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Recap: Space bounded computation 

 Here, we are interested to find out how much of work 
space is required to solve a problem.  

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work 
space is the number of cells in the work tapes of a TM 
M visited by M’s heads during a computation.  

 

 Definition. Let S:  be a function.  A language L 
is in DSPACE(S(n)) if there’s a TM M that decides L 
using O(S(n)) work space on inputs of length n. 



Recap: Space bounded computation 

 Here, we are interested to find out how much of work 
space is required to solve a problem.  

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work 
space is the number of cells in the work tapes of a TM 
M visited by M’s heads during a computation.  

 

 Definition. Let S:  be a function.  A language L 
is in NSPACE(S(n)) if there’s a NTM M that decides L 
using O(S(n)) work space on inputs of length n, 
regardless of M’s nondeterministic choices.  



Recap: Space bounded computation 

 We’ll refer to ‘work space’ as ‘space’. For convenience, 
assume there’s a single work tape.  

 If the output has many bits, then we will assume that 
the TM has a separate write-only output tape. 

 

 Definition. Let S:  be a function. S is space 
constructible if S(n) ≥ log n and there’s a TM that 
computes S(|x|) from x using O(S(|x|)) space. 

 



Recap: Time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Definition.          L  = DSPACE(log n) 

                         NL  = NSPACE(log n) 

                  PSPACE  = ∪ DSPACE(nc) 
c > 0 

Giving space at least log n gives a 
TM at least the power to 
remember the index of a cell. 



Recap: Time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Definition.          L  = DSPACE(log n) 

                         NL  = NSPACE(log n) 

                  PSPACE  = ∪ DSPACE(nc) 
c > 0 

Why did we not define NPSPACE? 
We saw that unlike P and NP, 
 PSPACE = NPSPACE 



Recap: Time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Caution. The Hopcroft-Paul-Valiant theorem does not 
imply P ⊊ PSPACE.  

 

 Open.   Is P ≠ PSPACE ? 



Recap: Time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

NP co-NP 

P 

EXP 

PSPACE 

NL 

L 

Homework:  Integer addition and 
multiplication are in (functional) L. 
 
Integer division is also in (functional) 
L.   (Chiu, Davida & Litow 2001) 



Recap: Configuration graph 

 Definition.  A configuration of a TM M on input x, at any 
particular step of its execution, consists of  

           (a)  the nonblank symbols of its work tapes, 

           (b)  the current state, 

           (c)  the current head positions. 

It captures a ‘snapshot’ of M at any particular moment 
of execution. 

Input head 
index 

Work tape 
head index 

bS(n) 
State info 

Content of work tape A Configuration C 

b1 … 



Recap: Configuration graph 

 Definition.  A configuration of a TM M on input x, at any 
particular step of its execution, consists of  

           (a)  the nonblank symbols of its work tapes, 

           (b)  the current state, 

           (c)  the current head positions. 

It captures a ‘snapshot’ of M at any particular moment 
of execution. 

Input head 
index 

Work tape 
head index 

bS(n) 
State info b1 … 

Note:   A configuration C can be represented using O(S(n)) 
bits if M uses S(n) = 𝞨(log n) space on n-bit inputs. 



Recap: Configuration graph 

 Definition.  A configuration graph of a TM M on input x, 
denoted GM,x, is a directed graph whose nodes are all 
the possible configurations of M on input x. There’s an 
edge from one configuration C1 to another C2, if C2 
can be reached from C1 by an application of M’s 
transition function(s). 

 

 Number of nodes in GM,x = 2O(S(n)), if M uses S(n) 
space on n-bit inputs 

            



Recap: Configuration graph 

 Definition.  A configuration graph of a TM M on input x, 
denoted GM,x, is a directed graph whose nodes are all 
the possible configurations of M on input x. There’s an 
edge from one configuration C1 to another C2, if C2 
can be reached from C1 by an application of M’s 
transition function(s). 

 

 If M is a DTM then every node C in GM,x has at most 
one outgoing edge. If M is an NTM then every node C 
in GM,x has at most two outgoing edges.   

            



Recap: Time and space 

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)). 

 

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is 
space constructible. 

 

 Proof. Let L ∈ NSPACE(S(n)) and M be an NTM 
deciding L using O(S(n)) space on length n inputs.  

 On input x, compute the configuration graph GM,x of 
M and check if there’s a path from Cstart to Caccept . 
Running time is 2O(S(n)). 



Recap: Natural problems? 

 Definition.          L  = DSPACE(log n) 

                         NL  = NSPACE(log n) 

                  PSPACE  = ∪ DSPACE(nc) 

 

 

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP. 

 

 Are there natural problems in L, NL and PSPACE ? 

c > 0 



PATH:  A canonical problem in NL 

 PATH = {(G,s,t) : G is a directed graph having a path 
from s to t}. 

 Obs.  PATH is in NL. 

 

NP co-NP 
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EXP 

PSPACE 

NL 
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UPATH:  A problem in L 

 UPATH = {(G,s,t) : G is an undirected graph having a 
path from s to t}. 

 Theorem (Reingold 2005).  UPATH is in L. 

 

NP co-NP 

P 

EXP 

PSPACE 

NL 

L 
UPATH 

Is PATH in L ?  
   If yes, then L = NL ! 
   (will prove later) 



Recap: Space Hierarchy Theorem 

 Theorem. (Stearns, Hartmanis & Lewis 1965) If f and g 
are space-constructible functions and f(n) = o(g(n)), 
then SPACE(f(n)) ⊊ SPACE(g(n)). 

 

 Proof.  Homework.  

 

 

 Theorem.  L ⊊ PSPACE. 



Recap: Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof.  

 REACH(C1, C2, i) {  

        If i = 0 check if C1 and C2 are adjacent. 

        Else,   for every configurations C,  

                       a1 = REACH(C1, C, i-1) 

                       a2 = REACH(C, C2, i-1) 

                       if a1=1 & a2=1, return 1. Else return 0.  

   } 



Recap: Savitch’s theorem 

 Theorem.  NSPACE(S(n)) ⊆ DSPACE(S(n)2), where 
S(n) is space constructible.   (So, PSPACE = NPSPACE) 

 

 Proof.  

                   Space(i) = Space(i-1) + O(S(n)) 

 Space complexity:  O(S(n)2)  

 

                   Time(i) = 2m.2.Time(i-1) + O(S(n)) 

 Time complexity:  2O(S(n)  )  
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Recall, NSPACE(S(n)) ⊆ DTIME(2O(S(n))). 
There’s an algorithm with time complexity 
2O(S(n)), but higher space requirement. 



PSPACE-completeness 



PSPACE-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PSPACE ?  



PSPACE-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PSPACE ? …use poly-time Karp reduction! 

 

 Definition.  A language L’ is PSPACE-hard if for every L 
in PSPACE,  L  ≤p  L’.  Further, if L’ is in PSPACE then L’ 
is PSPACE-complete. 

 



A PSPACE-complete problem 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PSPACE ? …use poly-time Karp reduction! 

 

 Example. L’ = {(M,w,1m) : M accepts w using m space} 

 



Natural PSPACE-complete problem 

 Definition. A quantified Boolean formula (QBF) is a 
formula of the form 

       Q1x1 Q2x2 … Qnxn  ϕ(x1, x2, …, xn) 

 

 

 

 A QBF is either true or false as all variables are 
quantified. This is unlike a formula we’ve seen before 
where variables were unquantified/free. 

 

Quantifiers ∃ or ∀ Just a formula on 
Boolean variables  



Natural PSPACE-complete problem 

 Example.   ∃x1 ∃x2 … ∃xn  ϕ(x1, x2, …, xn) 

 

 The above QBF is true iff ϕ is satisfiable. 

 

 We could have defined SAT as  

        SAT = {∃x ϕ(x) : ϕ is a CNF and ∃x ϕ(x) is true} 

  instead of 

       SAT = {ϕ(x) : ϕ is a CNF and ϕ is satisfiable} 

 



Natural PSPACE-complete problem 

 Definition. A quantified Boolean formula (QBF) is a 
formula of the form 

       Q1x1 Q2x2 … Qnxn  ϕ(x1, x2, …, xn) 

 

 

 

 Homework:  By using auxiliary variables (as in the 
proof of Cook-Levin) and introducing some more ∃ 
quantifiers at the end, we can assume w.l.o.g. that ϕ is 
a 3CNF.  

 

 

Quantifiers ∃ or ∀ Just a formula on 
Boolean variables  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof:  Easy to see that TQBF is in PSPACE – just 
think of a suitable recursive procedure. We’ll now 
show that every L ∈ PSPACE reduces to TQBF via 
poly-time Karp reduction… 

 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Let M be a TM deciding L using S(n) = 
poly(n) space. We intend to come up with a poly-time 
reduction f s.t.  

             x ∈ L             ψx is a true QBF 
f 

Size of ψx must be bounded 
by poly(n), where |x| = n  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Let M be a TM deciding L using S(n) = 
poly(n) space. We intend to come up with a poly-time 
reduction f s.t.  

             x ∈ L             ψx is a true QBF 

 

Idea: Form ψx in such a way that ψx is true iff there’s a path from 
Cstart to Caccept in GM,x. 

f 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) f computes S(n) from n (recall, any poly 
function S(n) is time constructible). It also computes 
m = O(S(n)), the no. of bits required to represent a 
configuration in GM,x.  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) f computes S(n) from n (recall, any poly 
function S(n) is time constructible). It also computes 
m = O(S(n)), the no. of bits required to represent a 
configuration in GM,x. Then, it forms a semi-QBF 
Δi(C1,C2), such that Δi(C1,C2) is true iff there’s a path 
from C1 to C2 of length at most 2i in GM,x.   



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) f computes S(n) from n (recall, any poly 
function S(n) is time constructible). It also computes 
m = O(S(n)), the no. of bits required to represent a 
configuration in GM,x. Then, it forms a semi-QBF 
Δi(C1,C2), such that Δi(C1,C2) is true iff there’s a path 
from C1 to C2 of length at most 2i in GM,x.   

The variables corresponding to the bits of C1 
and C2 are unquantified/free variables of Δi 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as 
follows:      

                             (first attempt) 

        Δi(C1,C2) = ∃C  (Δi-1(C1,C) ∧ Δi-1(C,C2)) 
Issue:  Size of Δi is twice the size of Δi-1 !! 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as 
follows:    

                         (careful attempt) 

  Δi(C1,C2) = ∃C ∀D1∀D2   

   ( ((D1 = C1 ∧ D2 = C) ∨ (D1 = C ∧ D2 = C2))       Δi-1(D1,D2)  ) 



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as 
follows:    

                         (careful attempt) 

  Δi(C1,C2) = ∃C ∀D1∀D2   

   (¬((D1 = C1 ∧ D2 = C) ∨ (D1 = C ∧ D2 = C2))  ∨   Δi-1(D1,D2)  ) 

Note:   Size of Δi  =  O(S(n)) + Size of Δi-1  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

                      



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

 But, we need to specify how to form Δ0(C1,C2). 

 Size of ψx  = O(S(n)2) + Size of Δ0 

                      



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

 But, we need to specify how to form Δ0(C1,C2). 

 Size of ψx  = O(S(n)2) + Size of Δ0 

                      Remark:  We can easily bring all the quantifiers at the 
beginning in ψx (as in a prenex normal form).  



Natural PSPACE-complete problem 

 Definition.   TQBF is the set of true quantified 
Boolean formulas.  

 

 Theorem.  TQBF is PSPACE-complete. 

 Proof: (contd.) Finally, 

                       ψx  =  Δm(Cstart,Caccept) 

 

 But, we need to specify how to form Δ0(C1,C2). 

 Size of ψx  = O(S(n)2) + Size of Δ0 

                      

?? 



Adjacent configurations   

 Claim. There’s an O(S(n)2)-size circuit ϕM,x on O(S(n)) 
inputs such that for every inputs C1 and C2,      
ϕM,x(C1, C2) = 1 iff C1 and C2 encode two neighboring 
configurations in GM,x . 

 

 Proof. Think of a linear time algorithm that has the 
knowledge of M and x, and on input C1 and C2 it 
checks if C2 is a neighbor of C1 in GM,x.  



Adjacent configurations 

 Claim. There’s an O(S(n)2)-size circuit ϕM,x on O(S(n)) 
inputs such that for every inputs C1 and C2,      
ϕM,x(C1, C2) = 1 iff C1 and C2 encode two neighboring 
configurations in GM,x . 

 

 Proof. Think of a linear time algorithm that has the 
knowledge of M and x, and on input C1 and C2 it 
checks if C2 is a neighbor of C1 in GM,x. Applying ideas 
from the proof of Cook-Levin theorem, we get our 
desired ϕM,x of size O(S(n)2). 



Size of Δ0 

 Obs. We can convert the circuit ϕM,x(C1, C2) to a 
quantified CNF Δ0(C1,C2) by introducing auxiliary 
variables (as in the proof of Cook-Levin theorem).  

 

 Hence, size of Δ0(C1,C2) is O(S(n)2). 

 Therefore, size of ψx  = O(S(n)2). 

 



Other PSPACE complete problems 

 Checking if a player has a winning strategy in certain 
two-player games, like (generalized) Hex, Reversi, 
Geography etc.  

 

 Integer circuit evaluation (Yang 2000). 

 

 Implicit graph reachability. 

 

 Check the wiki page: 
https://en.wikipedia.org/wiki/List_of_PSPACE-
complete_problems 



Log-space reductions 



NL-completeness 

 Recall again, to define completeness of a complexity 
class, we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is L = NL ?  



NL-completeness 

 Recall again, to define completeness of a complexity 
class, we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is L = NL ? …poly-time (Karp) reductions are much 
too powerful for L.  

 We need to define a suitable ‘log-space’ reduction. 



Log-space reductions 

                     x                  f(x) 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 

Log-space TM 

…unless we restrict |f(x)| =  O(log |x|), in which case 
we’re severely restricting the power of the reduction.  



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Definition:  A function f : {0,1}*    {0,1}* is implicitly log-
space computable if 

          1. |f(x)| ≤ |x|c for some constant c,  

          2. The following two languages are in L :  

 

Log-space TM 

Lf = {(x, i) : f(x)i = 1}   and  L’f = {(x, i) : i ≤ |f(x)|} 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Definition:  A language L1 is log-space reducible to a 
language L2, denoted L1 ≤l L2, if there’s an implicitly 
log-space computable function f such that 

                     x ∈ L1              f(x) ∈ L2 

           

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof:  Let f be the reduction from L1 to L2, and g the 
reduction from L2 to L3. We’ll show that the function 
h(x) = g(f(x)) is implicitly log-space computable which 
will suffice as, 

                      

Log-space TM 

x ∈ L1           f(x) ∈ L2          g(f(x)) ∈ L3 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …Think of the following log-space TM that 
computes h(x)i from (x, i). Let 

                      

Log-space TM 

  Mf be the log-space TM that computes f(x)j from (x, j), 
 

  Mg be the log-space TM that computes g(y)i from (y, i). 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).   

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).  Space usage = O(log |f(x)|) + O(log |x|).  

Log-space TM 

stores Mg’s current configuration 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).  Space usage = O(log |x|).  

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …On input x, simulate Mg on (f(x), i) pretending 
that f(x) is there in some fictitious tape. During the 
simulation whenever Mg tries to read a j-th bit of f(x), 
postpone Mg’s computation and start simulating Mf on 
input (x, j).  This shows Lh is in L.  

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3. 

 Proof: …Similarly, L’h is in L and so h is implicitly log-
space computable.  

Log-space TM 



Log-space reductions 

                  (x, i)                f(x)i 

 Issue:  A log-space TM may not have enough space to 
write down the whole output f(x) in one shot.  

 Solution: Have the log-space TM output a bit of f(x). 

  

 Claim:  If L1 ≤l L2 and L2 ∈ L then L1 ∈ L. 

 Proof:  Same ideas. (Homework) 

Log-space TM 


