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Recap: Space bounded computation 

 Here, we are interested to find out how much of work 
space is required to solve a problem.  

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work 
space is the number of cells in the work tapes of a TM 
M visited by M’s heads during a computation.  

 

 Definition. Let S:  be a function.  A language L 
is in DSPACE(S(n)) if there’s a TM M that decides L 
using O(S(n)) work space on inputs of length n. 



Recap: Space bounded computation 

 Here, we are interested to find out how much of work 
space is required to solve a problem.  

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work 
space is the number of cells in the work tapes of a TM 
M visited by M’s heads during a computation.  

 

 Definition. Let S:  be a function.  A language L 
is in NSPACE(S(n)) if there’s a NTM M that decides L 
using O(S(n)) work space on inputs of length n, 
regardless of M’s nondeterministic choices.  



Recap: Space bounded computation 

 We’ll refer to ‘work space’ as ‘space’. For convenience, 
assume there’s a single work tape.  

 If the output has many bits, then we will assume that 
the TM has a separate write-only output tape. 

 

 Definition. Let S:  be a function. S is space 
constructible if S(n) ≥ log n and there’s a TM that 
computes S(|x|) from x using O(S(|x|)) space. 

 



Recap: Time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Definition.          L  = DSPACE(log n) 

                         NL  = NSPACE(log n) 

                  PSPACE  = ∪ DSPACE(nc) 
c > 0 

Giving space at least log n gives a 
TM at least the power to 
remember the index of a cell. 



Recap: Time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Definition.          L  = DSPACE(log n) 

                         NL  = NSPACE(log n) 

                  PSPACE  = ∪ DSPACE(nc) 
c > 0 

Why did we not define NPSPACE? 
We saw that unlike P and NP, 
 PSPACE = NPSPACE 



Recap: Time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Caution. The Hopcroft-Paul-Valiant theorem does not 
imply P ⊊ PSPACE.  

 

 Open.   Is P ≠ PSPACE ? 



Recap: Time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

NP co-NP 

P 

EXP 

PSPACE 

NL 

L 

Homework:  Integer addition and 
multiplication are in (functional) L. 
 
Integer division is also in (functional) 
L.   (Chiu, Davida & Litow 2001) 



Recap: Configuration graph 

 Definition.  A configuration of a TM M on input x, at any 
particular step of its execution, consists of  

           (a)  the nonblank symbols of its work tapes, 

           (b)  the current state, 

           (c)  the current head positions. 

It captures a ‘snapshot’ of M at any particular moment 
of execution. 

Input head 
index 

Work tape 
head index 

bS(n) 
State info 

Content of work tape A Configuration C 

b1 … 



Recap: Configuration graph 

 Definition.  A configuration of a TM M on input x, at any 
particular step of its execution, consists of  

           (a)  the nonblank symbols of its work tapes, 

           (b)  the current state, 

           (c)  the current head positions. 

It captures a ‘snapshot’ of M at any particular moment 
of execution. 

Input head 
index 

Work tape 
head index 

bS(n) 
State info b1 … 

Note:   A configuration C can be represented using O(S(n)) 
bits if M uses S(n) = 𝞨(log n) space on n-bit inputs. 



Recap: Configuration graph 

 Definition.  A configuration graph of a TM M on input x, 
denoted GM,x, is a directed graph whose nodes are all 
the possible configurations of M on input x. There’s an 
edge from one configuration C1 to another C2, if C2 
can be reached from C1 by an application of M’s 
transition function(s). 

 

 Number of nodes in GM,x = 2O(S(n)), if M uses S(n) 
space on n-bit inputs 

            



Recap: Configuration graph 

 Definition.  A configuration graph of a TM M on input x, 
denoted GM,x, is a directed graph whose nodes are all 
the possible configurations of M on input x. There’s an 
edge from one configuration C1 to another C2, if C2 
can be reached from C1 by an application of M’s 
transition function(s). 

 

 If M is a DTM then every node C in GM,x has at most 
one outgoing edge. If M is an NTM then every node C 
in GM,x has at most two outgoing edges.   

            



Recap: Time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Proof. Let L ∈ NSPACE(S(n)) and M be an NTM 
deciding L using O(S(n)) space on length n inputs.  

 On input x, compute the configuration graph GM,x of 
M and check if there’s a path from Cstart to Caccept . 
Running time is 2O(S(n)). 



Recap: Natural problems? 

 Definition.          L  = DSPACE(log n) 

                         NL  = NSPACE(log n) 

                  PSPACE  = ∪ DSPACE(nc) 

 

 

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP. 

 

 Are there natural problems in L, NL and PSPACE ? 

c > 0 



PATH:  A canonical problem in NL 

 PATH = {(G,s,t) : G is a directed graph having a path 
from s to t}. 

 Obs.  PATH is in NL. 

 

NP co-NP 

P 

EXP 

PSPACE 

NL 

L 
PATH 



UPATH:  A problem in L 

 UPATH = {(G,s,t) : G is an undirected graph having a 
path from s to t}. 

 Theorem (Reingold 2005).  UPATH is in L. 

 

NP co-NP 

P 

EXP 

PSPACE 

NL 

L 
UPATH 

Is PATH in L ?  
   If yes, then L = NL ! 
   (will prove later) 



Recap: Space Hierarchy Theorem 

 Theorem. (Stearns, Hartmanis & Lewis 1965) If f and g 
are space-constructible functions and f(n) = o(g(n)), 
then SPACE(f(n)) ⊊ SPACE(g(n)). 

 

 Proof.  Homework.  

 

 

 Theorem.  L ⊊ PSPACE. 



Recap: Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof.  

 REACH(C1, C2, i) {  

        If i = 0 check if C1 and C2 are adjacent. 

        Else,   for every configurations C,  

                       a1 = REACH(C1, C, i-1) 

                       a2 = REACH(C, C2, i-1) 

                       if a1=1 & a2=1, return 1. Else return 0.  

   } 



Recap: Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof.  

                   Space(i) = Space(i-1) + O(S(n)) 

 Space complexity:  O(S(n)2)  

 

                   Time(i) = 2m.2.Time(i-1) + O(S(n)) 

 Time complexity:  2O(S(n)  )  

 

 

2 

Recall, NSPACE(S(n)) ⊆ DTIME(2O(S(n))). 
There’s an algorithm with time complexity 
2O(S(n)), but higher space requirement. 



PSPACE-completeness 



PSPACE-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PSPACE ?  



PSPACE-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PSPACE ? …use poly-time Karp reduction! 

 

 Definition.  A language L’ is PSPACE-hard if for every L 
in PSPACE,  L  ≤p  L’.  Further, if L’ is in PSPACE then L’ 
is PSPACE-complete. 

 



A PSPACE-complete problem 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PSPACE ? …use poly-time Karp reduction! 

 

 Example. L’ = {(M,w,1m) : M accepts w using m space} 

 



Natural PSPACE-complete problem 

 Definition. A quantified Boolean formula (QBF) is a 
formula of the form 

       Q1x1 Q2x2 … Qnxn  ϕ(x1, x2, …, xn) 

 

 

 

 A QBF is either true or false as all variables are 
quantified. This is unlike a formula we’ve seen before 
where variables were unquantified/free. 

 

Quantifiers ∃ or ∀ Just a formula on 
Boolean variables  



Natural PSPACE-complete problem 

 Example.   ∃x1 ∃x2 … ∃xn  ϕ(x1, x2, …, xn) 

 

 The above QBF is true iff ϕ is satisfiable. 

 

 We could have defined SAT as  

        SAT = {∃x ϕ(x) : ϕ is a CNF and ∃x ϕ(x) is true} 

  instead of 

       SAT = {ϕ(x) : ϕ is a CNF and ϕ is satisfiable} 

 



Natural PSPACE-complete problem 

 Definition. A quantified Boolean formula (QBF) is a 
formula of the form 

       Q1x1 Q2x2 … Qnxn  ϕ(x1, x2, …, xn) 

 

 

 

 Homework:  By using auxiliary variables (as in the 
proof of Cook-Levin) and introducing some more ∃ 
quantifiers at the end, we can assume w.l.o.g. that ϕ is 
a 3CNF.  

 

 

Quantifiers ∃ or ∀ Just a formula on 
Boolean variables  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof:  Easy to see that TQBF is in PSPACE – just 
think of a suitable recursive procedure. We’ll now 
show that every L ∈ PSPACE reduces to TQBF via 
poly-time Karp reduction… 

 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Let M be a TM deciding L using S(n) = 
poly(n) space. We intend to come up with a poly-time 
reduction f s.t.  

             x ∈ L             ψx is a true QBF 
f 

Size of ψx must be bounded 
by poly(n), where |x| = n  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Let M be a TM deciding L using S(n) = 
poly(n) space. We intend to come up with a poly-time 
reduction f s.t.  

             x ∈ L             ψx is a true QBF 

 

Idea: Form ψx in such a way that ψx is true iff there’s a path from 
Cstart to Caccept in GM,x. 

f 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) f computes S(n) from n (recall, any poly 
function S(n) is time constructible). It also computes 
m = O(S(n)), the no. of bits required to represent a 
configuration in GM,x.  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) f computes S(n) from n (recall, any poly 
function S(n) is time constructible). It also computes 
m = O(S(n)), the no. of bits required to represent a 
configuration in GM,x. Then, it forms a semi-QBF 
Δi(C1,C2), such that Δi(C1,C2) is true iff there’s a path 
from C1 to C2 of length at most 2i in GM,x.   



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) f computes S(n) from n (recall, any poly 
function S(n) is time constructible). It also computes 
m = O(S(n)), the no. of bits required to represent a 
configuration in GM,x. Then, it forms a semi-QBF 
Δi(C1,C2), such that Δi(C1,C2) is true iff there’s a path 
from C1 to C2 of length at most 2i in GM,x.   

The variables corresponding to the bits of C1 
and C2 are unquantified/free variables of Δi 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as 
follows:      

                             (first attempt) 

        Δi(C1,C2) = ∃C  (Δi-1(C1,C) ∧ Δi-1(C,C2)) 
Issue:  Size of Δi is twice the size of Δi-1 !! 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as 
follows:    

                         (careful attempt) 

  Δi(C1,C2) = ∃C ∀D1∀D2   

   ( ((D1 = C1 ∧ D2 = C) ∨ (D1 = C ∧ D2 = C2))       Δi-1(D1,D2)  ) 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as 
follows:    

                         (careful attempt) 

  Δi(C1,C2) = ∃C ∀D1∀D2   

   (¬((D1 = C1 ∧ D2 = C) ∨ (D1 = C ∧ D2 = C2))  ∨   Δi-1(D1,D2)  ) 

Note:   Size of Δi  =  O(S(n)) + Size of Δi-1  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

                      



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

 But, we need to specify how to form Δ0(C1,C2). 

 Size of ψx  = O(S(n)2) + Size of Δ0 

                      



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

 But, we need to specify how to form Δ0(C1,C2). 

 Size of ψx  = O(S(n)2) + Size of Δ0 

                      Remark:  We can easily bring all the quantifiers at the 
beginning in ψx (as in a prenex normal form).  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

 But, we need to specify how to form Δ0(C1,C2). 

 Size of ψx  = O(S(n)2) + Size of Δ0 

                      

?? 



Adjacent configurations   

 Claim. There’s an O(S(n)2)-size circuit ϕM,x on O(S(n)) 
inputs such that for every inputs C1 and C2,      
ϕM,x(C1, C2) = 1 iff C1 and C2 encode two neighboring 
configurations in GM,x . 

 

 Proof. Think of a linear time algorithm that has the 
knowledge of M and x, and on input C1 and C2 it 
checks if C2 is a neighbor of C1 in GM,x.  



Adjacent configurations 

 Claim. There’s an O(S(n)2)-size circuit ϕM,x on O(S(n)) 
inputs such that for every inputs C1 and C2,      
ϕM,x(C1, C2) = 1 iff C1 and C2 encode two neighboring 
configurations in GM,x . 

 

 Proof. Think of a linear time algorithm that has the 
knowledge of M and x, and on input C1 and C2 it 
checks if C2 is a neighbor of C1 in GM,x. Applying ideas 
from the proof of Cook-Levin theorem, we get our 
desired ϕM,x of size O(S(n)2). 



Size of Δ0 

 Obs. We can convert the circuit ϕM,x(C1, C2) to a 
quantified CNF Δ0(C1,C2) by introducing auxiliary 
variables (as in the proof of Cook-Levin theorem).  

 

 Hence, size of Δ0(C1,C2) is O(S(n)2). 

 Therefore, size of ψx  = O(S(n)2). 

 



Other PSPACE complete problems 

 Checking if a player has a winning strategy in certain 
two-player games, like (generalized) Hex, Reversi, 
Geography etc.  

 

 Integer circuit evaluation (Yang 2000). 

 

 Implicit graph reachability. 

 

 Check the wiki page: 
https://en.wikipedia.org/wiki/List_of_PSPACE-
complete_problems 



Log-space reductions 



NL-completeness 

 Recall again, to define completeness of a complexity 
class, we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is L = NL ?  



NL-completeness 

 Recall again, to define completeness of a complexity 
class, we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is L = NL ? …poly-time (Karp) reductions are much 
too powerful for L.  

 We need to define a suitable ‘log-space’ reduction. 



Log-space reductions 

                     x                  f(x) 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 

Log-space TM 

…unless we restrict |f(x)| =  O(log |x|), in which case 
we’re severely restricting the power of the reduction.  



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Definition:  A function f : {0,1}*    {0,1}* is implicitly log-
space computable if 

          1. |f(x)| ≤ |x|c for some constant c,  

          2. The following two languages are in L :  

 

Log-space TM 

Lf = {(x, i) : f(x)i = 1}   and  L’f = {(x, i) : i ≤ |f(x)|} 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Definition:  A language L1 is log-space reducible to a 
language L2, denoted L1 ≤l L2, if there’s an implicitly 
log-space computable function f such that 

                     x ∈ L1              f(x) ∈ L2 

           

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof:  Let f be the reduction from L1 to L2, and g the 
reduction from L2 to L3. We’ll show that the function 
h(x) = g(f(x)) is implicitly log-space computable which 
will suffice as, 

                      

Log-space TM 

x ∈ L1           f(x) ∈ L2          g(f(x)) ∈ L3 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …Think of the following log-space TM that 
computes h(x)i from (x, i). Let 

                      

Log-space TM 

  Mf be the log-space TM that computes f(x)j from (x, j), 
 

  Mg be the log-space TM that computes g(y)i from (y, i). 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).   

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).  Space usage = O(log |f(x)|) + O(log |x|).  

Log-space TM 

stores Mg’s current configuration 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).  Space usage = O(log |x|).  

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).  This shows Lh is in L.  

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …Similarly, L’h is in L and so h is implicitly log-
space computable.  

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ∈ L then L1 ∈ L. 

 Proof:  Same ideas. (Homework) 

Log-space TM 


