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Problems between NP & PSPACE

e There are decision problems that don’t appear to be
captured by nondeterminism alone (i.e., with a single
3 or V quantifier), unlike problems in NP and co-NP.

Eq-DNF = {(¢,k): ¢ is a DNF and there’s a DNF y

of size < k that is equivalent to ¢}

* Two Boolean formulas on the same input variables are
equivalent if their evaluations agree on every
assignment to the variables.
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e There are decision problems that don’t appear to be
captured by nondeterminism alone (i.e., with a single
3 or V quantifier), unlike problems in NP and co-NP.

Eq-DNF = {(¢,k): ¢ is a DNF and there’s a DNF y
of size < k that is equivalent to ¢}

e Is Eq-DNF in NP? ...if we give a DNF @ as a
certificate, it is not clear how to efficiently verify that
W and ¢ are equivalent. (W.l.o.g. k < size of ¢ .)
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o Definition. A language L is in ), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {0,139 vv e {0,1}9x) s.t. M(x,u,v) = I.
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o Obs. Eq-DNF isin ) ,.

e Proof. Think of u as another DNF W and v as an
assighment to the variables. Poly-time TM M checks if
W has size < kand ¢(v) = W(v).

e Remark. Even if ¢ is given by its truth-
table, the problem (i.e., DNF-MCSP) is NP-complete.
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e Another example.
Succinct-SetCover = {(¢,,...0, ,k): ¢’s are DNFs and there’s an

S S[m] of size < k s.t. /.. . is a tautology}
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o Definition. A language L is in ), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {0,139 vv e {0,1}9x) s.t. M(x,u,v) = I.
e Obs. Succinct-SetCover is in ) ,.

e Other natural problems in PH: “Completeness in the
Polynomial-Time Hierarchy: A Compendium” by
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o Definition. A language L is in ). if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L e»3Ju, € {0,1}90X) wvu, € {0,1}90x) Q.u, € {0, I}a(lx)
s.t. M(xu,...,u) =1,
where Q. is 3 or V if i is odd or even, respectively.

e Obs. ). C > ., for every i.



Polynomial Hierarchy

o Definition. A language L is in ). if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L e»3Ju, € {0,1}90X) wvu, € {0,1}90x) Q.u, € {0, I}a(lx)
s.t. M(xu,...,u) =1,
where Q. is 3 or V if i is odd or even, respectively.

e Definition.

PH=U 2;. IZ
|2
Y= NP
N\
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Class [ ],

e Definition. [], = co-Y;, = {L: Le 3.}

e Obs. A language L is in []. if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L ®Vu, €{0,1}9x) 3u, € {0,1}90x) Q.u, € {0, 1}ax)
s.t. M(xu,...,u) =1,
where Q. is V or 3 if i is odd or even, respectively.

© Obs. 2 € [Tt € 2ia-




Polynomial Hierarchy

* Obs.PH=U Y =U[].

s SN
5, = NP M, = co-NP
AN /



Polynomial Hierarchy

e Claim.PH < PSPACE.
e Proof. Similar to the proof of TQBF € PSPACE.




Does PH collapse!?

o Just as many of us believe P # NP (i.e.
>o 7 > ;) and NP # co-NP (i.e. Y, # [],), we also
believe that for every i, >.#>.,, and Y. #[].

° We say PH collapses to the i-th level if

D= vl -

° There is no i such that PH collapses to
the i-th level.
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o Just as many of us believe P # NP (i.e.
>o 7 > ;) and NP # co-NP (i.e. Y, # [],), we also
believe that for every i, >.#>.,, and Y. #[].

° We say PH collapses to the i-th level if

D= vl -

° There is no i such that PH collapses to
the i-th level.

This is stronger than the P # NP conjecture.
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o Theorem.If ). =) .., then PH =) ..

* Proof. Hence Zi - Zi+| - |_|i - |_|i+l .
Goal is to show that > ., => ., .

 Let L be a language in ) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
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Complete problems in PH ?

e Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e IsP=PH? ...use poly-time Karp reduction!

° A language LU is PH-hard if for every L in
PH, L SPL’. Further, if L' is in PH then L is PH-complete.
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Complete problems in PH ?

o If L is poly-time reducible to a language in ).
then Lisin ).

° If PH has a complete problem then PH
collapses.

e Proof. If L is PH-complete then L is in ). for some i.
Now use the above fact to infer that PH = ) ..



Complete problems in PH ?

e Fact. If L is poly-time reducible to a language in ).
then Lisin ).

o Corollary. PH & PSPACE unless PH collapses.




Complete problems in ).

e Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e IsP=).7?...use poly-time Karp reduction!

° A language L is ) .-hard if for every L in ) _,
L = L. Further,if L'isin ), then L is ) -complete.
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o Definition. The language ) .-SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem. ) -SAT is ). -complete.
* Proof. Easy to see that ) -SAT isin ) ..
x =3v,Vv, ... Qv, §(v,...,v.) € D -SAT o
Ju,Vu, ... Qu. s.t. M(xu,...,u) =1,
where M outputs ¢(u, ..., u).
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 Definition. The language ) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem. ) -SAT is ) .-complete.

* Proof. Let L be a language in ). . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

x €L e$»3JuVu,..Qu. st d(xup,...,u)=1.
\ 1

I

Boolean circuit

( )
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 Definition. The language ) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem. ) -SAT is ) .-complete.

* Proof. Let L be a language in ). . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

x €L e»3uVu,...Qu. oO(xu,...,u)is true.

* Issue: ¢ needn’t be a formula.



Complete problems in ).

 Definition. The language ) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem. ) -SAT is ) .-complete.

* Proof. Let L be a language in ). . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

x €L e»3uVu,...Qu. oO(xu,...,u)is true.

e Observation. From the proof of the Cook-Levin

theorem, we can assume that ¢ is a CNF (if i is odd)
or a DNF (if i is even). (Homework)
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 Definition. The language ) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem. ) -SAT is ) .-complete.

* Proof. Let L be a language in ). . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

x€EL @3IuVu,... Qu. ¢(x,up,...,u) € D -SAT.



Other complete problems in ),

o Ref. “Completeness in the Polynomial-Time Hierarchy: A
Compendium™ by

e Theorem. Eq-DNF and Succinct-SetCover are
> , -complete.



