
Computational Complexity Theory

Lecture 8: Time Hierarchy Theorem;

 Ladner’s theorem

Department of Computer Science,

Indian Institute of Science

Recap: Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

Recap: Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

If Mα takes T time on x then U takes
O(T log T) time to simulate Mα on x.

Recap: Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

 These techniques are characterized by two main
features:

1. There’s a universal TM U that when given
strings α and x, simulates Mα on x with only a
small overhead.

2. Every string represents some TM, and every
TM can be represented by infinitely many
strings.

Time Hierarchy Theorem

- An application of Diagonalization

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. (Hartmanis & Stearns 1965)

 DTIME(f(n)) ⊊ DTIME(g(n))

 Theorem. P ⊊ EXP

 This type of results are called lower bounds.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 Task: Show that there’s a language L decided by a

 TM D with time complexity O(n2) s.t., any TM

 M with runtime O(n) cannot decide L.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

D’s time steps not Mx’s
time steps.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

 a. If Mx stops and outputs b then output 1-b.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

 a. If Mx stops and outputs b then output 1-b.

 b. Otherwise, output 1.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 TM D :

 1. On input x, compute |x|2.

 2. Simulate Mx on x for |x|2 steps.

 a. If Mx stops and outputs b then output 1-b.

 b. Otherwise, output 1.

D outputs the opposite of what Mx outputs.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 D runs in O(n2) time as n2 is time-constructible.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 Claim. There’s no TM M with running time O(n) that

 decides L (the language accepted by D).

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

c is a constant

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log
|x| steps.

c’ is a constant

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log
|x| steps. (as c’.c. |x|. log |x| < |x|2 for sufficiently large x)

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 D on input x, simulates Mx on x for |x|2 steps. Since Mx stops
within c.|x| steps, D’s simulation also stops within c’.c. |x|. log
|x| steps. And D outputs the opposite of what Mx outputs!

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 Hence, D(x) = 1-b.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Proof. We’ll prove with f(n) = n and g(n) = n2.

 For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 Think of a sufficiently large x such that M = Mx .
 Suppose M(x) = Mx(x) = b.

 Hence, D(x) = 1-b.

 Contradiction! M does not decide L.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Theorem. P ⊊ EXP

 Proof. Similar (homework)

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

 f(n) . log f(n) = o(g(n)).

 Theorem. DTIME(f(n)) ⊊ DTIME(g(n))

 Theorem. P ⊊ EXP

 No EXP-complete problem (under poly-time Karp
reduction) is in P.

E.g., Decide if a TM halts in k steps;
generalized versions of games such as
chess, checkers, Go, etc.

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

 Conjecture. No algorithm solves 3SUM in O(n2-ε)
time for some constant ε> 0.

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

 Conjecture. No algorithm solves 3SUM in O(n2-ε)
time for some constant ε> 0.

 However, there’s a ~O(n2 / (log n)2) time algorithm for
3SUM. (“~” suppressing a poly(log log n) factor.)

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

 Conjecture. No algorithm solves 3SUM in O(n2-ε)
time for some constant ε> 0.

 kSUM: Given a list of n numbers, check if there exists
k numbers in the list that sum to zero.

Time Hierarchy Theorem

 Is there a natural problem that takes close to n2 time?

 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

 Conjecture. No algorithm solves 3SUM in O(n2-ε)
time for some constant ε> 0.

 kSUM: Given a list of n numbers, check if there exists
k numbers in the list that sum to zero.

 Theorem (Patrascu & Williams 2010). ETH implies
kSUM requires nΩ(k) time.

Revisiting NP∩co-NP

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Revisiting NP∩co-NP

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Edmonds (1966)

…conjectured P = NP ∩ co-NP

Revisiting NP∩co-NP

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Check:
https://cstheory.stackexchange.com/questions/20
021/reasons-to-believe-p-ne-np-cap-conp-or-not

• Integer factoring (FACT)
• Approximate shortest vector in a lattice
 Ref: “Lattice problems in NP∩co-NP” by Aharonov & Regev (2005)

NP-intermediate problems

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Obs: If NP ≠ co-NP and FACT ∉ P
then FACT is NP-intermediate.

• Integer factoring (FACT)
• Approximate shortest vector in a lattice
 Ref: “Lattice problems in NP∩co-NP” by Aharonov & Regev (2005)

NP-intermediate

NP-intermediate problems

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Obs: If NP ≠ co-NP and FACT ∉ P
then FACT is NP-intermediate.

Ladner’s theorem: P ≠ NP implies
existence of a NP-intermediate
language.
 • Integer factoring (FACT)

• Approximate shortest vector in a lattice
 Ref: “Lattice problems in NP∩co-NP” by Aharonov & Regev (2005)

NP-intermediate

NP-intermediate problems

NP co-NP

P

NPC co-NPC

Conjecture: NP ≠ co-NP

 P ≠ NP

General belief: P ≠ NP ∩ co-NP

Obs: If NP ≠ co-NP and FACT ∉ P
then FACT is NP-intermediate.

Ladner’s theorem: P ≠ NP implies
existence of a NP-intermediate
language.
 (proved using diagonalization) • Integer factoring (FACT)

• Approximate shortest vector in a lattice
 Ref: “Lattice problems in NP∩co-NP” by Aharonov & Regev (2005)

NP-intermediate

Ladner’s Theorem

- Another application of Diagonalization

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

P

NPC

NP NP-intermediate

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. A delicate argument using diagonalization.

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. Let H: be a function.

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. Let H: be a function.

 Let SATH = {Ψ0 1 : Ψ ∈ SAT and |Ψ| = m}

m
H(m)

NP-intermediate problems

 Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.

 Proof. Let H: be a function.

 Let SATH = {Ψ0 1 : Ψ ∈ SAT and |Ψ| = m}

m
H(m)

H would be defined in such a way that SATH is NP-intermediate
 (assuming P ≠ NP)

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

2. If SATH ∈ P then H(m) ≤ C (a constant).

for every m

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

2. If SATH ∈ P then H(m) ≤ C (a constant).

3. If SATH ∉ P then H(m) with m.

∞

Ladner’s theorem: Constructing H

 Theorem. There’s a function H: such that

1. H(m) is computable from m in O(m3) time.

2. If SATH ∈ P then H(m) ≤ C (a constant).

3. If SATH ∉ P then H(m) with m.

 Proof: Later (uses diagonalization).

∞

Let’s see the proof of Ladner’s theorem
assuming the existence of such a “special” H.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

m
H(m)

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

 Check if ϕ 0 1 belongs to SATH .

m
H(m)

m
H(m)

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

 Check if ϕ 0 1 belongs to SATH .

m
H(m)

m
H(m)

length at most m + 1 + mC

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH ∈ P. Then H(m) ≤ C.

 This implies a poly-time algorithm for SAT as follows:

 On input ϕ , find m = |ϕ|.

 Compute H(m), and construct the string ϕ 0 1

 Check if ϕ 0 1 belongs to SATH .

 As P ≠ NP, it must be that SATH ∉ P .

m
H(m)

m
H(m)

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

∞

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:
∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:
∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

|ϕ| = n |Ψ 0 1k| = nc

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:
∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

|ϕ| = n |Ψ 0 1k| = nc

Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f
Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f
Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m). (Homework: Verify that
this can be done in poly(n) time.)

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f
Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Either m ≤ m0 (in which case the task reduces to
checking if a constant-size Ψ is satisfiable),

Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

or H(m) > 2c (as H(m) tends to infinity with m).

Let m0 be the largest

s.t. H(m0) ≤ 2c.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, w.l.o.g. |f(ϕ)| ≥ k > m2c

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, w.l.o.g. nc = |f(ϕ)| ≥ k > m2c

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m.

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Thus, checking if an n-size formula ϕ
is satisfiable reduces to checking if a
√n-size formula Ψ is satisfiable.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Do this recursively! Only O(log log n) recursive steps required.

Ladner’s theorem: Proof
 P ≠ NP

 Suppose SATH is NP-complete. Then H(m) with m.

 This also implies a poly-time algorithm for SAT:

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|.

 Compute H(m) and check if k = mH(m).

 Hence, √n ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

 Hence SATH is not NP-complete, as P ≠ NP.

∞

SAT ≤p SATH

ϕ Ψ 0 1k

f

Natural NP-intermediate problems ??

 Integer factoring

 Approximate shortest vector in a lattice

 Minimum Circuit Size Problem

 (“Multi-output MCSP is NP-hard”, Ilango, Loff & Oliveira 2020)

 Graph isomorphism

 (“GI in QuasiP time”, Babai 2015)

