
Computational Complexity Theory

Lecture 11: PSPACE-completeness;

 Log-space reductions

Department of Computer Science,

Indian Institute of Science

Recap: Space bounded computation

 Here, we are interested to find out how much of work
space is required to solve a problem.

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

 Definition. Let S: be a function. A language L
is in DSPACE(S(n)) if there’s a TM M that decides L
using O(S(n)) work space on inputs of length n.

Recap: Space bounded computation

 Here, we are interested to find out how much of work
space is required to solve a problem.

 For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

 Definition. Let S: be a function. A language L
is in NSPACE(S(n)) if there’s a NTM M that decides L
using O(S(n)) work space on inputs of length n,
regardless of M’s nondeterministic choices.

Recap: Space bounded computation

 We’ll refer to ‘work space’ as ‘space’. For convenience,
assume there’s a single work tape.

 If the output has many bits, then we will assume that
the TM has a separate write-only output tape.

 Definition. Let S: be a function. S is space
constructible if S(n) ≥ log n and there’s a TM that
computes S(|x|) from x using O(S(|x|)) space.

Recap: Time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Definition. L = DSPACE(log n)

 NL = NSPACE(log n)

 PSPACE = ∪ DSPACE(nc)
c > 0

Giving space at least log n gives a
TM at least the power to
remember the index of a cell.

Recap: Time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Definition. L = DSPACE(log n)

 NL = NSPACE(log n)

 PSPACE = ∪ DSPACE(nc)
c > 0

Why did we not define NPSPACE?
We saw that unlike P and NP,
 PSPACE = NPSPACE

Recap: Time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Caution. The Hopcroft-Paul-Valiant theorem does not
imply P ⊊ PSPACE.

 Open. Is P ≠ PSPACE ?

Recap: Time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

NP co-NP

P

EXP

PSPACE

NL

L

Homework: Integer addition and
multiplication are in (functional) L.

Integer division is also in (functional)
L. (Chiu, Davida & Litow 2001)

Recap: Configuration graph

 Definition. A configuration of a TM M on input x, at any
particular step of its execution, consists of

 (a) the nonblank symbols of its work tapes,

 (b) the current state,

 (c) the current head positions.

It captures a ‘snapshot’ of M at any particular moment
of execution.

Input head
index

Work tape
head index

bS(n)
State info

Content of work tape A Configuration C

b1 …

Recap: Configuration graph

 Definition. A configuration of a TM M on input x, at any
particular step of its execution, consists of

 (a) the nonblank symbols of its work tapes,

 (b) the current state,

 (c) the current head positions.

It captures a ‘snapshot’ of M at any particular moment
of execution.

Input head
index

Work tape
head index

bS(n)
State info b1 …

Note: A configuration C can be represented using O(S(n))
bits if M uses S(n) = 𝞨(log n) space on n-bit inputs.

Recap: Configuration graph

 Definition. A configuration graph of a TM M on input x,
denoted GM,x, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C1 to another C2, if C2
can be reached from C1 by an application of M’s
transition function(s).

 Number of nodes in GM,x = 2O(S(n)), if M uses S(n)
space on n-bit inputs

Recap: Configuration graph

 Definition. A configuration graph of a TM M on input x,
denoted GM,x, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C1 to another C2, if C2
can be reached from C1 by an application of M’s
transition function(s).

 If M is a DTM then every node C in GM,x has at most
one outgoing edge. If M is an NTM then every node C
in GM,x has at most two outgoing edges.

Recap: Time and space

 Obs. DTIME(S(n)) ⊊ DSPACE(S(n)) ⊆ NSPACE(S(n)).

 Theorem. NSPACE(S(n)) ⊆ DTIME(2O(S(n))), if S is
space constructible.

 Proof. Let L ∈ NSPACE(S(n)) and M be an NTM
deciding L using O(S(n)) space on length n inputs.

 On input x, compute the configuration graph GM,x of
M and check if there’s a path from Cstart to Caccept .
Running time is 2O(S(n)).

Recap: Natural problems?

 Definition. L = DSPACE(log n)

 NL = NSPACE(log n)

 PSPACE = ∪ DSPACE(nc)

 Theorem. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

 Are there natural problems in L, NL and PSPACE ?

c > 0

PATH: A canonical problem in NL

 PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

 Obs. PATH is in NL.

NP co-NP

P

EXP

PSPACE

NL

L
PATH

UPATH: A problem in L

 UPATH = {(G,s,t) : G is an undirected graph having a
path from s to t}.

 Theorem (Reingold 2005). UPATH is in L.

NP co-NP

P

EXP

PSPACE

NL

L
UPATH

Is PATH in L ?
 If yes, then L = NL !
 (will prove later)

Recap: Space Hierarchy Theorem

 Theorem. (Stearns, Hartmanis & Lewis 1965) If f and g
are space-constructible functions and f(n) = o(g(n)),
then SPACE(f(n)) ⊊ SPACE(g(n)).

 Proof. Homework.

 Theorem. L ⊊ PSPACE.

Recap: Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof.

 REACH(C1, C2, i) {

 If i = 0 check if C1 and C2 are adjacent.

 Else, for every configurations C,

 a1 = REACH(C1, C, i-1)

 a2 = REACH(C, C2, i-1)

 if a1=1 & a2=1, return 1. Else return 0.

 }

Recap: Savitch’s theorem

 Theorem. NSPACE(S(n)) ⊆ DSPACE(S(n)2), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

 Proof.

 Space(i) = Space(i-1) + O(S(n))

 Space complexity: O(S(n)2)

 Time(i) = 2m.2.Time(i-1) + O(S(n))

 Time complexity: 2O(S(n))

2

Recall, NSPACE(S(n)) ⊆ DTIME(2O(S(n))).
There’s an algorithm with time complexity
2O(S(n)), but higher space requirement.

PSPACE-completeness

PSPACE-completeness

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = PSPACE ?

PSPACE-completeness

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = PSPACE ? …use poly-time Karp reduction!

 Definition. A language L’ is PSPACE-hard if for every L
in PSPACE, L ≤p L’. Further, if L’ is in PSPACE then L’
is PSPACE-complete.

A PSPACE-complete problem

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = PSPACE ? …use poly-time Karp reduction!

 Example. L’ = {(M,w,1m) : M accepts w using m space}

Natural PSPACE-complete problem

 Definition. A quantified Boolean formula (QBF) is a
formula of the form

 Q1x1 Q2x2 … Qnxn ϕ(x1, x2, …, xn)

 A QBF is either true or false as all variables are
quantified. This is unlike a formula we’ve seen before
where variables were unquantified/free.

Quantifiers ∃ or ∀ Just a formula on
Boolean variables

Natural PSPACE-complete problem

 Example. ∃x1 ∃x2 … ∃xn ϕ(x1, x2, …, xn)

 The above QBF is true iff ϕ is satisfiable.

 We could have defined SAT as

 SAT = {∃x ϕ(x) : ϕ is a CNF and ∃x ϕ(x) is true}

 instead of

 SAT = {ϕ(x) : ϕ is a CNF and ϕ is satisfiable}

Natural PSPACE-complete problem

 Definition. A quantified Boolean formula (QBF) is a
formula of the form

 Q1x1 Q2x2 … Qnxn ϕ(x1, x2, …, xn)

 Homework: By using auxiliary variables (as in the
proof of Cook-Levin) and introducing some more ∃
quantifiers at the end, we can assume w.l.o.g. that ϕ is
a 3CNF.

Quantifiers ∃ or ∀ Just a formula on
Boolean variables

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: Easy to see that TQBF is in PSPACE – just
think of a suitable recursive procedure. We’ll now
show that every L ∈ PSPACE reduces to TQBF via
poly-time Karp reduction…

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Let M be a TM deciding L using S(n) =
poly(n) space. We intend to come up with a poly-time
reduction f s.t.

 x ∈ L ψx is a true QBF
f

Size of ψx must be bounded
by poly(n), where |x| = n

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Let M be a TM deciding L using S(n) =
poly(n) space. We intend to come up with a poly-time
reduction f s.t.

 x ∈ L ψx is a true QBF

Idea: Form ψx in such a way that ψx is true iff there’s a path from
Cstart to Caccept in GM,x.

f

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in GM,x.

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in GM,x. Then, it forms a semi-QBF
Δi(C1,C2), such that Δi(C1,C2) is true iff there’s a path
from C1 to C2 of length at most 2i in GM,x.

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in GM,x. Then, it forms a semi-QBF
Δi(C1,C2), such that Δi(C1,C2) is true iff there’s a path
from C1 to C2 of length at most 2i in GM,x.

The variables corresponding to the bits of C1
and C2 are unquantified/free variables of Δi

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as
follows:

 (first attempt)

 Δi(C1,C2) = ∃C (Δi-1(C1,C) ∧ Δi-1(C,C2))
Issue: Size of Δi is twice the size of Δi-1 !!

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as
follows:

 (careful attempt)

 Δi(C1,C2) = ∃C ∀D1∀D2

 (((D1 = C1 ∧ D2 = C) ∨ (D1 = C ∧ D2 = C2)) Δi-1(D1,D2))

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) QBF Δi(C1,C2) is formed, recursively, as
follows:

 (careful attempt)

 Δi(C1,C2) = ∃C ∀D1∀D2

 (¬((D1 = C1 ∧ D2 = C) ∨ (D1 = C ∧ D2 = C2)) ∨ Δi-1(D1,D2))

Note: Size of Δi = O(S(n)) + Size of Δi-1

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Finally,

 ψx = Δm(Cstart,Caccept)

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Finally,

 ψx = Δm(Cstart,Caccept)

 But, we need to specify how to form Δ0(C1,C2).

 Size of ψx = O(S(n)2) + Size of Δ0

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Finally,

 ψx = Δm(Cstart,Caccept)

 But, we need to specify how to form Δ0(C1,C2).

 Size of ψx = O(S(n)2) + Size of Δ0

 Remark: We can easily bring all the quantifiers at the
beginning in ψx (as in a prenex normal form).

Natural PSPACE-complete problem

 Definition. TQBF is the set of true quantified
Boolean formulas.

 Theorem. TQBF is PSPACE-complete.

 Proof: (contd.) Finally,

 ψx = Δm(Cstart,Caccept)

 But, we need to specify how to form Δ0(C1,C2).

 Size of ψx = O(S(n)2) + Size of Δ0

??

Adjacent configurations

 Claim. There’s an O(S(n)2)-size circuit ϕM,x on O(S(n))
inputs such that for every inputs C1 and C2,
ϕM,x(C1, C2) = 1 iff C1 and C2 encode two neighboring
configurations in GM,x .

 Proof. Think of a linear time algorithm that has the
knowledge of M and x, and on input C1 and C2 it
checks if C2 is a neighbor of C1 in GM,x.

Adjacent configurations

 Claim. There’s an O(S(n)2)-size circuit ϕM,x on O(S(n))
inputs such that for every inputs C1 and C2,
ϕM,x(C1, C2) = 1 iff C1 and C2 encode two neighboring
configurations in GM,x .

 Proof. Think of a linear time algorithm that has the
knowledge of M and x, and on input C1 and C2 it
checks if C2 is a neighbor of C1 in GM,x. Applying ideas
from the proof of Cook-Levin theorem, we get our
desired ϕM,x of size O(S(n)2).

Size of Δ0

 Obs. We can convert the circuit ϕM,x(C1, C2) to a
quantified CNF Δ0(C1,C2) by introducing auxiliary
variables (as in the proof of Cook-Levin theorem).

 Hence, size of Δ0(C1,C2) is O(S(n)2).

 Therefore, size of ψx = O(S(n)2).

Other PSPACE complete problems

 Checking if a player has a winning strategy in certain
two-player games, like (generalized) Hex, Reversi,
Geography etc.

 Integer circuit evaluation (Yang 2000).

 Implicit graph reachability.

 Check the wiki page:
https://en.wikipedia.org/wiki/List_of_PSPACE-
complete_problems

Log-space reductions

NL-completeness

 Recall again, to define completeness of a complexity
class, we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is L = NL ?

NL-completeness

 Recall again, to define completeness of a complexity
class, we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is L = NL ? …poly-time (Karp) reductions are much
too powerful for L.

 We need to define a suitable ‘log-space’ reduction.

Log-space reductions

 x f(x)

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

Log-space TM

…unless we restrict |f(x)| = O(log |x|), in which case
we’re severely restricting the power of the reduction.

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Definition: A function f : {0,1}* {0,1}* is implicitly log-
space computable if

 1. |f(x)| ≤ |x|c for some constant c,

 2. The following two languages are in L :

Log-space TM

Lf = {(x, i) : f(x)i = 1} and L’f = {(x, i) : i ≤ |f(x)|}

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Definition: A language L1 is log-space reducible to a
language L2, denoted L1 ≤l L2, if there’s an implicitly
log-space computable function f such that

 x ∈ L1 f(x) ∈ L2

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: Let f be the reduction from L1 to L2, and g the
reduction from L2 to L3. We’ll show that the function
h(x) = g(f(x)) is implicitly log-space computable which
will suffice as,

Log-space TM

x ∈ L1 f(x) ∈ L2 g(f(x)) ∈ L3

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …Think of the following log-space TM that
computes h(x)i from (x, i). Let

Log-space TM

 Mf be the log-space TM that computes f(x)j from (x, j),

 Mg be the log-space TM that computes g(y)i from (y, i).

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j).

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j). Space usage = O(log |f(x)|) + O(log |x|).

Log-space TM

stores Mg’s current configuration

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j). Space usage = O(log |x|).

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …On input x, simulate Mg on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever Mg tries to read a j-th bit of f(x),
postpone Mg’s computation and start simulating Mf on
input (x, j). This shows Lh is in L.

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ≤l L3 then L1 ≤l L3.

 Proof: …Similarly, L’h is in L and so h is implicitly log-
space computable.

Log-space TM

Log-space reductions

 (x, i) f(x)i

 Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

 Claim: If L1 ≤l L2 and L2 ∈ L then L1 ∈ L.

 Proof: Same ideas. (Homework)

Log-space TM

