Computational Complexity Theory

Lecture 8: Time Hierarchy Theorem;
Ladner’s theorem

Department of Computer Science,
Indian Institute of Science

Recap: Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

e These techniques are characterized by two main
features:

Recap: Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

e These techniques are characterized by two main
features:

|. There’s a universal TM U that when given
strings O and X, simulates M, on x with only a
small overhead.

" If M, takes T time on x then U takes

O(T log T) time to simulate M, on x.

Recap: Diagonalization

 Diagonalization refers to a class of techniques used in
complexity theory to separate complexity classes.

e These techniques are characterized by two main
features:

|. There’s a universal TM U that when given
strings O and X, simulates M, on x with only a
small overhead.

2. Every string represents some TM, and every
TM can be represented by infinitely many
strings.

Time Hierarchy Theorem

- An application of Diagonalization

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).

e Theorem.
DTIME(f(n)) & DTIME(g(n))

e Theorem. P & EXP

e This type of results are called lower bounds.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with|f(n) = nand g(n) = n?.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) .log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
Show that there’s a language L decided by a
TM D with time complexity O(n?) s.t.,any TM

M with runtime O(n) cannot decide L.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n))-
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
TMD:

|. On input x, compute |x|2.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”

TMD:

|. On input x, compute |x|2.

D’s time steps not M, ’s
time steps.

2. Simulate|M, on x

for |x|? steps.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
TMD:
|. On input x, compute |x|2.
2. Simulate M, on x for |x|? steps.

a. If M, stops and outputs b then output |-b.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) .log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
T™MD:
|. On input x, compute |x|2.
2. Simulate M, on x for |x|? steps.
a. If M, stops and outputs b then output |-b.
b. Otherwise, output |.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
TMD:
|. On input x, compute |x|2.
2. Simulate M, on x for |x|? steps.

a. If M, stops and outputs b then output |-b.

b. Otherwise, output |. /

D outputs the opposite of what M, outputs.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n))-
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”

D runs in O(n?) time as n? is time-constructible.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) .log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
Claim. There’s no TM M with running time O(n) that
decides L (the language accepted by D).

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”

» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n))-
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”

» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

C is a constant

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”

» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

» Think of a sufficiently large x such that M = M, .

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.

» D on input x, simulates M_ on x for |x|* steps.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» D on input x, simulates M_ on x for |x|? steps. Since M_ stops

within c.[x| steps, D’s simulation also stops within c’.c. |x|. log
x| steps.

c’ is a constant

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» D on input x, simulates M_ on x for |x|? steps. Since M_ stops

within c.[x| steps, D’s simulation also stops within c’.c. |x|. log
IX| steps. (as c’.c.|x|.log |x| < [x|?* for sufficiently large x)

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» D on input x, simulates M_ on x for |x|? steps. Since M_ stops

within c.[x| steps, D’s simulation also stops within c’.c. |x|. log
x| steps. And D outputs the opposite of what M outputs!

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» Hence, D(x) = |-b.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,

f(n) . log f(n) = o(g(n)).
e Theorem. DTIME(f(n)) & DTIME(g(n))
Proof. We’ll prove with f(n) = nand g(n) = n”
» For contradiction, suppose M decides L and runs for at most
c.n steps on inputs of length n.|(i.e., M(x) = D(x) for all x)
» Think of a sufficiently large x such that M = M, .
» Suppose M(x) = M_(x) = b.
» Hence, D(x) = |-b.

Contradiction! ™M does not decide L.

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).

e Theorem. DTIME(f(n)) & DTIME(g(n))

e [heorem. P & EXP

Proof. Similar

Time Hierarchy Theorem

 Let f(n) and g(n) be time-constructible functions s.t.,
f(n) . log f(n) = o(g(n)).

e Theorem. DTIME(f(n)) & DTIME(g(n))

e [heorem. P & EXP

* No EXP-complete problem (under poly-time Karp

reduction) is in P.

E.g., Decide if aTM halts in k steps;
generalized versions of games such as
chess, checkers, Go, etc.

Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

° No algorithm solves 3SUM in O(n?*¥)
time for some constant £€> 0.

Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

° No algorithm solves 3SUM in O(n?*¥)
time for some constant £€> 0.

» However, there’s a ~O(n?/ (log n)?) time algorithm for
3SUM. (“~” suppressing a poly(log log n) factor.)

Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

° No algorithm solves 3SUM in O(n?*¥)
time for some constant £€> 0.

e KSUM: Given a list of n numbers, check if there exists
Ik numbers in the list that sum to zero.

Time Hierarchy Theorem

* Is there a natural problem that takes close to n? time?

e 3SUM: Given a list of n numbers, check if there exists
3 numbers in the list that sum to zero.

° No algorithm solves 3SUM in O(n?*¥)
time for some constant £€> 0.

o KSUM: Given a list of n numbers, check if there exists
k. numbers in the list that sum to zero.

o ETH implies
kSUM requires n“® time.

Revisiting NP(co-NP

Conjecture: NP # co-NP

l

P # NP

General belief:P # NP N co-NP

Revisiting NP(co-NP

Conjecture: NP # co-NP

l

P # NP

General belief:P # NP N co-NP

\#J

Edmonds (1966)
...conjectured P = NP (1 co-NP

Revisiting NP(1co-NP

Conjecture: NP # co-NP

l

P # NP

General belief:P # NP N co-NP

Check:
https://cstheory.stackexchange.com/questions/20

02 | [reasons-to-believe-p-ne-np-cap-conp-or-not

* Integer factoring (FACT)
* Approximate shortest vector in a lattice
Ref: “Lattice problems in NPNco-NP” by Aharonov & Regev (2005)

NP-intermediate problems

NP-intermediate

Conjecture: NP # co-NP

l
P # NP

General belief: P # NP N co-NP

Obs: If NP # co-NP and FACT ¢ P
then FACT is NP-intermediate.

* Integer factoring (FACT)
* Approximate shortest vector in a lattice
Ref: “Lattice problems in NPNco-NP” by Aharonov & Regev (2005)

NP-intermediate problems

NP-intermediate

Conjecture: NP # co-NP

l
P # NP
General belief: P # NP N co-NP

Obs: If NP # co-NP and FACT ¢ P
then FACT is NP-intermediate.

Ladner’s theorem: P # NP implies
existence of a NP-intermediate
language.

* Integer factoring (FACT)
* Approximate shortest vector in a lattice
Ref: “Lattice problems in NPNco-NP” by Aharonov & Regev (2005)

NP-intermediate problems

NP-intermediate

Conjecture: NP # co-NP

l
P # NP

General belief: P # NP N co-NP

Obs: If NP # co-NP and FACT ¢ P
then FACT is NP-intermediate.

Ladner’s theorem: P # NP implies
existence of a NP-intermediate
language.

* Integer factoring (FACT) (proved using diagonalization)

* Approximate shortest vector in a lattice
Ref: “Lattice problems in NPNco-NP” by Aharonov & Regev (2005)

Ladner’s Theorem

- Another application of Diagonalization

NP-intermediate problems

o Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

—> NP-intermediate

NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

Proof. A delicate argument using diagonalization.

NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

Proof. Let H: N — N be a function.

NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

Proof. Let H: N — N be a function.

_H(m)

Let SAT,={¥0I : W e€SATand |¥|=m}

NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

Proof. Let H: N — N be a function.

_H(m)

Let SAT,={¥0I : W e€SATand |¥|=m}

H would be defined in such a way that SAT,, is NP-intermediate
(assuming P # NP)

Ladner’s theorem: Constructing H

e Theorem. There’s a function H: N — N such that

|. H(m) is computable from m in O(m?) time.

Ladner’s theorem: Constructing H

e Theorem. There’s a function H: N — N such that

|. H(m) is computable from m in O(m?) time.

2. If SAT, €P then H(m) = C (a constant).

for every m

Ladner’s theorem: Constructing H

e Theorem. There’s a function H: N — N such that

|. H(m) is computable from m in O(m?) time.
2. If SAT, €P then H(m) = C (a constant).

3. If SAT, € P then H(m)-— o0 with m.

Ladner’s theorem: Constructing H

e [heorem. There’s a function H: N — N such that
|. H(m) is computable from m in O(m?) time.
2. If SAT, €P then H(m) = C (a constant).

3. If SAT, € P then H(m)-— o0 with m.

Proof: Later (uses diagonalization).

Let’s see the proof of Ladner’s theorem
assuming the existence of such a “special” H.

Ladner’s theorem: Proof

P # NP
e Suppose SAT, € P Then Hm) = C.

Ladner’s theorem: Proof

P # NP
e Suppose SAT, € P Then Hm) = C.
e This implies a poly-time algorithm for SAT as follows:

Ladner’s theorem: Proof

P # NP
e Suppose SAT, € P Then Hm) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

Ladner’s theorem: Proof

P # NP

e Suppose SAT, € P Then Hm) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

_H(m)
» Compute H(m), and construct the string ¢ O |

Ladner’s theorem: Proof

P # NP

e Suppose SAT, € P Then Hm) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

_H(m)
» Compute H(m), and construct the string ¢ O |

_H(m)

» Checkif ¢ O | belongs to SAT, .

Ladner’s theorem: Proof

P # NP
*|Suppose SAT, € P Then Him) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

_H(m)
» Compute H(m), and construct the string ¢ O |

_H(m)

» Checkif ¢ O | belongs to SAT, .

——

length at most m + | + m©

Ladner’s theorem: Proof

P # NP
e Suppose SAT, € P Then Hm) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

_H(m)
» Compute H(m), and construct the string ¢ O |

_H(m)

» Checkif ¢ O | belongs to SAT, .

e As P # NP, it must be that SAT,, ¢ P.

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT <, SAT, ¢ —sWO Ik

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT <, SAT, ¢ —sWO Ik

v

|§] =n WO I¥ =nc

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ |f_> LIJ O I . Let m, be the largest

‘ , ‘ ' s.t. H(m) = 2c.

01 = n WO 1Y = ne

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ |f_> LIJ 0| . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ |f_> LIJ 0| . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ lf_> LIJ O I . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].

» Compute H(m) and check if k = mH(Mm)_ (Verify that
this can be done in poly(n) time.)

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ lf_> LIJ O I . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m/

Either m = m (in which case the task reduces to
checking if a constant-size W is satisfiable),

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ |f_> LIJ 0| . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute HQ)‘ and check if k = mH(m),

or H(m) > 2c (as H(m) tends to infinity with m).

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
» Hence, w.lo.g. If(d)] = k> m?Z

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),

» Hence,w.l.o.g. n¢ = [f(®)] = k> m?*

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT <, SAT, ¢ —sWO Ik

» On input ¢, compute f(¢) =¥ 0 I Let
» Compute H(m) and check if k = mH(m),

» Hence, Vn = m.

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

Thus, checking if an n-size formula ¢
is satisfiable reduces to checking if a
n-size formula W is satisfiable.

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

Do this recursively! Only O(log log n) recursive steps required.

Ladner’s theorem: Proof

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT <, SAT, ¢ —sWO Ik

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

» Hence SAT, is not NP-complete,as P # NP.

Natural NP-intermediate problems ??

e Integer factoring
e Approximate shortest vector in a lattice

e Minimum Circuit Size Problem

()

e Graph isomorphism
()

