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Recap:  NP-intermediate problems 

 Definition.  A language L in NP is NP-intermediate if L is 
neither in P nor NP-complete.  

 

 Theorem. (Ladner 1975) If P ≠ NP then there is a NP-
intermediate language. 

   Proof.   Let H:    be a function.  

          

    Let    SATH = {Ψ0 1      :  Ψ ∈ SAT and |Ψ| = m}    

 

m 
H(m) 

H would be defined in such a way that SATH is NP-intermediate 
                             (assuming P ≠ NP ) 



Recap:  Constructing  H 

 Theorem.  There’s a function H:   such that 

 

1. H(m) is computable from m in O(m3) time. 

 

2. If  SATH ∈ P   then  H(m)  ≤  C  (a constant). 

 

3. If  SATH  ∉  P   then  H(m)            with m. 

 

   Proof:   Later (uses diagonalization). 

∞ 

Let’s see the proof of Ladner’s theorem 
assuming the existence of such a “special” H. 



Recap:  Proof of Ladner’s theorem 

                                 P  ≠ NP 

 Suppose SATH ∈ P.   Then H(m)  ≤  C. 

 This implies a poly-time algorithm for SAT as follows: 

 On input ϕ , find m = |ϕ|. 

 

 Compute H(m), and construct the string  ϕ 0 1 

 

 Check if   ϕ 0 1         belongs to SATH . 

 

 As P  ≠ NP, it must be that SATH  ∉  P . 

m 
H(m) 

m 
H(m) 



Recap:  Proof of Ladner’s theorem 

                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 
∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 

|ϕ| = n |Ψ 0 1k| = nc 

Let m0 be the largest 

s.t. H(m0) ≤ 2c. 



Recap:  Proof of Ladner’s theorem 

                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 

Either m ≤ m0 (in which case the task reduces to 
checking if a constant-size Ψ is satisfiable),  

Let m0 be the largest 

s.t. H(m0) ≤ 2c. 



Recap:  Proof of Ladner’s theorem 

                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 

or H(m) > 2c (as H(m) tends to infinity with m). 

Let m0 be the largest 

s.t. H(m0) ≤ 2c. 



Recap:  Proof of Ladner’s theorem 

                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence, w.l.o.g.     nc   =  |f(ϕ)|  ≥  k >  m2c 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 



Recap:  Proof of Ladner’s theorem 

                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence,      √n  ≥  m.   Also  ϕ ∈ SAT   iff   Ψ ∈ SAT 

 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 

Do this recursively!   Only O(log log n) recursive steps required. 



Recap:  Proof of Ladner’s theorem 

                                 P  ≠ NP 

 Suppose SATH is NP-complete.  Then H(m)         with m. 

 This also implies a poly-time algorithm for SAT: 

 

 

 On input ϕ, compute f(ϕ) = Ψ 0 1k. Let m = |Ψ|. 

 Compute H(m) and check if k = mH(m). 

 Hence,      √n  ≥  m.   Also  ϕ ∈ SAT   iff   Ψ ∈ SAT 

 

 Hence SATH is not NP-complete, as P  ≠ NP. 

∞ 

SAT  ≤p SATH 

    
ϕ          Ψ 0 1k 

    

f 



Ladner’s theorem:  Properties of  H 

 Theorem.  There’s a function H:   such that 

 

1. H(m) is computable from m in O(m3) time. 

 

2. If  SATH ∈ P   then  H(m)  ≤  C  (a constant). 

 

3. If  SATH  ∉  P   then  H(m)            with m. 

 

 

 SATH = {Ψ0 1      :  Ψ ∈ SAT and |Ψ| = m}  

∞ 

m 
H(m) 



Construction of  H 

 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).   

 

 



Construction of  H 

 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).  

 

 Think of computing H(m) sequentially: Compute H(1), 
H(2),…,H(m-1). Just before computing H(m), find 
SATH ∩ {0,1}log m. 



Construction of  H 

 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).   

 

 Construction.  H(m) is the smallest k < log log m s.t. 

1. Mk decides membership of all length up to   
log m strings x in SATH within k.|x|k time.   

2. If no such k exists then H(m) = log log m. 

 



Construction of  H 

 Observation.  The value of H(m) determines 
membership in SATH of strings whose length is ≥ m. 

 

 Therefore, it is OK to define H(m) based on strings in 
SATH whose lengths are < m (say, log m).   

 

 Homework.  Prove that H(m) is computable from m 
in O(m3) time. 



Construction of  H 

 Claim.  If  SATH ∈ P then H(m)  ≤  C  (a constant). 

 Proof.  There is a poly-time M that decides 
membership of every x in SATH within c.|x|c time.  



Construction of  H 

 Claim.  If  SATH ∈ P then H(m)  ≤  C  (a constant). 

 Proof.  There is a poly-time M that decides 
membership of every x in SATH within c.|x|c time.  

 

 As M can be represented by infinitely many strings, 
there’s anα ≥ c s.t. M = Mα decides membership of 
every x in SATH within α.|x|α time.  

 

 So, for every m satisfying α < log log m,  H(m) ≤ α.  



Construction of  H 

 Claim.  If H(m)  ≤  C (a constant) for infinitely many 
m, then SATH ∈ P. 

 Proof.  There’s a k ≤ C s.t. H(m) = k for infinitely many 
m.  



Construction of  H 

 Claim.  If H(m)  ≤  C (a constant) for infinitely many 
m, then SATH ∈ P. 

 Proof.  There’s a k ≤ C s.t. H(m) = k for infinitely many 
m.  

 

 Pick any x ∈ {0,1}*.  Think of a large enough m s.t.      
|x| ≤ log m and H(m) = k.  



Construction of  H 

 Claim.  If H(m)  ≤  C (a constant) for infinitely many 
m, then SATH ∈ P. 

 Proof.  There’s a k ≤ C s.t. H(m) = k for infinitely many 
m.  

 

 Pick any x ∈ {0,1}*.  Think of a large enough m s.t.      
|x| ≤ log m and H(m) = k.  

 

 This means x is correctly decided by Mk in k.|x|k time. 
So, Mk is a poly-time machine deciding SATH. 



Natural NP-intermediate problems ?? 

 

 Integer factoring 

 

 Approximate shortest vector in a lattice 

 

 Minimum Circuit Size Problem 

       (“Multi-output MCSP is NP-hard”,   Ilango, Loff & Oliveira  2020; 

           “NP-hardness of learning programs and partial MCSP”,   Hirahara 2022) 

 Graph isomorphism   

      (“GI in QuasiP time”,   Babai  2015) 

 



Natural NP-intermediate problems ?? 

 

 Discrete logarithm 

 

 Isomorphism problems (for groups, rings, polynomials) 

 

 Unique games 

 

 Check this link for more candidate problems: 

     https://cstheory.stackexchange.com/questions/79/problems-between-p-and-npc      



Limits of diagonalization 

 Like in the proof of P ≠ EXP, can we use 
diagonalization to show P ≠ NP ?  



Limits of diagonalization 

 Like in the proof of P ≠ EXP, can we use 
diagonalization to show P ≠ NP ?  

 

 The answer is No, if one insists on using only the two 
features of diagonalization. 

 

 The proof of this fact uses diagonalization and the 
notion of oracle Turing machines! 



Oracle Turing Machines 

 Definition: Let L ⊆ {0,1}* be a language. An oracle TM 
ML is a TM with a special query tape and three special 
states qquery, qyes and qno such that whenever the 
machine enters the qquery state, it immediately transits 
to qyes or qno depending on whether the string in the 
query tape belongs to L.     (ML has oracle access to L) 



Oracle Turing Machines 

 Definition: Let L ⊆ {0,1}* be a language. An oracle TM 
ML is a TM with a special query tape and three special 
states qquery, qyes and qno such that whenever the 
machine enters the qquery state, it immediately transits 
to qyes or qno depending on whether the string in the 
query tape belongs to L.     (ML has oracle access to L) 

 

 Think of physical realization of ML as a device with 
access to a subroutine that decides L. We don’t count 
the time taken by the subroutine.  

 



Oracle Turing Machines 

 

 We can define a nondeterministic Oracle TM similarly. 

 

 “Important note”: Oracle TMs (deterministic or 
nondeterministic) have the same two features used in 
diagonalization:  For any fixed L ⊆ {0,1}*, 

          1.  There’s an efficient universal TM with oracle access to L,  

            2.  Every ML has infinitely many representations.  

 



Complexity classes using oracles 

 

 Definition: Let L ⊆ {0,1}* be a language. Complexity 
classes PL, NPL and EXPL are defined just as P, NP and 
EXP respectively, but with TMs replaced by oracle TMs 
with oracle access to L in the definitions of P, NP and 
EXP respectively.    For e.g.,  SAT ∈  PSAT. 



Complexity classes using oracles 

 

 Definition: Let L ⊆ {0,1}* be a language. Complexity 
classes PL, NPL and EXPL are defined just as P, NP and 
EXP respectively, but with TMs replaced by oracle TMs 
with oracle access to L in the definitions of P, NP and 
EXP respectively.    For e.g.,  SAT ∈  PSAT. 

 

 Such complexity classes help us identify a class of 
complexity theoretic proofs called relativizing proofs.  



Relativization 



Relativizing results 

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed 
language. Owing to the “Important note”, the proof of 
P ≠ EXP can be easily adapted to prove PL ≠ EXPL by 
working with TMs with oracle access to L. 

 We say that the P ≠ EXP result/proof relativizes. 

 



Relativizing results 

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed 
language. Owing to the “Important note”, the proof of 
P ≠ EXP can be easily adapted to prove PL ≠ EXPL by 
working with TMs with oracle access to L. 

 We say that the P ≠ EXP result/proof relativizes. 

 

 Observation: Let L ⊆ {0,1}* be an arbitrarily fixed 
language. Owing to the ‘Important note’, any 
proof/result that uses only the two features of 
diagonalization relativizes. 



Relativizing results 

 If there is a resolution of the P vs. NP problem using 
only the two features of diagonalization, then such a 
proof must relativize.  

 Is it true that  

 - either PL = NPL for every L ⊆ {0,1}*, 

 - or     PL ≠ NPL for every L ⊆ {0,1}* ?  

 



Relativizing results 

 If there is a resolution of the P vs. NP problem using 
only the two features of diagonalization, then such a 
proof must relativize.  

 Is it true that  

 - either PL = NPL for every L ⊆ {0,1}*, 

 - or     PL ≠ NPL for every L ⊆ {0,1}* ?  

 

Theorem (Baker, Gill & Solovay 1975):  The answer is No.  
Any proof of P = NP or P ≠ NP must not relativize. 

 



Baker-Gill-Solovay theorem 

 Theorem: There exist languages A and B such that    
PA = NPA but PB ≠ NPB.  

 Proof: Using diagonalization! 

 


