Computational Complexity Theory

Lecture II: PSPACE-completeness; Log-space reductions

> Department of Computer Science, Indian Institute of Science

Recap: Space bounded computation

- Here, we are interested to find out how much of <u>work</u> <u>space</u> is required to solve a problem.
- For convenience, think of TMs with a separate readonly <u>input tape</u> and one or more <u>work tapes</u>. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- Definition. Let S: $N \rightarrow N$ be a function. A language L is in DSPACE(S(n)) if there's a TM M that decides L using O(S(n)) work space on inputs of length n.

Recap: Space bounded computation

- Here, we are interested to find out how much of <u>work</u> <u>space</u> is required to solve a problem.
- For convenience, think of TMs with a separate readonly <u>input tape</u> and one or more <u>work tapes</u>. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- Definition. Let S: $N \rightarrow N$ be a function. A language L is in NSPACE(S(n)) if there's a NTM M that decides L using O(S(n)) work space on inputs of length n, regardless of M's nondeterministic choices.

Recap: Space bounded computation

- We'll refer to 'work space' as 'space'. For convenience, assume there's a <u>single</u> work tape.
- If the output has many bits, then we will assume that the TM has a separate write-only <u>output tape</u>.
- Definition. Let S: $N \longrightarrow N$ be a function. S is <u>space</u> <u>constructible</u> if $S(n) \ge \log n$ and there's a TM that computes S(|x|) from x using O(S(|x|)) space.

- Obs. $DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n))$.
- Theorem. NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}), if S is space constructible.
- Definition. L = DSPACE(log n) NL = NSPACE(log n) PSPACE = U DSPACE(n^c) $_{c > 0}$

Giving space at least log n gives a TM at least the power to remember the index of a cell.

- Obs. $DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n))$.
- Theorem. NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}), if S is space constructible.
- Definition. L = DSPACE(log n) NL = NSPACE(log n) PSPACE = U DSPACE(n^c) $_{c > 0}$

Why did we not define NPSPACE? We saw that unlike P and NP, PSPACE = NPSPACE

- Obs. $DTIME(S(n)) \subsetneq DSPACE(S(n)) \subseteq NSPACE(S(n))$.
- Theorem. NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}), if S is space constructible.
- Caution. The Hopcroft-Paul-Valiant theorem does not imply P ⊊ PSPACE.
- Open. Is $P \neq PSPACE$?

- Obs. $DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n))$.
- Theorem. NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))}), if S is space constructible.

Homework: Integer addition and multiplication are in (functional) L.

Integer division is also in (functional) L. (Chiu, Davida & Litow 2001)

- Definition. A configuration of a TM M on input x, at any particular step of its execution, consists of
 - (a) the nonblank symbols of its work tapes,
 - (b) the current state,
 - (c) the current head positions.
- It captures a 'snapshot' of M at any particular moment of execution.

- Definition. A configuration of a TM M on input x, at any particular step of its execution, consists of
 - (a) the nonblank symbols of its work tapes,
 - (b) the current state,
 - (c) the current head positions.

It captures a 'snapshot' of M at any particular moment of execution.

State info	Input head index	Work tape head index	b _i		b _{S(n)}
------------	---------------------	-------------------------	----------------	--	-------------------

Note: A configuration C can be represented using O(S(n)) bits if M uses $S(n) = \Omega(\log n)$ space on n-bit inputs.

- Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).
- Number of nodes in $G_{M,x} = 2^{O(S(n))}$, if M uses S(n) space on n-bit inputs

- Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).
- If M is a DTM then every node C in $G_{M,x}$ has at most one outgoing edge. If M is an NTM then every node C in $G_{M,x}$ has at most <u>two</u> outgoing edges.

- Obs. $DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n))$.
- Theorem. NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}), if S is space constructible.
- Proof. Let $L \in NSPACE(S(n))$ and M be an NTM deciding L using O(S(n)) space on length n inputs.
- On input x, compute the configuration graph $G_{M,x}$ of M and check if there's a <u>path</u> from C_{start} to C_{accept} . Running time is $2^{O(S(n))}$.

Recap: Natural problems?

• Definition. L = DSPACE(log n) NL = NSPACE(log n) PSPACE = U DSPACE(n^c) $_{c > 0}$

- Theorem. $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$.
- Are there **natural problems** in L, NL and PSPACE ?

PATH: A canonical problem in NL

- PATH = {(G,s,t) : G is a directed graph having a path from s to t}.
- Obs. PATH is in NL.

UPATH: A problem in L

- UPATH = {(G,s,t) : G is an undirected graph having a path from s to t}.
- Theorem (Reingold 2005). UPATH is in L.

Recap: Space Hierarchy Theorem

- Theorem. (Stearns, Hartmanis & Lewis 1965) If f and g are space-constructible functions and f(n) = o(g(n)), then SPACE(f(n)) ⊊ SPACE(g(n)).
- Proof. Homework.

• Theorem. $L \subsetneq PSPACE$.

Recap: Savitch's theorem

- Theorem. NSPACE(S(n)) \subseteq DSPACE(S(n)²), where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof.
- REACH(C₁, C₂, i) {

If i = 0 check if C_1 and C_2 are adjacent.

Else, <u>for every</u> configurations C,

 $a_1 = REACH(C_1, C, i-1)$

 $a_2 = REACH(C, C_2, i-1)$

if $a_1 = 1 \& a_2 = 1$, return 1. Else return 0.

Recap: Savitch's theorem

- Theorem. NSPACE(S(n)) \subseteq DSPACE(S(n)²), where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof.

Space(i) = Space(i-1) + O(S(n))

• Space complexity: O(S(n)²)

$Time(i) = 2^{m}.2.Time(i-1) + O(S(n))$

• Time complexity: $2^{O(S(n)^2)}$

Recall, NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))}). There's an algorithm with time complexity 2^{O(S(n))}, but higher space requirement.

PSPACE-completeness

PSPACE-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE ?

PSPACE-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE ? ... use poly-time Karp reduction!
- Definition. A language L' is PSPACE-hard if for every L in PSPACE, $L \leq_p L'$. Further, if L' is in PSPACE then L' is PSPACE-complete.

A PSPACE-complete problem

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE ? ... use poly-time Karp reduction!

• Example. L' = {(M,w, I^m) : M accepts w using m space}

• Definition. A quantified Boolean formula (QBF) is a formula of the form

 A QBF is either <u>true</u> or <u>false</u> as all variables are quantified. This is unlike a formula we've seen before where variables were <u>unquantified/free</u>.

Boolean variables

- Example. $\exists x_1 \exists x_2 \dots \exists x_n \ \phi(x_1, x_2, \dots, x_n)$
- The above QBF is true iff ϕ is satisfiable.
- We could have defined SAT as SAT = $\{\exists x \phi(x) : \phi \text{ is a CNF and } \exists x \phi(x) \text{ is true}\}$ instead of

SAT = { $\phi(x)$: ϕ is a CNF and ϕ is satisfiable}

• Definition. A quantified Boolean formula (QBF) is a formula of the form

• Homework: By using auxiliary variables (as in the proof of Cook-Levin) and introducing some more \exists quantifiers at the end, we can assume w.l.o.g. that ϕ is a 3CNF.

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.
- Proof: Easy to see that TQBF is in PSPACE just think of a suitable <u>recursive procedure</u>. We'll now show that every L ∈ PSPACE reduces to TQBF via poly-time Karp reduction...

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Let M be a TM deciding L using S(n) = poly(n) space. We intend to come up with a poly-time reduction f s.t.

$$\mathbf{x} \in \mathbf{L} \quad \xleftarrow{f} \Psi_{\mathbf{x}}$$
 is a true QBF

Size of Ψ_x must be bounded by poly(n), where |x| = n

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Let M be a TM deciding L using S(n) = poly(n) space. We intend to come up with a poly-time reduction f s.t.

$$\mathbf{x} \in \mathbf{L} \quad \xleftarrow{f} \Psi_{\mathbf{x}}$$
 is a true QBF

Idea: Form Ψ_x in such a way that Ψ_x is true iff there's a path from C_{start} to C_{accept} in $G_{M,x}$.

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in $G_{M,x}$.

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.

Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in G_{M,x}. Then, it forms a <u>semi-QBF</u> Δ_i(C₁,C₂), such that Δ_i(C₁,C₂) is true iff there's a path from C₁ to C₂ of length at most 2ⁱ in G_{M,x}.

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.

• Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in $G_{M,x}$. Then, it forms a <u>semi-QBF</u> $\Delta_i(C_1,C_2)$, such that $\Delta_i(C_1,C_2)$ is true iff there's a path from C₁ to C₂ of length at most 2ⁱ in $G_{M,x}$.

> The variables corresponding to the bits of C_1 and C_2 are unquantified/free variables of Δ_i

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF Δ_i(C₁,C₂) is formed, recursively, as follows:

(first attempt)

 $\Delta_{i}(C_{1},C_{2}) = \exists C \left(\Delta_{i-1}(C_{1},C) \land \Delta_{i-1}(C,C_{2}) \right)$

Issue: Size of Δ_i is <u>twice</u> the size of Δ_{i-1} !!

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF Δ_i(C₁,C₂) is formed, recursively, as follows:

(careful attempt)

 $\Delta_{i}(C_{1},C_{2}) = \exists C \forall D_{1} \forall D_{2}$

 $\left(\left(\left(\mathsf{D}_1 = \mathsf{C}_1 \land \mathsf{D}_2 = \mathsf{C} \right) \lor \left(\mathsf{D}_1 = \mathsf{C} \land \mathsf{D}_2 = \mathsf{C}_2 \right) \right) \implies \Delta_{i-1}(\mathsf{D}_1, \mathsf{D}_2) \right)$

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF Δ_i(C₁,C₂) is formed, recursively, as follows:

(careful attempt)

 $\Delta_{i}(C_{1},C_{2}) = \exists C \forall D_{1} \forall D_{2}$

$$\left(\neg\left(\left(\mathsf{D}_{1}=\mathsf{C}_{1}\wedge\mathsf{D}_{2}=\mathsf{C}\right)\vee\left(\mathsf{D}_{1}=\mathsf{C}\wedge\mathsf{D}_{2}=\mathsf{C}_{2}\right)\right)\vee\Delta_{i-1}(\mathsf{D}_{1},\mathsf{D}_{2})\right)$$

Note: Size of $\Delta_i = O(S(n)) + Size of \Delta_{i-1}$

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.
- **Proof:** (contd.) Finally,

 $\Psi_x = \Delta_m(C_{\text{start}}, C_{\text{accept}})$

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

 $\Psi_x = \Delta_m(C_{\text{start}}, C_{\text{accept}})$

- But, we need to specify how to form $\Delta_0(C_1, C_2)$.
- Size of $\psi_x = O(S(n)^2) + Size of \Delta_0$

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

 $\Psi_x = \Delta_m(C_{start}, C_{accept})$

- But, we need to specify how to form $\Delta_0(C_1, C_2)$.
- Size of $\Psi_x = O(S(n)^2) + Size of \Delta_0$

Remark: We can easily bring all the quantifiers at the beginning in Ψ_x (as in a *prenex normal form*).

- Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.
- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

 $\Psi_x = \Delta_m(C_{\text{start}}, C_{\text{accept}})$

- But, we need to specify how to form $\Delta_0(C_1, C_2)$.
- Size of $\psi_x = O(S(n)^2) + \text{Size of } \Delta_0 \longrightarrow ??$

Adjacent configurations

- Claim. There's an $O(S(n)^2)$ -size circuit $\phi_{M,x}$ on O(S(n))inputs such that for every inputs C_1 and C_2 , $\phi_{M,x}(C_1, C_2) = I$ iff C_1 and C_2 encode two neighboring configurations in $G_{M,x}$.
- Proof. Think of a linear time algorithm that has the knowledge of M and x, and on input C_1 and C_2 it checks if C_2 is a neighbor of C_1 in $G_{M,x}$.

Adjacent configurations

- Claim. There's an $O(S(n)^2)$ -size circuit $\phi_{M,x}$ on O(S(n))inputs such that for every inputs C_1 and C_2 , $\phi_{M,x}(C_1, C_2) = I$ iff C_1 and C_2 encode two neighboring configurations in $G_{M,x}$.
- Proof. Think of a linear time algorithm that has the knowledge of M and x, and on input C_1 and C_2 it checks if C_2 is a neighbor of C_1 in $G_{M,x}$. Applying ideas from the proof of Cook-Levin theorem, we get our desired $\phi_{M,x}$ of size $O(S(n)^2)$.

Size of Δ_0

- Obs. We can convert the circuit $\phi_{M,x}(C_1, C_2)$ to a quantified CNF $\Delta_0(C_1, C_2)$ by introducing auxiliary variables (as in the proof of Cook-Levin theorem).
- Hence, size of $\Delta_0(C_1, C_2)$ is $O(S(n)^2)$.
- Therefore, size of $\Psi_x = O(S(n)^2)$.

Other PSPACE complete problems

- Checking if a player has a winning strategy in certain two-player games, like (generalized) Hex, Reversi, Geography etc.
- Integer circuit evaluation (Yang 2000).
- Implicit graph reachability.
- Check the wiki page: https://en.wikipedia.org/wiki/List_of_PSPACEcomplete_problems

NL-completeness

- Recall again, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
 Is L = NL ?

NL-completeness

- Recall again, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is L = NL ? ...poly-time (Karp) reductions are much too powerful for L.
- We need to define a suitable <u>'log-space'</u> reduction.

Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.

 $x \xrightarrow{\text{Log-space TM}} f(x)$

...unless we restrict $|f(x)| = O(\log |x|)$, in which case we're severely restricting the power of the reduction.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output <u>a bit</u> of f(x).

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Definition: A function $f : \{0, I\}^* \rightarrow \{0, I\}^*$ is <u>implicitly log-space computable</u> if
 - $||f(x)|| \leq |x|^c$ for some constant c,
 - 2. The following two languages are in L :

 $L_f = \{(x, i) : f(x)_i = I\}$ and $L'_f = \{(x, i) : i \le |f(x)|\}$

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Definition: A language L_1 is <u>log-space reducible</u> to a language L_2 , denoted $L_1 \leq_l L_2$, if there's an implicitly log-space computable function f such that

 $x \in L_1 \quad \iff f(x) \in L_2$

Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.

- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

• Proof: Let f be the reduction from L_1 to L_2 , and g the reduction from L_2 to L_3 . We'll show that the function h(x) = g(f(x)) is implicitly log-space computable which will suffice as,

 $x \in L_1 \iff f(x) \in L_2 \iff g(f(x)) \in L_3$

Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.

- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

- Proof: ...Think of the following log-space TM that computes h(x)_i from (x, i). Let
 - > M_f be the log-space TM that computes $f(x)_i$ from (x, j),
 - \succ M_g be the log-space TM that computes g(y)_i from (y, i).

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

 Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g's computation and start simulating M_f on input (x, j).

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).

stores M_g's current configuration

• Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

• Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). Space usage = O(log |f(x)|) + O(log |x|).

Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.

- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

• Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). Space usage = O(log |x|).

Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.

- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g's computation and start simulating M_f on input (x, j). This shows L_h is in L.

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$ then $L_1 \leq_l L_3$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

 Proof: ...Similarly, L'_h is in L and so h is implicitly logspace computable.

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \in L$ then $L_1 \in L$.

 $(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$

• **Proof:** Same ideas. (Homework)