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Recap: Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

e These techniques are characterized by two main
features:

|. There’s a universal TM U that when given
strings O and X, simulates M, on x with only a
small overhead.

2. Every string represents some TM, and every
TM can be represented by infinitely many
strings.
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Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).

e Theorem.
DTIME(f(n)) & DTIME(g(n))

e Theorem. P & EXP

e This type of results are called lower bounds.
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M with runtime O(n) cannot decide L.
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|. On input x, compute |x|2.
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f(n) .log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
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a. If M, stops and outputs b then output |-b.
b. Otherwise, output |.



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
TMD:
|. On input x, compute |x|2.
2. Simulate M, on x for |x|? steps.

a. If M, stops and outputs b then output |-b.

b. Otherwise, output |. /

D outputs the opposite of what M, outputs.
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 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n))-
e Theorem. DTIME(f(n)) & DTIME(g(n))
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D runs in O(n?) time as n? is time-constructible.
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IX| steps. (as c’.c.|x|.log |x| < [x|?* for sufficiently large x)
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» D on input x, simulates M_ on x for |x|? steps. Since M_ stops

within c.[x| steps, D’s simulation also stops within c’.c. |x|. log
x| steps. And D outputs the opposite of what M outputs!
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 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
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» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» Hence, D(x) = |-b.
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 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.|(i.e., M(x) = D(x) for all x)
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» Hence, D(x) = |-b.

Contradiction! ™M does not decide L.
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 Let f(n) and g(n) be time-constructible functions s.t.,
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Proof. Similar



Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).

e Theorem. DTIME(f(n)) & DTIME(g(n))

e [heorem. P & EXP

* No EXP-complete problem (under poly-time Karp

reduction) is in P.

E.g., Decide if aTM halts in k steps;
generalized versions of games such as
chess, checkers, Go, etc.
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* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

° No algorithm solves 3SUM in O(n?*¥)
time for some constant £€> 0.

» However, there’s a ~O(n?/ (log n)?) time algorithm for
3SUM. (“~” suppressing a poly(log log n) factor.)
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3 numbers in the list that sum to zero.

° No algorithm solves 3SUM in O(n?*¥)
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Ik numbers in the list that sum to zero.



Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

° No algorithm solves 3SUM in O(n?*¥)
time for some constant £€> 0.

o KSUM: Given a list of n numbers, check if there exists
k. numbers in the list that sum to zero.

o ETH implies
kSUM requires n“® time.
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Edmonds (1966)
...conjectured P = NP (1 co-NP




Revisiting NP(1co-NP

Conjecture: NP # co-NP

l

P # NP

General belief:P # NP N co-NP

Check:
https://cstheory.stackexchange.com/questions/20

02 | [reasons-to-believe-p-ne-np-cap-conp-or-not

* Integer factoring (FACT)
* Approximate shortest vector in a lattice
Ref: “Lattice problems in NPNco-NP” by Aharonov & Regev (2005)
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NP-intermediate problems

NP-intermediate

Conjecture: NP # co-NP

l
P # NP

General belief: P # NP N co-NP

Obs: If NP # co-NP and FACT ¢ P
then FACT is NP-intermediate.

Ladner’s theorem: P # NP implies
existence of a NP-intermediate
language.

* Integer factoring (FACT) (proved using diagonalization)

* Approximate shortest vector in a lattice
Ref: “Lattice problems in NPNco-NP” by Aharonov & Regev (2005)
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e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

Proof. A delicate argument using diagonalization.
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NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

Proof. Let H: N — N be a function.

_H(m)

Let SAT,={¥0I : W e€SATand |¥|=m}

H would be defined in such a way that SAT,, is NP-intermediate
(assuming P # NP)
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e Theorem. There’s a function H: N — N such that

|. H(m) is computable from m in O(m?) time.
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Ladner’s theorem: Constructing H

e [heorem. There’s a function H: N — N such that
|. H(m) is computable from m in O(m?) time.
2. If SAT, €P then H(m) = C (a constant).

3. If SAT, € P then H(m)-— o0 with m.

Proof: Later (uses diagonalization).

Let’s see the proof of Ladner’s theorem
assuming the existence of such a “special” H.
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Ladner’s theorem: Proof

P # NP
*|Suppose SAT, € P Then Him) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

_H(m)
» Compute H(m), and construct the string ¢ O |

_H(m)

» Checkif ¢ O | belongs to SAT, .

——

length at most m + | + m©



Ladner’s theorem: Proof

P # NP
e Suppose SAT, € P Then Hm) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

_H(m)
» Compute H(m), and construct the string ¢ O |

_H(m)

» Checkif ¢ O | belongs to SAT, .

e As P # NP, it must be that SAT,, ¢ P.
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o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ lf_> LIJ O I . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].

» Compute H(m) and check if k = mH(Mm)_ ( Verify that
this can be done in poly(n) time.)
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P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ lf_> LIJ O I . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m/

Either m = m (in which case the task reduces to
checking if a constant-size W is satisfiable),



Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ |f_> LIJ 0| . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute HQ)‘ and check if k = mH(m),

or H(m) > 2c (as H(m) tends to infinity with m).
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o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:
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» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
» Hence, w.lo.g. If(d)] = k> m?Z



Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),

» Hence,w.l.o.g. n¢ = [f(®)] = k> m?*
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P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT <, SAT, ¢ —sWO Ik

» On input ¢, compute f(¢) =¥ 0 I Let
» Compute H(m) and check if k = mH(m),

» Hence, Vn = m.
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Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

Thus, checking if an n-size formula ¢
is satisfiable reduces to checking if a
n-size formula W is satisfiable.



Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

Do this recursively! Only O(log log n) recursive steps required.



Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT <, SAT, ¢ —sWO Ik

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

» Hence SAT, is not NP-complete,as P # NP.



Natural NP-intermediate problems ??

e Integer factoring
e Approximate shortest vector in a lattice

e Minimum Circuit Size Problem

( )

e Graph isomorphism
( )



