E0 224: Computational Complexity Theory Indian Institute of Science Assignment 1

Due date: Sep 20, 2024

Total marks: 40

1. (9 marks)

- (a) (3 marks) Let QUADEQ be the language of all satisfiable sets of quadratic equations over 0/1 variables (a quadratic equation over $u_1, ..., u_n$ has the form $\sum_{i,j\in[n]} a_{i,j}u_iu_j + \sum_{i\in[n]} a_iu_i = b$) where addition is modulo 2. Show that QUADEQ is NP-complete.
- (b) (6 marks) Design a deterministic polynomial-time algorithm to solve the 2SAT problem (i.e., when every clause of the input CNF formula has at most 2 literals).
- 2. (7 marks) Let PARTITION = $\{(x_1, \ldots, x_n) \in \mathbb{Z}^n : \text{there exists } S \subset [n] \text{ such that } \sum_{i \in S} x_i = \sum_{i \neq S} x_i \}$. Prove that PARTITION is NP-complete.
- 3. (6 marks) Let $f : \mathbb{Z} \to \mathbb{Z}$ be a bijection that maps *n*-bit integers to *n*-bit integers. Such a *f* is a *one-way function* if *f* is polynomial-time computable, but f^{-1} is not. Show that if *f* is a one-way function, then the language $L_f := \{(x, y) : f^{-1}(x) < y\} \in \mathsf{NP} \cap \mathsf{co-NP}$, but L_f is not in P .
- 4. (6 marks) Consider the following variant of the graph isomorphism problem: given two graphs H = (U, F) and G = (V, E) (not necessarily having the same number of vertices), check if there is a one-toone map (i.e., an injection) $\phi : U \to V$ such that $(u_1, u_2) \in F$ if and only if $(\phi(u_1), \phi(u_2)) \in E$. Prove that this variant of the graph isomorphism problem is NP-complete.
- 5. (12 points) Two languages $L_1, L_2 \subseteq \{0, 1\}^*$ are said to be *p*-isomorphic if there is a bijection $f : \{0, 1\}^* \to \{0, 1\}^*$ such that $x \in L_1 \iff f(x) \in L_2$ and f and f^{-1} are polynomial-time computable. A language L is sparse if there exists a constant c such that for every integer $n \ge 1$, the number of strings of length n belonging to L is bounded by n^c .
 - (a) (4 points) Show that if NP-complete languages are p-isomorphic to each other, then $P \neq NP$.
 - (b) (8 points) Show that if a sparse language is NP-complete, then P = NP.