Computational Complexity Theory

Lecture I: Course overview;

Turing machines

Department of Computer Science, Indian Institute of Science

Course overview

 Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational problems come in various flavors:

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational problems come in various flavors:
 - a. Decision problem
 - Example: i) Is vertex t reachable from vertex s in graph G?
 - ii) Is n a prime number?

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational problems come in various flavors:
 - a. Decision problem
 - b. Search problem
 - Example: i) Find a satisfying assignment for a Boolean formula.
 - ii) Find a prime between n and 2n.

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational problems come in various flavors:
 - a. Decision problem
 - b. Search problem
 - c. Counting problem
- Example: i) Count the number of cycles in a graph.
 - ii) Count the number of perfect matchings in a graph.

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational problems come in various flavors:
 - a. Decision problem
 - b. Search problem
 - c. Counting problem
 - d. Optimization problem
 - Example: i) Find a minimum size vertex cover in a graph.
 - ii) Optimize a linear function subject to <u>linear</u> inequality constraints. (linear programming)

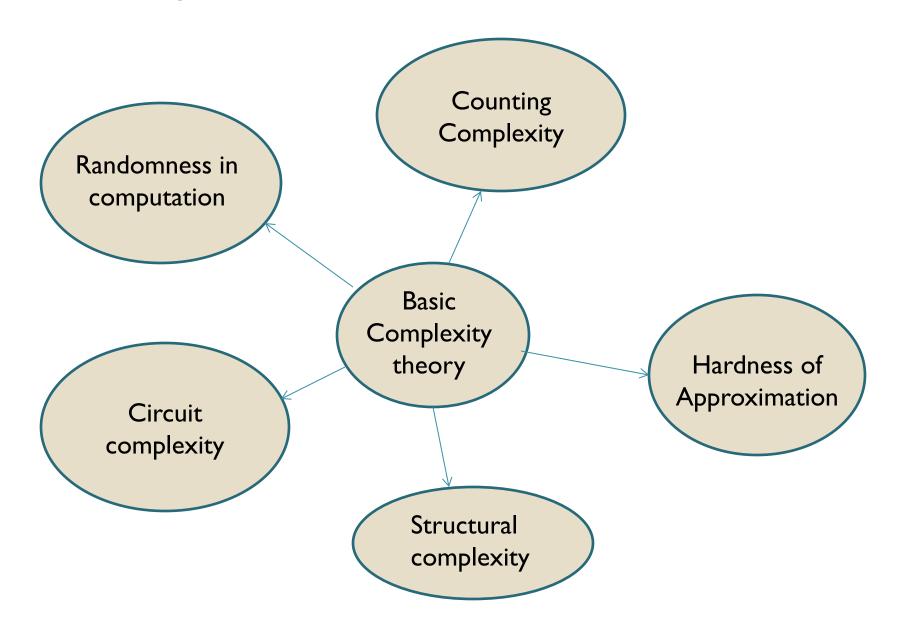
- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Algorithms are <u>methods</u> for solving problems; they are studied using formal <u>models of computation</u>, like <u>Turing machines</u>.
 - **↓**
 - a memory with head (like a RAM)
 - a finite control (like a processor)

(...more later in this lecture)

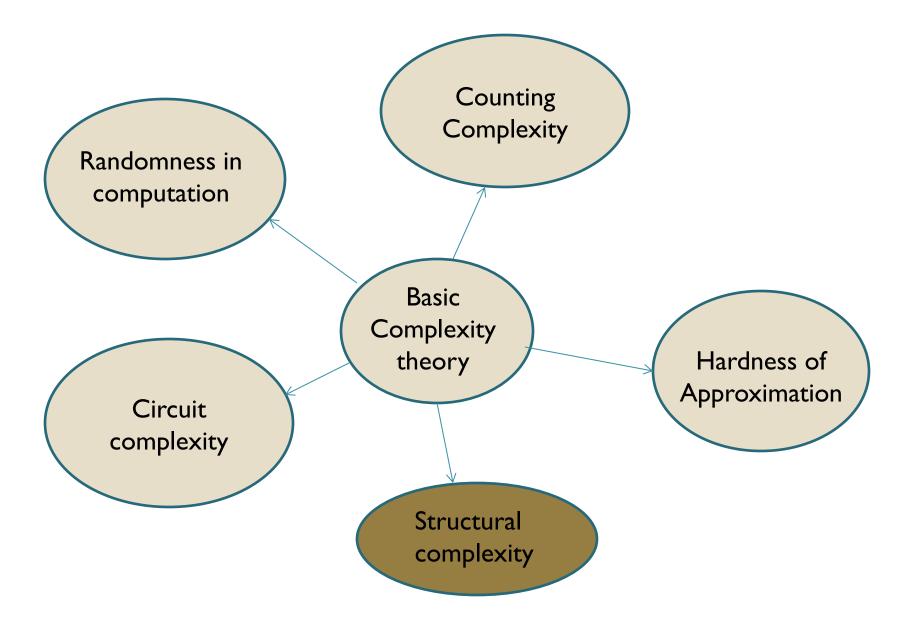
- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational resources (required by models of computation) can be:
 - Time (bit operations)
 - Space (memory cells)

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational resources (required by models of computation) can be:
 - Time (bit operations)
 - Space (memory cells)
 - Random bits (magic bits: 0 w.p ½ and 1 w.p ½)
 - Communication (bit exchanges)

Topics to be covered in this course



Topics to be covered in this course



Structural Complexity: Overview

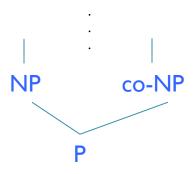
- Classes P, NP, co-NP... NP-completeness.
 - How hard is it to check satisfiability of a Boolean formula?
 - What if the formula has exactly one or no satisfying assignment?

Structural Complexity: Overview

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation.
 - How much space is required to check s-t connectivity?

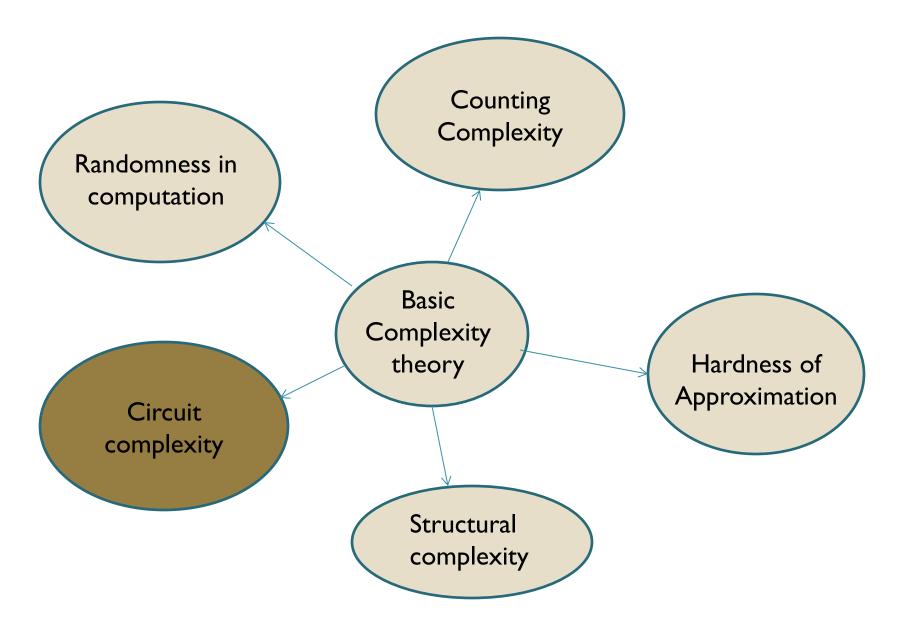
Structural Complexity: Overview

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation.
- Polynomial Hierarchy (PH).



- How hard is it to check if the <u>largest</u> independent set in G has size k?
- How hard is it to check if there is a circuit of size k that computes the <u>same</u> <u>Boolean function</u> as a given Boolean circuit C?

Topics to be covered in this course



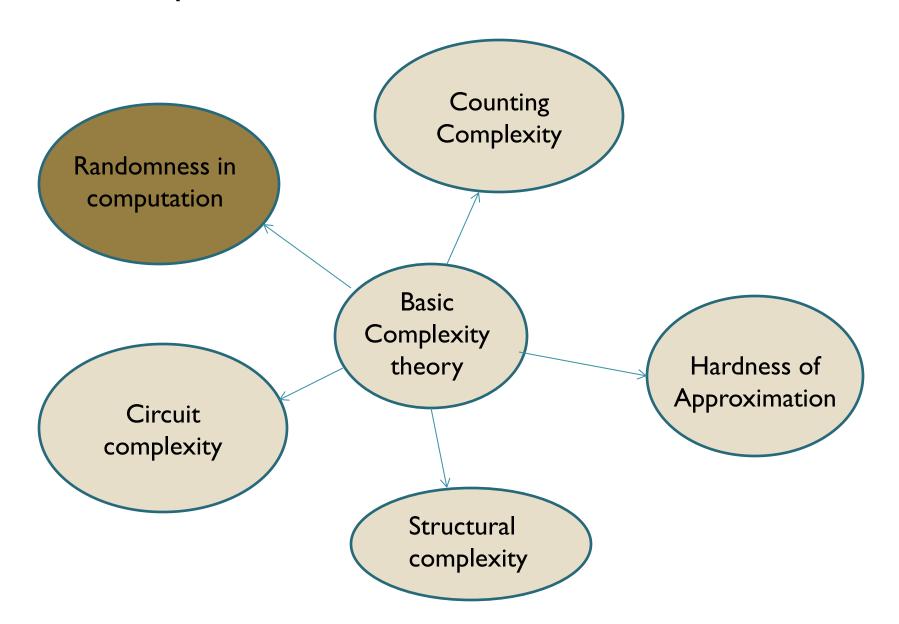
Circuit Complexity: Overview

- The internal workings of an algorithm can be viewed as a Boolean circuit -- a nice combinatorial model of computation that is closely related to Turing Machines.
- The <u>size</u>, <u>depth</u> & <u>width</u> of a circuit correspond to the <u>sequential</u>, <u>parallel</u> & <u>space</u> complexity, respectively, of the algorithm that it represents.

Circuit Complexity: Overview

- The internal workings of an algorithm can be viewed as a Boolean circuit -- a nice combinatorial model of computation that is closely related to Turing Machines.
- The <u>size</u>, <u>depth</u> & <u>width</u> of a circuit correspond to the <u>sequential</u>, <u>parallel</u> & <u>space</u> complexity, respectively, of the algorithm that it represents.
- Proving P ≠ NP reduces to showing circuit lower bounds.
 - We will see lower bounds for restricted classes of circuits.

Topics to be covered in this course



Randomness in Computation: Overview

- Probabilistic complexity classes (BPP, RP, co-RP).
 - Does randomization help in improving efficiency?
 - Quicksort has O(n log n) expected time but O(n²) worst case time.
 - Can SAT be solved in polynomial time using randomness?

```
Theorem (Schoening, 1999): 3SAT can be solved in <u>randomized</u> O((4/3)^n) time.
```

```
(brute force takes 2^n time) (best randomized algorithm for 3SAT: \sim O(1.307^n) time.)
```

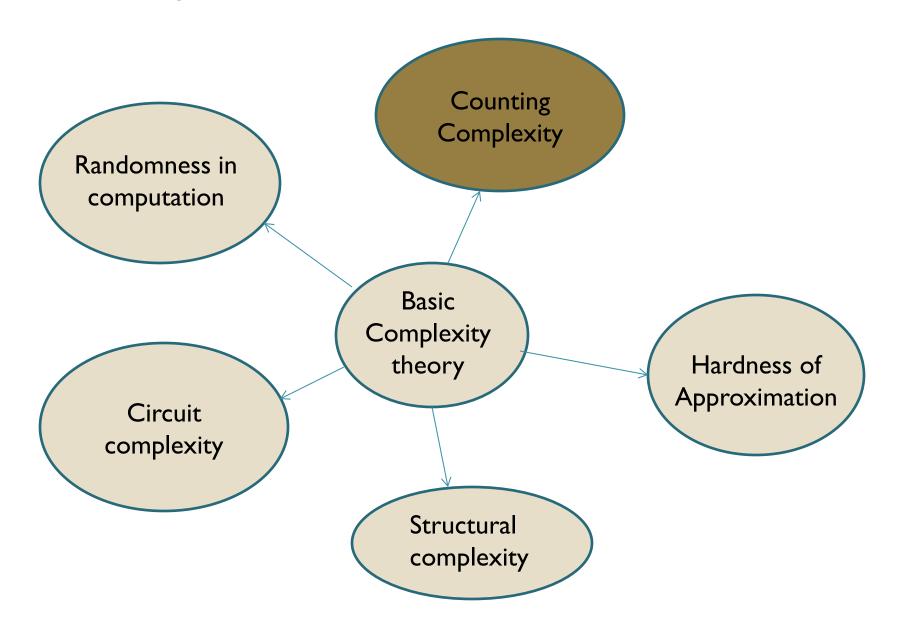
Randomness in Computation: Overview

- Probabilistic complexity classes (BPP, RP, co-RP).
 - Does randomization help in improving efficiency?
 - Quicksort has O(n log n) expected time but O(n²) worst case time.
 - Can SAT be solved in polynomial time using randomness?

```
Theorem (Schoening, 1999): 3SAT can be solved in <u>randomized</u> O((4/3)^n) time.
```

 Access to random bits can help improve computational efficiency... but, to what extent?

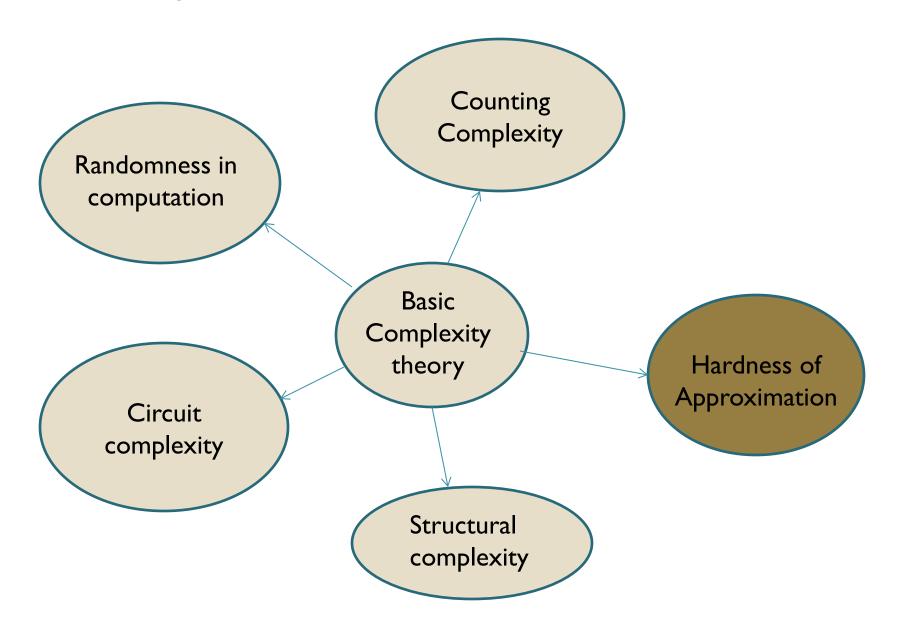
Topics to be covered in this course



Counting Complexity: Overview

- Counting complexity classes (class #P).
 - How hard is it to count the number of perfect matchings in a graph?
 - How hard is it to count the number of cycles in a graph?
 - Can we compute the number of simple paths between s and t in G efficiently?
 - Is counting much harder than the corresponding decision problem?

Topics to be covered in this course



Hardness of Approximation: Overview

Probabilistically Checkable Proofs (PCPs).

Hardness of approximation results.

Theorem (Hastad, 1997): If there's a poly-time algorithm to compute an assignment that satisfies at least $7/8 + \varepsilon$ fraction of the clauses of an input 3SAT, for any constant $\varepsilon > 0$, then P = NP.

 In contrast, there is a poly-time algorithm to compute an assignment that satisfies at least 7/8 fraction of the clauses.

Course Info

- Course no.: E0 224 Credits: 3:1
- Instructor: Chandan Saha
- Lecture time: M,W 11:30-1pm. Venue: CSA 112
- TA: Agrim Dewan (agrimdewan@iisc.ac.in)

Course homepage:

https://www.csa.iisc.ac.in/~chandan/courses/complexity24/home.html

Course Info

Prerequisites: Basic familiarity with algorithms;
 Mathematical maturity.

- Primary reference: Computational Complexity A Modern Approach by Sanjeev Arora and Boaz Barak.
- Lectures: Slides will be posted on the course homepage.
- Number of lectures: ~30.

Course Info

• **Grading policy**: Three assignments - 45%

Presentation - 25%

Final exam - 30%

Assignments

- First assignment: Will posted on Aug 31; due date will be Sep 14.
- Second assignment: Will posted on Sep 30; due date will be Oct 14.
- Third assignment: Will posted on Oct 31; due date will be Nov 14. (Last day of class is also Nov 14.)
- Mode: Assignments will be posted on the course homepage. You need to e-mail me your assignment as a pdf file (use Latex).

Presentations

- A group of 2 students would present a paper/result.
- Duration of a presentation: ~1.5 hr.
- Mode: In class, use slides.

- I will start giving topics to present from mid-Sep. All topics will be handed out by mid-Oct.
- You will get ~4 weeks to prepare a presentation.
- We will finish all the presentations by Nov 16 (Sat).

Final exam

Would be a 3 hr long written test.

• When? Likely in the last week of Nov.

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of computation</u>. Turing machine is one such *natural* model (introduced by Alan Turing in 1936).
- Turing called it an "a-machine" (automatic machine). His doctoral advisor Alonzo Church coined the term "Turing machine".

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of computation</u>. Turing machine is one such *natural* model (introduced by Alan Turing in 1936).
- A TM consists of:
 - Memory tape(s)
 - A finite set of rules

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of computation</u>. Turing machine is one such *natural* model (introduced by Alan Turing in 1936).
- A TM consists of:
 - Memory tape(s)
 - A finite set of rules
- Turing machines A mathematical way to describe algorithms.

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of computation</u>. Turing machine is one such *natural* model (introduced by Alan Turing in 1936).
- A TM consists of:
 - Memory tape(s)
 - A finite set of rules

(e.g. of a physical realization of a TM is a simple adder)

• Definition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that

- Definition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with heads;
- Γ is a finite set of alphabets. (Every memory cell contains an element of Γ)

- Definition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with heads;
- Γis a finite set of alphabets. (Every memory cell contains an element of Γ)

has a blank symbol

- Definition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with heads:
- Fis a finite set of alphabets. (Every memory cell contains an element of Γ)
- Q is a finite set of states. (special states: q_{start}, q_{halt})
 δ is a function from Q x Γ^k to Q x Γ^k {L,S,R}^k

- Definition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with heads:
- Fis a finite set of alphabets. (Every memory cell contains an element of Γ)
- Q is a finite set of states. (special states: q_{start}, q_{halt})
 δ is a function from Q x Γ^k to Q x Γ^k {L,S,R}^k

known as transition function; it captures the dynamics of M

Turing Machines: Computation

- Start configuration.
 - > All tapes other than the input tape contain blank symbols.
 - The input tape contains the input string.
 - > All the head positions are at the start of the tapes.
 - \triangleright The machine is in the start state q_{start} .

Turing Machines: Computation

- Start configuration.
 - > All tapes other than the input tape contain blank symbols.
 - > The input tape contains the input string.
 - > All the head positions are at the start of the tapes.
 - \triangleright The machine is in the start state q_{start} .
- Computation.
 - \triangleright A **step of computation** is performed by applying δ .
- Halting.
 - \triangleright Once the machine enters q_{halt} it stops computation.

Turing Machines: Running time

- Let f: $\{0,1\}^* \rightarrow \{0,1\}^*$ and T: N \rightarrow N and M be a Turing machine.
- Definition. We say M computes f if on every x in $\{0,1\}^*$, M halts with f(x) on its output tape beginning from the start configuration with x on its input tape.

Turing Machines: Running time

- Let f: $\{0,1\}^* \rightarrow \{0,1\}^*$ and T: N \rightarrow N and M be a Turing machine.
- Definition. We say M computes f if on every x in $\{0,1\}^*$, M halts with f(x) on its output tape beginning from the start configuration with x on its input tape.
- Definition. M computes f in T(|x|) time, if for every x in $\{0,1\}^*$, M halts within T(|x|) steps of computation and outputs f(x).

- In this course, we would be dealing with
 - Turing machines that halt on every input.
 - Computational problems that can be solved by Turing machines.

- In this course, we would be dealing with
 - Turing machines that halt on every input.
 - Computational problems that can be solved by Turing machines.

 Can every computational problem be solved using Turing machines?

- There are problems for which there exists no TM that halts on every input instances of the problem and outputs the correct answer.
 - Input: A system of polynomial equations in many variables with integer coefficients.
 - Output: Check if the system has integer solutions.
 - Question: Is there an algorithm to solve this problem?

- There are problems for which there exists no TM that halts on every input instances of the problem and outputs the correct answer.
 - > A typical input instance:

$$x^{2}y + 5y^{3} = 3$$

 $x^{2} + z^{5} - 3y^{2} = 0$
 $y^{2} - 4z^{6} = 0$

Integer solutions for x, y, z?

- There are problems for which there exists no TM that halts on every input instances of the problem and outputs the correct answer.
 - Input: A system of polynomial equations in many variables with integer coefficients.
 - Output: Check if the system has integer solutions.
 - Question: Is there an algorithm to solve this problem?

(Hilbert's tenth problem, 1900)

- There are problems for which there exists no TM that halts on every input instances of the problem and outputs the correct answer.
 - Input: A system of polynomial equations in many variables with integer coefficients.
 - Output: Check if the system has integer solutions.
 - Question: Is there an algorithm to solve this problem?
- Theorem. There doesn't exist any algorithm (realizable by a TM) to solve this problem. (Davis, Putnam, Robinson, Matiyasevich 1970)

Why Turing Machines?

TMs are natural and intuitive.

- Church-Turing thesis: "Every physically realizable computation device whether it's based on silicon, DNA, neurons or some other alien technology can be simulated by a Turing machine".
 - [quoted from Arora-Barak's book]

Why Turing Machines?

TMs are natural and intuitive.

- Church-Turing thesis: "Every physically realizable computation device – whether it's based on silicon, DNA, neurons or some other alien technology – can be simulated by a Turing machine".
 - [quoted from Arora-Barak's book]
- Several other computational models can be simulated by TMs.

Why Turing Machines?

TMs are natural and intuitive.

• Strong Church-Turing thesis: "Every physically realizable computation device — whether it's based on silicon, DNA, neurons or some other alien technology — can be simulated efficiently by a Turing machine".

Possible exception: Quantum machines!

Basic facts about TMs

• Time constructible functions. A function T: $N \rightarrow N$ is <u>time constructible</u> if $T(n) \ge n$ and there's a TM that computes the function that maps x to T(|x|) in O(T(|x|)) time.

• Examples: $T(n) = n^2$, or 2^n , or n log n

Turing Machines: Robustness

- Let f: $\{0,1\}^* \rightarrow \{0,1\}^*$ and T: N \rightarrow N be a time constructible function.
- Binary alphabets suffice.
 - If a TM M computes f in T(n) time using Γ as the alphabet set, then there's another TM M' that computes f in time $4.\log |\Gamma| . T(n)$ using $\{0, 1, blank\}$ as the alphabet set.

Turing Machines: Robustness

- Let f: $\{0,1\}^* \rightarrow \{0,1\}^*$ and T: N \rightarrow N be a time constructible function.
- Binary alphabets suffice.
 - If a TM M computes f in T(n) time using Γ as the alphabet set, then there's another TM M' that computes f in time 4.log $|\Gamma|$. T(n) using $\{0, 1, blank\}$ as the alphabet set.
- A single tape suffices.
 - If a TM M computes f in T(n) time using k tapes then there's another TM M' that computes f in time $5k \cdot T(n)^2$ using a single tape that is used for input, work and output.

 Every TM can be represented by a finite string over {0,1}.

...simply encode the description of the TM.

 Every TM can be represented by a finite string over {0,1}.

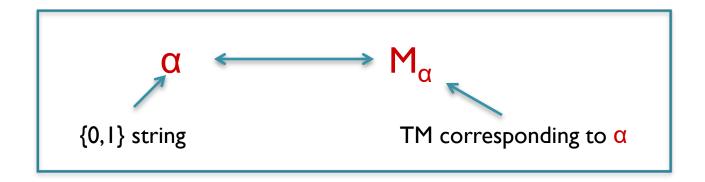
Every string over {0, I} represents some TM.
 ...invalid strings map to a fixed, trivial TM.

 Every TM can be represented by a finite string over {0,1}.

- Every string over {0, I} represents some TM.
- Every TM has infinitely many string representations.
 ... allow padding with arbitrary number of 0's

 Every TM can be represented by a finite string over {0,1}.

- Every string over {0, I} represents some TM.
- Every TM has infinitely many string representations.



 Every TM can be represented by a finite string over {0,1}.

- Every string over {0, I} represents some TM.
- Every TM has infinitely many string representations.

 ATM (i.e., its string representation) can be given as an input to another TM!!

Universal Turing Machines

- Theorem. There exists a TM U that on every input x, α in $\{0,1\}^*$ outputs $M_{\alpha}(x)$.
- Further, if M_{α} halts within T steps then U halts within C. T. log T steps, where C is a constant that depends only on M_{α} 's alphabet size, number of states and number of tapes.

Universal Turing Machines

- Theorem. There exists a TM U that on every input x, α in $\{0,1\}^*$ outputs $M_{\alpha}(x)$.
- Further, if M_{α} halts within T steps then U halts within C. T. log T steps, where C is a constant that depends only on M_{α} 's alphabet size, number of states and number of tapes.
- Physical realization of UTMs are modern day electronic computers.