
Computational Complexity Theory 

 

Lecture 8:  Time Hierarchy Theorem; 

    Ladner’s theorem  
                 

 

 
Department of Computer Science, 

Indian Institute of Science 



Recap: Diagonalization 

 Diagonalization refers to a class of techniques used in 
complexity theory to separate complexity classes. 

 These techniques are characterized by two main 
features: 



Recap: Diagonalization 

 Diagonalization refers to a class of techniques used in 
complexity theory to separate complexity classes. 

 These techniques are characterized by two main 
features: 

1. There’s a universal TM U that when given 
strings α and x, simulates Mα on x with only a 
small overhead. 

If Mα takes T time on x then U takes 
O(T log T) time to simulate Mα on x.  



Recap: Diagonalization 

 Diagonalization refers to a class of techniques used in 
complexity theory to separate complexity classes. 

 These techniques are characterized by two main 
features: 

1. There’s a universal TM U that when given 
strings α and x, simulates Mα on x with only a 
small overhead. 

 

2. Every string represents some TM,  and every 
TM can be represented by infinitely many 
strings. 



Time Hierarchy Theorem 

- An application of Diagonalization 



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 

 Theorem. (Hartmanis & Stearns 1965)  

           DTIME(f(n))  ⊊  DTIME(g(n))  

 

 Theorem.  P  ⊊  EXP  

 

 This type of results are called lower bounds. 
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      Task:  Show that there’s a language L decided by a  

              TM D with time complexity O(n2) s.t., any TM  

              M with runtime O(n) cannot decide L.  
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D outputs the opposite of what Mx outputs. 
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 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

         D runs in O(n2) time as n2 is time-constructible. 

           



Time Hierarchy Theorem  

 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

   Proof.  We’ll prove with f(n) = n and  g(n) = n2. 

     Claim.  There’s no TM M with running time O(n) that 

                decides L (the language accepted by D). 
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 Let f(n) and g(n) be time-constructible functions s.t., 
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          Contradiction!   M does not decide L. 
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 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

 

 Theorem.  P  ⊊  EXP  

   Proof.  Similar  (homework)  
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 Let f(n) and g(n) be time-constructible functions s.t., 

                 f(n) . log f(n) = o(g(n)).  

 

 Theorem.   DTIME(f(n))  ⊊  DTIME(g(n))  

 

 Theorem.  P  ⊊  EXP  

 No EXP-complete problem (under poly-time Karp 
reduction) is in P. 

       
E.g.,  Decide if a TM halts in k steps; 
generalized versions of games such as 
chess, checkers, Go, etc. 
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 3SUM:  Given a list of n numbers, check if there exists 
3 numbers in the list that sum to zero.  

 Conjecture. No algorithm solves 3SUM in O(n2-ε) 
time for some constant ε> 0.    

 

 However, there’s a ~O(n2 / (log n)2) time algorithm for 
3SUM.  (“~” suppressing a poly(log log n) factor.)  
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 3SUM:  Given a list of n numbers, check if there exists 
3 numbers in the list that sum to zero.  

 Conjecture. No algorithm solves 3SUM in O(n2-ε) 
time for some constant ε> 0.    
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k numbers in the list that sum to zero.  

 



Time Hierarchy Theorem  

 Is there a natural problem that takes close to n2 time?  

 

 3SUM:  Given a list of n numbers, check if there exists 
3 numbers in the list that sum to zero.  

 Conjecture. No algorithm solves 3SUM in O(n2-ε) 
time for some constant ε> 0.    

 kSUM:  Given a list of n numbers, check if there exists 
k numbers in the list that sum to zero.  

 Theorem (Patrascu & Williams 2010). ETH implies 
kSUM requires nΩ(k) time. 
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Revisiting NP∩co-NP 

NP co-NP 

P 

NPC co-NPC 

Conjecture:  NP ≠ co-NP 
       
                       P ≠ NP 
 
General belief: P  ≠  NP ∩ co-NP 
 
Check:  
https://cstheory.stackexchange.com/questions/20
021/reasons-to-believe-p-ne-np-cap-conp-or-not 

• Integer factoring (FACT)   
• Approximate shortest vector in a lattice   
       Ref:  “Lattice problems in NP∩co-NP”  by Aharonov & Regev (2005) 
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                       P ≠ NP 
 
General belief: P  ≠  NP ∩ co-NP 
 
Obs: If NP ≠ co-NP and FACT ∉ P 
then FACT is NP-intermediate. 

• Integer factoring (FACT)  
• Approximate shortest vector in a lattice   
       Ref:  “Lattice problems in NP∩co-NP”  by Aharonov & Regev (2005) 
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                       P ≠ NP 
 
General belief: P  ≠  NP ∩ co-NP 
 
Obs: If NP ≠ co-NP and FACT ∉ P 
then FACT is NP-intermediate. 
 
Ladner’s theorem: P ≠ NP implies 
existence of a NP-intermediate 
language. 
 • Integer factoring (FACT)  

• Approximate shortest vector in a lattice   
       Ref:  “Lattice problems in NP∩co-NP”  by Aharonov & Regev (2005) 
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NP-intermediate problems 

NP co-NP 

P 

NPC co-NPC 

Conjecture:  NP ≠ co-NP 
       
                       P ≠ NP 
 
General belief: P  ≠  NP ∩ co-NP 
 
Obs: If NP ≠ co-NP and FACT ∉ P 
then FACT is NP-intermediate. 
 
Ladner’s theorem: P ≠ NP implies 
existence of a NP-intermediate 
language. 
    (proved using diagonalization) • Integer factoring (FACT)   

• Approximate shortest vector in a lattice   
       Ref:  “Lattice problems in NP∩co-NP”  by Aharonov & Regev (2005) 
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 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language.  

   Proof.   A delicate argument using diagonalization. 
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NP-intermediate problems 

 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language. 

   Proof.   Let H:    be a function.  

          

    Let    SATH = {Ψ0 1      :  Ψ ∈ SAT and |Ψ| = m}    

 

m 
H(m) 

H would be defined in such a way that SATH is NP-intermediate 
                             (assuming P ≠ NP ) 
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Ladner’s theorem:  Constructing  H 

 Theorem.  There’s a function H:   such that 

 

1. H(m) is computable from m in O(m3) time. 

 

2. If  SATH ∈ P   then  H(m)  ≤  C  (a constant). 

 

3. If  SATH  ∉  P   then  H(m)            with m. 

 

   Proof:   Later (uses diagonalization). 

∞ 

Let’s see the proof of Ladner’s theorem 
assuming the existence of such a “special” H. 
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H(m) 

length at most  m + 1 + mC 
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                                 P  ≠ NP 

 Suppose SATH ∈ P.   Then H(m)  ≤  C. 

 This implies a poly-time algorithm for SAT as follows: 

 On input ϕ , find m = |ϕ|. 

 

 Compute H(m), and construct the string  ϕ 0 1 

 

 Check if   ϕ 0 1         belongs to SATH . 

 

 As P  ≠ NP, it must be that SATH  ∉  P . 
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H(m) 
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 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 
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                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m).  (Homework:  Verify that 
this can be done in poly(n) time.) 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 
Let m0 be the largest 

s.t. H(m0) ≤ 2c. 
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 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 

Either m ≤ m0 (in which case the task reduces to 
checking if a constant-size Ψ is satisfiable),  

Let m0 be the largest 

s.t. H(m0) ≤ 2c. 
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 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 

or H(m) > 2c (as H(m) tends to infinity with m). 

Let m0 be the largest 

s.t. H(m0) ≤ 2c. 
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 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence, w.l.o.g.               |f(ϕ)|  ≥  k >  m2c 
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SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 
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Thus, checking if an n-size formula ϕ 
is satisfiable reduces to checking if a 
√n-size formula Ψ is satisfiable. 
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Do this recursively!   Only O(log log n) recursive steps required. 



Ladner’s theorem:  Proof 
                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence,      √n  ≥  m.   Also  ϕ ∈ SAT   iff   Ψ ∈ SAT 

 

 Hence SATH is not NP-complete, as P  ≠ NP. 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 



Natural NP-intermediate problems ?? 

 

 Integer factoring 

 

 Approximate shortest vector in a lattice 

 

 Minimum Circuit Size Problem 

       (“Multi-output MCSP is NP-hard”,   Ilango, Loff & Oliveira  2020) 

 

 Graph isomorphism   

      (“GI in QuasiP time”,   Babai  2015) 

 


