?

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

Recap: Cook reductions

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

 Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Will be called an Oracle later

Recap: NTMs

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

also called nondeterministically

Recap: NTMs

 A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

 It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a
special state qaccept in addition to qstart and qhalt.

 At every step of computation, the machine applies
one of two functions δ0 and δ1 arbitrarily.

 Unlike DTMs, NTMs are not intended to be
physically realizable (because of the arbitrary
nature of application of the transition functions).

Recap: NTMs

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides a language L ⊆ {0,1}* if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt.

Recap: NTMs

 Definition. An NTM M accepts a string x∈{0,1}* iff on
input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

 Defintion. An NTM M decides L in T(|x|) time if

 M accepts x x∈L

 On every sequence of applications of the transition
functions on input x, M either reaches qaccept or qhalt
within T(|x|) steps of computation.

Recap: A characterization of NP

 Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

 Theorem. NP = ∪ NTIME (nc).

c > 0

Class co-NP and EXP

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

 Note: co-NP is not complement of NP. Every language
in P is in both NP and co-NP.

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

 NP co-NP

P

Class co-NP

 Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

 A language L is in co-NP if L is in NP.

 Example. SAT = {ϕ : ϕ is not satisfiable}.

 Note: SAT is Cook reducible to SAT. But, there’s a
fundamental difference between the two problems that
is captured by the fact that SAT is not known to be
Karp reducible to SAT. In other words, there’s no known
poly-time verification process for SAT.

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

M outputs the
opposite of M

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

M is a poly-time TM

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

is in co-NP

Class co-NP : Alternate definition

 Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

 x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

 Definition. A language L ⊆ {0,1}* is in co-NP if there’s a
polynomial function p and a poly-time TM M such that

 x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

for NP this was ∃

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

 Proof. Let L ∈ co-NP. Then

 L ∈ NP

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

 Proof. Let L ∈ co-NP. Then

 L ∈ NP

 L ≤p SAT

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. SAT is co-NP-complete.

 Proof. Let L ∈ co-NP. Then

 L ∈ NP

 L ≤p SAT

 L ≤p SAT

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. Let

 TAUTOLOGY = {ϕ : every assignment satisfies ϕ }.

 TAUTOLOGY is co-NP-complete.

 Proof. Similar (homework)

co-NP-completeness

 Definition. A language L’ ⊆ {0,1}* is co-NP-complete if

 L’ is in co-NP

 Every language L in co-NP is polynomial-time (Karp)
reducible to L’.

• Theorem. If L in NP-complete then L is co-NP-complete

 Proof. Similar (homework)

The diagram again

NP co-NP

P

NPC co-NPC

If a co-NP-complete language
belongs to NP then

 co-NP ⊆ NP
 co-NP = NP

Let C1 and C2 be two
complexity classes.

If C1 ⊆ C2 , then
co-C1 ⊆ co-C2.

Obs. co-(co-C) = C .

The diagram again

NP co-NP

P

NPC co-NPC

If an NP-complete language
belongs to co-NP then

 NP ⊆ co-NP
 NP = co-NP

Let C1 and C2 be two
complexity classes.

If C1 ⊆ C2 , then
co-C1 ⊆ co-C2.

Obs. co-(co-C) = C .

The diagram again

NP co-NP

P

NPC co-NPC

If an NP-complete language
belongs to co-NP then

 NP ⊆ co-NP
 NP = co-NP

Let C1 and C2 be two
complexity classes.

If C1 ⊆ C2 , then
co-C1 ⊆ co-C2.

Obs. co-(co-C) = C .

??

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 So, FACT is NP-complete implies NP = co-NP.

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 Proof. FACT ∈ NP : Give p as a certificate. The
verifier checks if p is prime (AKS test), 1 ≤ p ≤ U and
p divides N.

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 Proof. FACT ∈ NP : Give the complete prime
factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Claim. FACT ∈ NP ∩ co-NP

 Proof. FACT ∈ NP : Give the complete prime
factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].

 Homework: If FACT ∈ P, then there’s a algorithm to find the
prime factorization a given n-bit integers in poly(n) time.

Integer factoring in NP ∩ co-NP

 Integer factoring.

 FACT = {(N, U): there’s a prime in [U] dividing N}

 Factoring algorithm. Dixon’s randomized algorithm
factors an n-bit number in exp(O(√n log n)) time.

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)
c

c ≥ 1

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

c

c ≥ 1

NP co-NP

P

EXP

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

In other words, δ cannot be made arbitrarily close to 0.

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

ETH P ≠ NP

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

Homework: Read about Strong Exponential Time Hypothesis (SETH).

Class EXP

 Definition. Class EXP is the exponential time
analogue of class P.

 EXP = ∪ DTIME (2n)

 Observation. P ⊆ NP ⊆ EXP

 Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

ETH P ≠ NP

Is P ⊊ EXP ?

Diagonalization

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

If Mα takes T time on x then U takes
O(T log T) time to simulate Mα on x.

Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

2. Every string represents some TM, and every
TM can be represented by infinitely many
strings.

