Computational Complexity Theory

Lecture | |: PSPACE-completeness;
Log-space reductions

Department of Computer Science,
Indian Institute of Science

Recap: Space bounded computation

e Here, we are interested to find out how much of work
space is required to solve a problem.

e For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

o Let S: N — N be a function. A language L
is in DSPACE(S(n)) if there’s a TM M that decides L
using O(S(n)) work space on inputs of length n.

Recap: Space bounded computation

e Here, we are interested to find out how much of work
space is required to solve a problem.

e For convenience, think of TMs with a separate read-
only input tape and one or more work tapes. Work
space is the number of cells in the work tapes of a TM
M visited by M’s heads during a computation.

o Let S: N — N be a function. A language L
is in NSPACE(S(n)) if there’s a NTM M that decides L
using O(S(n)) work space on inputs of length n,
regardless of M’s nondeterministic choices.

Recap: Space bounded computation

o We'll refer to ‘work space’ as ‘space’. For convenience,
assume there’s a single work tape.

o If the output has many bits, then we will assume that
the TM has a separate write-only output tape.

o Let S: N — N be a function. S is space
constructible if S(n) = log n and there’s a TM that
computes S(|x|) from x using O(S(|x]|)) space.

Recap: Time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

e Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = U DSPACE(n°)

c>0

Giving space at least log n gives a
TM at least the power to
remember the index of a cell.

Recap: Time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

e Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = U DSPACE(n°)

c>0

Why did we not define NPSPACE?
We saw that unlike P and NP,
PSPACE = NPSPACE

Recap: Time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) € NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQ2°CM), if S is
space constructible.

e Caution. The theorem does not
imply P & PSPACE.

e Open. Is P # PSPACE?

Recap: Time and space

o Obs. DTIME(S(n)) € DSPACE(S(n)) < NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

Homeworle Integer addition and
multiplication are in (functional) L.

Integer division is also in (functional)
L. (Chiu, Davida & Litow 2001)

Recap: Configuration graph

A configuration of a TM M on input x, at any

particular step of its execution, consists of

(2) t
(b) t

he nonblank symbols of its work tapes,

ne current state,

(c) t

he current head positions.

It captures a ‘snapshot’ of M at any particular moment
of execution.

State info

index

Input head | Work tape bl

bs(n)

head index

| J
|

Content of work tape

(@

Recap: Configuration graph

A configuration of a TM M on input x, at any

particular step of its execution, consists of

(2) t
(b) t

he nonblank symbols of its work tapes,

ne current state,

(c) t

he current head positions.

It captures a ‘snapshot’ of M at any particular moment
of execution.

State info

index

Input head | Work tape bl

bs(n)

head index

A configuration C can be represented using O(S(n))
bits if M uses S(n) = 2(log n) space on n-bit inputs.

Recap: Configuration graph

° A configuration graph of a TM M on input x,
denoted G, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

* Number of nodes in G, = 2°9C), if M uses S(n)
space on n-bit inputs

Recap: Configuration graph

° A configuration graph of a TM M on input x,
denoted G, is a directed graph whose nodes are all
the possible configurations of M on input x. There’s an
edge from one configuration C, to another C,, if C,
can be reached from C, by an application of M’s
transition function(s).

e If Mis a DTM then every node C in G, has at most
one outgoing edge. If M is an NTM then every node C
in G, has at most two outgoing edges.

Recap: Time and space

o Obs. DTIME(S(n)) & DSPACE(S(n)) € NSPACE(S(n)).

o Theorem. NSPACE(S(n)) S DTIMEQRCCM), if S is
space constructible.

* Proof. Let L € NSPACE(S(n)) and M be an NTM
deciding L using O(S(n)) space on length n inputs.

e On input x, compute the configuration graph G, of
M and check if there’s a path from C, . to C .. .
Running time is 29060,

Recap: Natural problems?

e Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = U DSPACE(n°)

c>0

e Theorem.L € NL € P € NP < PSPACE < EXP.

* Are there natural problems in L, NL and PSPACE ?

PATH: A canonical problem in NL

o PATH = {(G,s,t) : G is a directed graph having a path
from s to t}.

e Obs. PATH is in NL.

PATH

UPATH: A problem in L

o UPATH = {(G,s,t) : G is an undirected graph having a
path from s to t}.

e Theorem (Reingold 2005). UPATH is in L.

Is PATH in L?
If yes,then L = NL!
(will prove later)

UPATH

Recap: Space Hierarchy Theorem

e Theorem. If fand g
are space-constructible functions and f(n) = o(g(n)),
then SPACE(f(n)) & SPACE(g(n)).

e Proof.

e Theorem. L € PSPACE.

Recap: Savitch’s theorem

e Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
. C,C,i{
If i = 0 check if C, and C, are adjacent.
Else, for every configurations C,
a, = C,GCi-l
a, = G GC,i-l

ifa,=| & a,=I, return |.Else return 0.

Recap: Savitch’s theorem

e Theorem. NSPACE(S(n)) € DSPACE(S(n)?), where
S(n) is space constructible. (So, PSPACE = NPSPACE)

e Proof.
Space(i) = Space(i-1) + O(S(n))
» Space complexity: O(S(n)?)

Time(i) = 2™.2.Time(i-1) + O(S(n))

» Time complexity: 2060

Recall, NSPACE(S(n)) < DTIME(2°6M),
There’s an algorithm with time complexity
206M), but higher space requirement.

PSPACE-completeness

PSPACE-completeness

e Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e |Is P = PSPACE ?

PSPACE-completeness

e Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e |Is P = PSPACE ! ...use poly-time Karp reduction!

° A language L' is PSPACE-hard if for every L
in PSPACE, L SP ’. Further,if L is in PSPACE then U
is PSPACE-complete.

A PSPACE-complete problem

e Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e |Is P = PSPACE ! ...use poly-time Karp reduction!

° L' = {(M,w, ™) : M accepts w using m space}

Natural PSPACE-complete problem

° A quantified Boolean formula (QBF) is a
formula of the form

Qx; QpX; .. QX (X, Xy 0 X))

=" —

Quantifiers 3 or V Just a formula on
Boolean variables

o A QBF is either true or false as all variables are
quantified. This is unlike a formula we’ve seen before
where variables were unquantified/free.

Natural PSPACE-complete problem

e Example. 3Ix; 3%, ... IX, G(x[, Xy, ..., X,)
* The above QBF is true iff ¢ is satisfiable.

* We could have defined SAT as
SAT = {3x ¢(x) : ¢ is a CNF and Ix ¢(x) is true}

instead of
SAT = {d(x) : ¢ is a CNF and ¢ is satisfiable}

Natural PSPACE-complete problem

° A quantified Boolean formula (QBF) is a
formula of the form

Qx; QpX; .. QX (X, Xy 0 X))

=" —

Just a formula on
Boolean variables

Quantifiers 3 or V

° By using auxiliary variables (as in the
proof of Cook-Levin) and introducing some more A
quantifiers at the end, we can assume w.l.o.g. that ¢ is

a 3CNF

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

e Proof: Easy to see that TQBF is in PSPACE — just
think of a suitable recursive procedure. We'll now
show that every L € PSPACE reduces to TQBF via
poly-time Karp reduction...

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

e Proof: (contd.) Let M be a TM deciding L using S(n) =
poly(n) space. We intend to come up with a poly-time
reduction f s.t.

x €L 4f—>L|JX is a true QBF

Size of Y must be bounded
by poly(n), where |x| = n

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

e Proof: (contd.) Let M be a TM deciding L using S(n) =
poly(n) space. We intend to come up with a poly-time
reduction f s.t.

x €L 4f—>L|JX is a true QBF

Form W_ in such a way that W_ is true iff there’s a path from
to C in Gy,

start accept

C

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in G, ,.

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in Gy . Then, it forms a semi-QBF

A(C,,C,), such that A (C,,C,) is true iff there’s a path
from C, to C, of length at most 2" in G ,..

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) f computes S(n) from n (recall, any poly
function S(n) is time constructible). It also computes
m = O(S(n)), the no. of bits required to represent a
configuration in Gy . Then, it forms a semi-QBF
A(C,,C,), such that A (C,,C,) is true iff there’s a path
from C, to C, of length at most 2' in G ,..

The variables corresponding to the bits of C,
and C, are unquantified/free variables of A,

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) QBF A,(C,,C,) is formed, recursively, as
follows:

A(C,,C;) =3C (A,,(C,,.C) A AL (C,Cy))

Issue: Size of A is twice the size of A !!

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) QBF A,(C,,C,) is formed, recursively, as
follows:

A(C,,C,) = 3C vD,vD,

(((D| =C;AD,=C) Vv (D, =C/\D2=C2)) = A,([D,D))

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) QBF A,(C,,C,) is formed, recursively, as
follows:

A(C,,C,) = 3C VD,vD,
(_'((D| =C,AD,=C)Vv (D, =CAD,= Cz)) v A,(D,,Dy))

Note: Size of A, = O(S(n)) + Size of A,

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.
* Proof: (contd.) Finally,
W, = A, (C

start? accept)

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.
* Proof: (contd.) Finally,
W, = A, (C

start? accept)

* But, we need to specify how to form A,(C,,C,).
o Size of Y, = O(S(n)?) + Size of A,

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.
* Proof: (contd.) Finally,
W, = A, (C

start? accept)

* But, we need to specify how to form A,(C,,C,).
o Size of Y, = O(S(n)?) + Size of A,

Remarl: We can easily bring all the quantifiers at the
beginning in W, (as in a prenex normal form).

Natural PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

* Proof: (contd.) Finally,
W, = A, (C

start? accept)

* But, we need to specify how to form A,(C,,C,).

» Size of W, = O(S(n)?) + 7

Adjacent configurations

° There’s an O(S(n)?)-size circuit ¢y, on O(S(n))
inputs such that for every inputs C, and C,,
du(C,, Cy) = | iff C, and C, encode two neighboring

configurations in G, .

e Proof. Think of a linear time algorithm that has the
knowledge of M and x, and on input C, and C, it
checks if C, is a neighbor of C, in G, ,.

Adjacent configurations

° There’s an O(S(n)?)-size circuit ¢, on O(S(n))
inputs such that for every inputs C, and C,,
du(C,, Cy) = | iff C, and C, encode two neighboring
configurations in G, .

e Proof. Think of a linear time algorithm that has the
knowledge of M and x, and on input C, and C, it
checks if C, is a neighbor of C, in G, . Applying ideas
from the proof of Cook-Levin theorem, we get our
desired ¢y, of size O(S(n)?).

Size of A,

o We can convert the circuit ¢y, (C,, C,) to a
quantified CNF A,(C,,C,) by introducing auxiliary
variables (as in the proof of Cook-Levin theorem).

* Hence, size of A,(C,,C,) is O(S(n)?).
 Therefore, size of W = O(S(n)?).

Other PSPACE complete problems

e Checking if a player has a winning strategy in certain
two-player games, like (generalized) Hex, Reversi,
Geography etc.

* Integer circuit evaluation ().
 Implicit graph reachability.

* Check the wiki page:
https://en.wikipedia.org/wikilList_of_PSPACE-
complete_problems

Log-space reductions

NL-completeness

e Recall again, to define completeness of a complexity
class, we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e IsL=NL?

NL-completeness

e Recall again, to define completeness of a complexity
class, we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

eIs L = NL? ...poly-time (Karp) reductions are much
too powerful for L.

* We need to define a suitable ‘log-space’ reduction.

Log-space reductions

Log-space TM

X > f(x)
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

...unless we restrict [f(x)| = O(log |x|), in which case
we're severely restricting the power of the reduction.

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

* Solution: Have the log-space TM output a bit of f(x).

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o A function f : {0, 1 }*— {0, 1}* is implicitly log-
space computable if

|. [f(x)| = |x|¢ for some constant c,

2.The following two languages are in L :

L= {(x,i) : f(x), = 1} and L, ={(x,i):i < |f(x)|}

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

° A language L, is log-space reducible to a
language L,, denoted L, =, L,, if there’s an implicitly
log-space computable function f such that

xEL = f(X)EL,

Log-space reductions

(X, |) Log-spaceTM} f (X)i
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.

* Proof: Let f be the reduction from L, to L,, and g the
reduction from L, to L;. We’ll show that the function
h(x) = g(f(x)) is implicitly log-space computable which
will suffice as,

XxXEL e f(X)EL, e gf(x) €L

Log-space reductions

(X, |) Log-spaceTM> f (X)i
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.
e Proof: ...Think of the following log-space TM that
computes h(x), from (x, i). Let

» M, be the log-space TM that computes f(x), from (x,),

» M, be the log-space TM that computes g(y); from (y, i).

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.
* Proof:...On input x, simulate M, on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the

simulation whenever M, tries to read a j-th bit of f(x),
postpone M,’s computation and start simulating M; on

input (X, j).

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

stores M_'s current configuration

o IfL, = L,and L, 5L nlL, s L.

* Proof:...On input x, siatulate M, on (f(x), i) pretending
that f(x) is there”in some fictitious tape. During the
simulatio enever M, tries to read a j-th bit of f(x),

postpone M,’s computation and start simulating M; on
input (%, j). Space usage = O(log [f(x)]) + O(log [x]).

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.

* Proof:...On input x, simulate M, on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever M, tries to read a j-th bit of f(x),

postpone M,’s computation and start simulating M; on
input (%, j). Space usage = O(log [x]).

Log-space reductions
Log-space TM

(%,) > f(x);
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.

* Proof:...On input x, simulate M, on (f(x), i) pretending
that f(x) is there in some fictitious tape. During the
simulation whenever M, tries to read a j-th bit of f(x),

postpone M,’s computation and start simulating M; on
input (X, j). This shows L, is in L.

Log-space reductions

(X, |) Log-spaceTM> f (X)i
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o IfL, < L,and L, < Lythen L, < L.
e Proof: ...Similarly, L, is in L and so h is implicitly log-
space computable.

Log-space reductions

(X, |) Log-spaceTM} f (X)i
e Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

° IfL, < L,and L, € Lthen L, € L.

* Proof: Same ideas. ()

