Computational Complexity Theory

Lecture 9: Ladner's theorem (contd.);
Relativization

Department of Computer Science, Indian Institute of Science

Recap: NP-intermediate problems

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.

Proof. Let H: $N \rightarrow N$ be a function.

Let
$$SAT_H = \{\Psi 0 \mid \prod^{m^{H(m)}} : \Psi \in SAT \text{ and } |\Psi| = m\}$$

H would be defined in such a way that SAT_H is NP-intermediate (assuming $P \neq NP$)

Recap: Constructing H

• Theorem. There's a function H: $N \rightarrow N$ such that

- I. H(m) is computable from m in $O(m^3)$ time.
- 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

Proof: Later (uses diagonalization).

Let's see the proof of Ladner's theorem assuming the existence of such a "special" H.

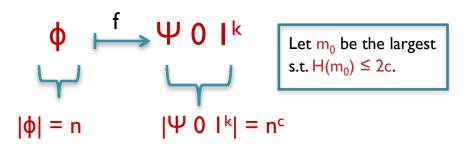
$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input ϕ , find $m = |\phi|$.
 - \triangleright Compute H(m), and construct the string $\phi 0 I^{m^{\square(1)}}$
 - ightharpoonup Check if $\phi \circ I$ belongs to SAT_H .
- As $P \neq NP$, it must be that $SAT_H \notin P$.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{D} SAT_{H}$$



$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- ightharpoonup Compute H(m) and check if $k = m^{H(m)}$.

Either $m \le m_0$ (in which case the task reduces to checking if a constant-size Ψ is satisfiable),

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.

or H(m) > 2c (as H(m) tends to infinity with m).

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_{p} SAT_{H}$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^k$$

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.
- ightharpoonup Hence, w.l.o.g. $n^c = |f(\phi)| \ge k > m^{2c}$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- ightharpoonup Compute H(m) and check if $k = m^{H(m)}$.
- \triangleright Hence, \sqrt{n} ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT

Do this recursively! Only O(log log n) recursive steps required.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^k$$

- \triangleright On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- ightharpoonup Compute H(m) and check if $k = m^{H(m)}$.
- \triangleright Hence, \sqrt{n} ≥ m. Also ϕ ∈ SAT iff Ψ ∈ SAT
- Hence SAT_H is not NP-complete, as $P \neq NP$.

Ladner's theorem: Properties of H

• Theorem. There's a function H: $N \rightarrow N$ such that

- I. H(m) is computable from m in $O(m^3)$ time.
- 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

• $SAT_H = \{\Psi 0 \mid I^{mH(m)} : \Psi \in SAT \text{ and } |\Psi| = m\}$

• Observation. The value of H(m) determines membership in SAT_H of strings whose length is $\geq m$.

 Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).
- Think of computing H(m) sequentially: Compute H(I), H(2),...,H(m-I). Just before computing H(m), find $SAT_H \cap \{0,1\}^{\log m}$.

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).
- Construction. H(m) is the smallest k < log log m s.t.
 - I. M_k decides membership of <u>all</u> length up to log m strings x in SAT_H within k. $|x|^k$ time.
 - 2. If no such k exists then H(m) = log log m.

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose lengths are < m (say, log m).
- Homework. Prove that H(m) is computable from m in O(m³) time.

- Claim. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- Proof. There is a poly-time M that decides membership of every x in SAT_H within c.|x|^c time.

- Claim. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- Proof. There is a poly-time M that decides membership of every x in SAT_H within c. $|x|^c$ time.
- As M can be represented by infinitely many strings, there's an $\alpha \ge c$ s.t. $M = M_{\alpha}$ decides membership of every x in SAT_H within $\alpha . |x|^{\alpha}$ time.
- So, for every m satisfying $\alpha < \log \log m$, $H(m) \leq \alpha$.

- Claim. If $H(m) \le C$ (a constant) for infinitely many m, then $SAT_H \in P$.
- Proof. There's a k ≤ C s.t. H(m) = k for infinitely many
 m.

- Claim. If $H(m) \le C$ (a constant) for infinitely many m, then $SAT_H \in P$.
- Proof. There's a k ≤ C s.t. H(m) = k for infinitely many
 m.

Pick any x ∈ {0,1}*. Think of a large enough m s.t.
 |x| ≤ log m and H(m) = k.

- Claim. If $H(m) \le C$ (a constant) for infinitely many m, then $SAT_H \in P$.
- Proof. There's a k ≤ C s.t. H(m) = k for infinitely many
 m.

- Pick any x ∈ {0,1}*. Think of a large enough m s.t.
 |x| ≤ log m and H(m) = k.
- This means x is correctly decided by M_k in $k.|x|^k$ time. So, M_k is a poly-time machine deciding SAT_H .

Natural NP-intermediate problems ??

- Integer factoring
- Approximate shortest vector in a lattice
- Minimum Circuit Size Problem

```
("Multi-output MCSP is NP-hard", Ilango, Loff & Oliveira 2020; "NP-hardness of learning programs and partial MCSP", Hirahara 2022)
```

Graph isomorphism

```
("GI in QuasiP time", Babai 2015)
```

Natural NP-intermediate problems ??

Discrete logarithm

- Isomorphism problems (for groups, rings, polynomials)
- Unique games
- Check this link for more candidate problems:

https://cstheory.stackexchange.com/questions/79/problems-between-p-and-npc

Limits of diagonalization

• Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?

Limits of diagonalization

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on using only the two features of diagonalization.
- The proof of this fact <u>uses diagonalization</u> and the notion of oracle Turing machines!

Oracle Turing Machines

• Definition: Let $L \subseteq \{0,1\}^*$ be a language. An <u>oracle TM</u> M^L is a TM with a special query tape and three special states q_{query} , q_{yes} and q_{no} such that whenever the machine enters the q_{query} state, it immediately transits to q_{yes} or q_{no} depending on whether the string in the query tape belongs to L. (M^L has oracle access to L)

Oracle Turing Machines

- Definition: Let $L \subseteq \{0,1\}^*$ be a language. An <u>oracle TM</u> M^L is a TM with a special query tape and three special states q_{query} , q_{yes} and q_{no} such that whenever the machine enters the q_{query} state, it immediately transits to q_{yes} or q_{no} depending on whether the string in the query tape belongs to L. (M^L has oracle access to L)
- Think of physical realization of M^L as a device with access to a subroutine that decides L. We don't count the time taken by the subroutine.

Oracle Turing Machines

- We can define a <u>nondeterministic</u> Oracle TM similarly.
- "Important note": Oracle TMs (deterministic or nondeterministic) have the same two features used in diagonalization: For any **fixed** $L \subseteq \{0,1\}^*$,
 - I. There's an efficient universal TM with oracle access to L,
 - 2. Every M^L has <u>infinitely many representations</u>.

Complexity classes using oracles

• Definition: Let L ⊆ {0,1}* be a language. Complexity classes P^L, NP^L and EXP^L are defined just as P, NP and EXP respectively, but with TMs replaced by <u>oracle TMs</u> with oracle access to L in the definitions of P, NP and EXP respectively. For e.g., SAT ∈ PSAT.

Complexity classes using oracles

• Definition: Let L ⊆ {0,1}* be a language. Complexity classes P^L, NP^L and EXP^L are defined just as P, NP and EXP respectively, but with TMs replaced by oracle TMs with oracle access to L in the definitions of P, NP and EXP respectively. For e.g., SAT ∈ PSAT.

 Such complexity classes help us identify a class of complexity theoretic proofs called <u>relativizing proofs</u>.

Relativization

- Observation: Let $L \subseteq \{0,1\}^*$ be an arbitrarily fixed language. Owing to the "Important note", the proof of $P \neq EXP$ can be easily adapted to prove $P^L \neq EXP^L$ by working with TMs with oracle access to L.
- We say that the $P \neq EXP$ result/proof <u>relativizes</u>.

- Observation: Let $L \subseteq \{0,1\}^*$ be an arbitrarily fixed language. Owing to the "Important note", the proof of $P \neq EXP$ can be easily adapted to prove $P^L \neq EXP^L$ by working with TMs with oracle access to L.
- We say that the $P \neq EXP$ result/proof <u>relativizes</u>.
- Observation: Let $L \subseteq \{0,1\}^*$ be an arbitrarily fixed language. Owing to the 'Important note', <u>any proof/result that uses only the two features of diagonalization relativizes</u>.

- If there is a resolution of the P vs. NP problem <u>using</u>
 <u>only</u> the two features of diagonalization, then such a proof must relativize.
- Is it true that

```
- either P^L = NP^L for every L \subseteq \{0, 1\}^*,
```

```
- or P^{L} \neq NP^{L} for every L \subseteq \{0,1\}^{*}?
```

- If there is a resolution of the P vs. NP problem <u>using</u>
 <u>only</u> the two features of diagonalization, then such a proof must relativize.
- Is it true that

```
- either P^L = NP^L for every L \subseteq \{0,1\}^*,
- or P^L \neq NP^L for every L \subseteq \{0,1\}^*?
```

Theorem (Baker, Gill & Solovay 1975): The answer is No. Any proof of P = NP or $P \neq NP$ must <u>not</u> relativize.

Baker-Gill-Solovay theorem

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: Using diagonalization!