N Computational Complexity Theory

Lecture |14: Polynomial Hierarchy (contd.);
Boolean Circuits;
Karp-Lipton theorem

Department of Computer Science,
Indian Institute of Science

Recap: Class).

o Definition. A language L is in). if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L e»3Ju, € {0,1}90X) wvu, € {0,1}90x) Q.u, € {0, I}a(lx)
s.t. M(xu,...,u) =1,
where Q. is 3 or V if i is odd or even, respectively.

e Obs.). C > ., for every i.

Recap: Polynomial Hierarchy

o Definition. A language L is in). if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L e»3Ju, € {0,1}90X) wvu, € {0,1}90x) Q.u, € {0, I}a(lx)
s.t. M(xu,...,u) =1,
where Q. is 3 or V if i is odd or even, respectively.

e Definition.

PH=U 2;. IZ
|2
Y, =NP
N\

Recap: Class [].

e Definition. [], = co-Y;, = {L: Le 3.}

e Obs. A language L is in []. if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L ®Vu, €{0,1}9x) 3u, € {0,1}90x) Q.u, € {0, 1}ax)
s.t. M(xu,...,u) =1,
where Q. is V or 3 if i is odd or even, respectively.

© Obs. 2 € [Tt € 2ia-

Recap: Polynomial Hierarchy

* Obs.PH=U Y =U[].

s SN
>, =NP T[], =co-NP
N\ /

Recap: Polynomial Hierarchy

e Claim.PH < PSPACE.
e Proof. Similar to the proof of TQBF € PSPACE.

Recap: Does PH collapse?

o Just as many of us believe P # NP (i.e.
>o 7 > ;) and NP # co-NP (i.e. Y, # [],), we also
believe that for every i, >.#>.,, and Y. #[].

° We say PH collapses to the i-th level if

D= vl -

° There is no i such that PH collapses to
the i-th level.

This is stronger than the P # NP conjecture.

Recap: PH collapse theorems

o Theorem.If). =) .., then PH =) ..

e Theorem.If). =] then PH =} ..

Recap: Complete problems in PH ?

e Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e IsP=PH? ...use poly-time Karp reduction!

° A language LU is PH-hard if for every L in
PH, L SPL’. Further, if L' is in PH then L is PH-complete.

Recap: Complete problems in PH ?

o If L is poly-time reducible to a language in).
then Lisin).

° If PH has a complete problem then PH
collapses.

Recap: Complete problems in PH ?

e Fact. If L is poly-time reducible to a language in).
then Lisin).

o Corollary. PH & PSPACE unless PH collapses.

Recap: Complete problems in).

e Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e IsP=).7?...use poly-time Karp reduction!

° A language L is) .-hard if for every L in) _,
L = L. Further,if L'isin), then L is) -complete.

Recap: Complete problems in).

o The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

o > -SAT is) ,-complete.

° Owing to the proof of the Cook-Levin

theorem, we can assume that the formula in a) -SAT
instance is a CNF (if i is odd) or a DNF (if i is even).

Recap: Other complete problems in),

o Ref. “Completeness in the Polynomial-Time Hierarchy: A
Compendium™ by

e Theorem. Eq-DNF and Succinct-SetCover are
> , -complete.

An alternate characterization of PH

Oracle definition of)

S -SAT

e Definition. A language L is in NP if there is a poly-
time NTM with oracle access to) -SAT that decides L.

> -SAT

e Theorem.)., = NP

Oracle definition of).

S -SAT

o A language L is in NP if there is a poly-
time NTM with oracle access to) -SAT that decides L.

> -SAT

° Zi+| = NP

* Observe that) -SAT = SAT. Weé'll prove the special
case), = NP2, The proof of the theorem is similar.

Oracle definition of)

e Theorem.), = NPAT

* Proof. Let L be a language in) ,. There’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L <4m3Iu e {0,139 vv e {0,1}9x) s.t. M(x,u,v) = I.

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in) ,. There’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L <m3Iu e {0,139 vv e {0,1}90x) s.t. d(x,u,v) = I.

Boolean circuit

()

° In fact, owing to the proof of the Cook-Levin
theorem, we can assume that ¢ is a DNF.

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in) ,. There’s a polynomial

function q(.) and a poly-time M-s:t.
x €EL ¢m3Iu € {0,119 v e {0,1}a(x) s t. ﬂ(l)(x,@

e Think of a NTM N that has the knowledge of M. On
input x, it guesses u € {0,1}90X) non-deterministically

and computes the circuit ¢(x,u,v). Then, it queries the
SAT oracle with = (x,u,v).

Oracle definition of).

e Theorem.), = NPAT

* Proof. Let L be a language in) ,. There’s a polynomial
function q(.) and a poly-time TM M s.t.

x €EL <m3Iu e {0,139 vv e {0,1}90x) s.t. ~dp(x,u,v) = 0.

e Think of a NTM N that has the knowledge of M. On
input x, it guesses u € {0,1}90X) non-deterministically

and computes the circuit ¢(x,u,v). Then, it queries the
SAT oracle with = (x,u,v).

* Note that =¢(x,u,v) is a CNF,

Oracle definition of).

e Theorem.), = NPAT

 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

Oracle definition of).

o >, = NPAT
 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

o N asks at most one query to the SAT
oracle on every computation path on input x.

* We need to construct a) ,-statement that captures
N’s computation on input x.

Oracle definition of).

e Theorem.), = NPAT

 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

» Think of a TM M that takes input x and w € {0, | }a(x)),
a € {0,I} and u,, v,e {0,1}90X); where g(|x|) is the
runtime of N_on input x, and does the following:

Oracle definition of).

o >, = NPAT
 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

» Think of a TM M that takes input x and w € {0, | }a(x)),
a € {0,I} and u,, v,€ {0,1}90X); where q(|x|) is the
runtime of N on input x, and does the following:

e M simulates N on input x with w as the non-
deterministic choices.

Oracle definition of).

o >, = NPAT
 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

o N asks at most one query to the SAT
oracle on every computation path on input x.

» Think of a TM M that takes input x and w € {0, | }a(x)),
a € {0,I} and u,, v,€ {0,1}90X); where q(|x|) is the
runtime of N on input x, and does the following:

e M simulates N on input x with w as the computation

path. Suppose ¢ is the query asked by N on the path
of computation defined by w.

Oracle definition of).

o >, = NPAT
 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

» Think of a TM M that takes input x and w € {0, | }a(x)),
a € {0,I} and u,, v,€ {0,1}90X); where q(|x|) is the
runtime of N on input x, and does the following:

> Ifa, = | and ¢(u;) = |, M continues the simulation;
else it stops and outputs 0. (In this case, M ignores v,.)

Oracle definition of).

o >, = NPAT
 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

» Think of a TM M that takes input x and w € {0, | }a(x)),
a € {0,I} and u,, v,€ {0,1}90X); where q(|x|) is the
runtime of N on input x, and does the following:

> If a, = 0 and ¢(v,) = 0, M continues the simulation;
else it stops and outputs 0. (In this case, M ignores u,.)

Oracle definition of).

o >, = NPAT
 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

» Think of a TM M that takes input x and w € {0, | }a(x)),
a € {0,I} and u,, v,€ {0,1}90X); where q(|x|) is the
runtime of N on input x, and does the following:

e At the end of the simulation, M outputs whatever N
outputs. M is a poly-time TM.

Oracle definition of).

e Theorem.), = NPAT

 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

o Observation. For any w € {0,1}9x) and a,€ {0, 1},

» N on computation path w gets answer a, from the
SAT oracle and accepts x =

Ju, € {0,1}9x) wv, € {0,1}9X) s.t. M(x,w,a,,u,v,) = 1.

(...will prove the observation shortly. Let’s finish the proof.)

Oracle definition of)

e Theorem.), = NPAT

 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

exEL e»3Iwe{0I}) ae{0,l}s.t

» N on computation path w gets answer a, from the
SAT oracle and accepts x e 3w € {0,1}9x) ,a,€ {0,1}

Ju, € {0,1}9x) wv, € {0,1}9X) s.t. M(x,w,a,,u,v,) = I.

Oracle definition of)

e Theorem.), = NPAT

 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

exEL e»3Iwe{0I}) ae{0,l}s.t

» N on computation path w gets answer a, from the
SAT oracle and accepts x e 3w € {0,1}9x) ,a,€ {0,1}

Ju, € {0,1}9x) wv, € {0,1}9X) s.t. M(x,w,a,,u,v,) = 1.

Call it u

Oracle definition of).

e Theorem.), = NPAT

 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

e xEL ¢ 3Iwe{0I}I) ae0l}s.t

» N on computation path w gets answer a, from the
SAT oracle and accepts x =

Ju € {0, [}2alD*1 vy, € {0,1}90x) s.t. M(x,u,v,) = 1.
Therefore, Lisin),.

Proof of the observation

o Observation. For any w € {0,1}9x) and a,€ {0, 1},

» N on computation path w gets answer a, from the
SAT oracle and accepts x =

Ju, € {0,1}90x) wv, € {0,1}90x) s.t. M(x,w,a,,u,v,) = I.

Proof.(=») ™M simulates N on computation path w.
Let ¢ be the query asked by N to SAT.

If a, = |,3u, € {0,1}90%) ¢(u,) = | and N accepts x.

Proof of the observation

o Observation. For any w € {0,1}9x) and a,€ {0, 1},

» N on computation path w gets answer a, from the
SAT oracle and accepts x =

Ju, € {0,1}90x) wv, € {0,1}90x) s.t. M(x,w,a,,u,v,) = I.

Proof.(=») ™M simulates N on computation path w.
Let ¢ be the query asked by N to SAT.

If a, = I, 3u, € {0,1}90X) s.t. M(x,w, a,,u;,v,) = I.

In this case, M ignores v,.

Proof of the observation

o Observation. For any w € {0,1}9x) and a,€ {0, 1},

» N on computation path w gets answer a, from the
SAT oracle and accepts x =

Ju, € {0,1}90x) wv, € {0,1}90x) s.t. M(x,w,a,,u,v,) = I.

Proof.(=») ™M simulates N on computation path w.
Let ¢ be the query asked by N to SAT.

If a, =0, Vv, € {0,1}90x) ¢(v,) = 0 and N accepts x.

Proof of the observation

o Observation. For any w € {0,1}9x) and a,€ {0, 1},

» N on computation path w gets answer a, from the
SAT oracle and accepts x =

Ju, € {0,1}90x) wv, € {0,1}90x) s.t. M(x,w,a,,u,v,) = I.

Proof.(=») ™M simulates N on computation path w.
Let ¢ be the query asked by N to SAT.

If a, = 0, Vv, € {0,1}9x) s.t. M(x,w,a,,u,v,) = I.

In this case, M ignores u;.

Proof of the observation

o Observation. For any w € {0,1}9x) and a,€ {0, 1},

» N on computation path w gets answer a, from the
SAT oracle and accepts x =

Ju, € {0,1}90x) wv, € {0,1}90x) s.t. M(x,w,a,,u,v,) = I.

Proof.(=») ™M simulates N on computation path w.
Let ¢ be the query asked by N to SAT.

Irrespective of the value of a,,
Ju, € {0,1}9(x) vv, € {0,1}9x) s.t. M(x,w,a,,u,v,) = I.

Proof of the observation

o Observation. For any w € {0,1}9x) and a,€ {0, 1},

» N on computation path w gets answer a, from the
SAT oracle and accepts x =

Ju, € {0,1}90x) wv, € {0,1}90x) s.t. M(x,w,a,,u,v,) = I.

Proof.(#=) Need to show that N on computation
path w gets answer a, from the SAT oracle.

()

Oracle definition of).

o >, = NPAT
 Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

° N asks at most q(|x|) queries to SAT
oracle on every computation path on input x.

o : Prove the general case. Define the poly-
time machine M appropriately.

Oracles versus efficient algorithms

° A language L is in P°AT if there is a poly-
time TM with oracle access to SAT that decides L.

e Ay =PATC S NTH, .
e A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

Oracles versus efficient algorithms

° A language L is in P°AT if there is a poly-
time TM with oracle access to SAT that decides L.

e Ay =PATC S NTH, .
e A SAT_oracle gives us the ability to solve SAT
efficiently ’wch like” a poly-time algorithm for SAT.

e Yet, in the first case we believe PSAT # NPSAT
(otherwise, PH collapses to) ,)

Oracles versus efficient algorithms

° A language L is in P°AT if there is a poly-
time TM with oracle access to SAT that decides L.

e Ay =PATC S NTH, .
e A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

e Yet, in the first_case we believe P°AT # NPT, whereas
in the second case PH collapses to P, i.e., P°AT = NP2,

Oracles versus efficient algorithms

° A language L is in P°AT if there is a poly-
time TM with oracle access to SAT that decides L.

e Ay =PATC S NTH, .
e A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

e Yet, in the first case we believe P>AT # NP°AT whereas
in the second case PH collapses to P, i.e., P°AT = NP2,

e Why! Think to understand the difference between
oracles and poly-time algorithms for SAT ().

Boolean Circuits

An algorithm for every input length?

 “One might imagine that P # NP, but SAT is tractable in
the following sense: for every ¢/ there is a very short
program that runs in time /7 and correctly treats all
instances of size /7 — Karp and Lipton (1982).

An algorithm for every input length?

 “One might imagine that P # NP, but SAT is tractable in
the following sense: for every ¢/ there is a very short
program that runs in time /7 and correctly treats all
instances of size /7 — Karp and Lipton (1982).

e P # NP rules out the existence of a single efficient
algorithm for SAT that handles all input lengths. But, it
doesn’t rule out the possibility of having a sequence of
efficient SAT algorithms — one for each input length.

Lesson learnt from Cook-Levin

e Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ¢ of
size O(T(n)?) s.t. A(x) = ¢(x) for every x € {0,1}".

* On the other hand, a circuit on inputs of length n and

of size S can be viewed as an algorithm working on
length n inputs and running in time S.

Lesson learnt from Cook-Levin

e Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ¢ of
size O(T(n)?) s.t. A(x) = ¢(x) for every x € {0,1}".

* On the other hand, a circuit on inputs of length n and
of size S can be viewed as an algorithm working on
length n inputs and running in time S.

* To rule the existence of a sequence of algorithms —
one for each input length — we need to rule out the
existence of a sequence of (i.e., a family of) circuits.

Boolean circuits

e A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

Boolean circuits

e A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

 Typically, we’'ll consider circuits with one output gate,
and with nodes having in-degree at most two.

Boolean circuits

e A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

» Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

Boolean circuits

e A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

O(no. of nodes)

» Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

Boolean circuits

e A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

* Size corresponds to ‘“‘sequential time complexity”.
Depth corresponds to “parallel time complexity”.

Boolean circuits

e A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

e If every node in a circuit has out-degree at most one,
then the circuit is called a formula.

A circuit for Parity

e PARITY (X, X, ...

X)) = X DX D ... DX,

X; D x; = (XA7X) V (XA X,)

NG

Size(9) = |¢] = 8
Depth() = 3

Circuit family

e LetT: N— N be some function.

o Definition: A T(n)-size circuit family is a set of circuits
{C. },en such that C_has n inputs and |C | = T(n).

Class P/poly

e LetT: N— N be some function.

o Definition: A T(n)-size circuit family is a set of circuits
{C.}.en such that C_has n inputs and |C_| = T(n).

e Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {C_} .\, such that

xelL ®&C (x) =1, wheren = |x].

e Defintion: Class P/poly = U SIZE(n).

Class P/poly

e LetT: N— N be some function.

o Definition: A T(n)-size circuit family is a set of circuits
{C.}.en such that C_has n inputs and |C_| = T(n).

e Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {C_} -\, such that

@ &= C (x) = |, wheren = D

The circuit family

e Defintion: Class P/poly = U SIZE(n°). {C.}en decides L, i.e.,
cz| C,, decides LM{0, | }".

Class P/poly

e LetT: N— N be some function.

o Definition: A T(n)-size circuit family is a set of circuits
{C.}.en such that C_has n inputs and |C_| = T(n).

e Definition: A language L is in SIZE(T(n)) if there’s a

T(n)-size circuit family {C_} -\, such that

@ &= C (x) = |, wheren = D

e Defintion: Class P/poly = U SIZE(n).

Alternatively, we say
C,, computes the
characteristic
function of LN{0, | }".

Class P/poly

e Observation: P € P/poly .

* Proof. If L € P, then there’s a n°-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n?*%)-size circuit family {C } .\, such that

xeL e»C (x)=1, wheren = |x]|.

Class P/poly

e Observation: P € P/poly .

* Proof. If L € P, then there’s a n°-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n?*%)-size circuit family {C } .\, such that

xeL e»C (x)=1, wheren = |x]|.
(C,, is poly(n)-time computable from [".)

* Is P = P/poly!?

Class P/poly

e Observation: P € P/poly .

* Proof. If L € P, then there’s a n°-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n?*%)-size circuit family {C } .\, such that

xeL e»C (x)=1, wheren = |x]|.
(C,, is poly(n)-time computable from [".)

 Is P = P/poly? No! P/poly contains undecidable
languages.

Class P/poly

e Let HALT = {(M,y) : M halts on input y}. HALT is an
undecidable language.

o Notation. #(M,y) = number corresponding to the
binary string (M,y).

e Let UHALT = {I#™M) : (M,y) € HALT}.Then, UHALT
is also an undecidable language.

Class P/poly

e Let HALT = {(M,y) : M halts on input y}. HALT is an
undecidable language.

o Notation. #(M,y) = number corresponding to the
binary string (M,y).

e Let UHALT = {I#™M) : (M,y) € HALT}.Then, UHALT
is also an undecidable language.

e Obs. Any unary language is in P/poly. ()
Hence, P & P/poly .

Class P/poly

* What makes P/poly contain undecidable languages!?

L € P/poly implies that L is decided by a circuit

family {C_}, where |C_| = n©(). We don’t require that
C,.is poly-time computable from |".

Class P/poly

* What makes P/poly contain undecidable languages!?

L € P/poly implies that L is decided by a circuit

family {C_}, where |C_| = n©®(). We don’t require that
C,, is poly-time computable from I".

* P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

e P is a uniform class as a language in this class has one
algorithm for all inputs.

Class P/poly

* What makes P/poly contain undecidable languages!?

L € P/poly implies that L is decided by a circuit

family {C_}, where |C_| = n©®(). We don’t require that
C,, is poly-time computable from I".

* P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

e P is a uniform class as a language in this class has one

algorithm for all inputsl ~ Model What it captures

Class P/poly

* What makes P/poly contain undecidable languages!?

L € P/poly implies that L is decided by a circuit

family {C_}, where |C_| = n©®(). We don’t require that
C,, is poly-time computable from I".

* P/poly is a non-uniform class as a language in this class
is allowed to have different algorithms/circuits for
different input lengths.

e P is a uniform class as a language in this class has one
algorithm for all inputs.

 Is SAT € P/poly? In other words, is NP & P/poly?

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. We’ll show that NP & P/poly implies [], =) 5.
It’s sufficient to show that [], €),.

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.

x € L vy, € {0,1}9x) Ju, € {0,1}9x) M(x,u,,u,) = 1.

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L vy, € {0,1}9x) Ju, € {0,1}9x) M(x,u,,u,) = 1.

e Goal. Come up with a polynomial function p(.) and a
poly-time TM N s.t.

x € L «m3v, € {0, vy, € {0,1}P1x) N(x,v,v,) = I.
* Think about designing suchaTM N.

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)

and a poly-time TM M s.t. by

x € L vy, € {0,1}90x) Ju, € {0, 1}3x) ¢(x,u |,/u:) = 1.

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.
* Proof. Let L € [], . There’s a polynomial function q(.)

and a poly-time TM M s.t. by

x € L vy, € {0,1}90x) Ju, € {0, 1}3x) ¢(x,u |,/u:) = 1.

 If M runs in time T(n) = n®" on (x,u,, u,), where |x|
= n, then || = O(T(n)?). Let m = #(bits to write d).
* N can compute ¢ from M in poly(|x|) time.

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.
* Proof. Let L € [], . There’s a polynomial function q(.)

and a poly-time TM M s.t. by

x € L vy, € {0,1}90x) Ju, € {0, 1}3x) ¢(x,u |,/u:) = 1.

 If M runs in time T(n) = n®" on (x,u,, u,), where |x|
= n, then |¢p| = O(T(n)?). Let m = length of ¢ .
* N can compute ¢ from M in poly(|x|) time.

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M

S.t.
x € L e vy, € {0,130 @q('x') P(x,u,, Uf)

®(x,u,, u,) as a function of u, is
satisfiable.Wlog ¢ is a CNF (why?).

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.

x € L vy, € {0,1}90) ¢(x,u,u,) € SAT.

e By assumption, SAT € P/poly, i.e., there’s a circuit C_
of size p(m) = m©() that correctly decides satifiability
of all input circuits ¢ of length m.

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L vy, € {0,1}90) ¢(x,u,u,) € SAT.

e First attempt. A) , statement to capture membership
of strings in L.

x €L «3C_e {0,1}PM vu, € {0,1}9x) C_(d(x,u,, u,))=1.

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L vy, € {0,1}90) ¢(x,u,u,) € SAT.

e First attempt. A) , statement to capture membership
of strings in L.

x €L «3C_e {0,1}PM vu, € {0,1}9x) C_(d(x,u,, u,))=1.

* Wrong! Think about a C_ that always outputs |.

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L vy, € {0,1}90) ¢(x,u,u,) € SAT.

e First attempt. A) , statement to capture membership
of strings in L.

x €L «3C_e {0,1}PM vu, € {0,1}9x) C_(d(x,u,, u,))=1.

e Need to be sure that C_ is the right circuit.

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.

x € L vy, € {0,1}90) ¢(x,u,u,) € SAT.

o If there’s a circuit C_ of size m®() that correctly
decides satifiability of all input circuits ¢ of length m,
then by self-reducibility of SAT, there’s a multi-output
circuit D_ of size r(m) = m©®l) that outputs a
satisfying assignment for input ¢ if ¢ € SAT. (Homework)

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.
* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L vy, € {0,1}90) ¢(x,u,u,) € SAT.
* A), statement to capture membership in L.
XEL =
3D_€ {0,1}™ vu, € {0,1}90x) ¢(x,u,, I?m((l)(x,u', uz)l) = .
I

assignment to the u, variables

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L vy, € {0,1}90) ¢(x,u,u,) € SAT.

* A), statement to capture membership in L.
XEL =
3D,_.€ {0,1}™ vu, € {0, I}alx) (I\)(x,u,, D_(d(x,u,,u,)) = 1.

!
Can be checked by a poly-time TM N.

/

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* Proof. Let L € [], . There’s a polynomial function q(.)
and a poly-time TM M s.t.
x € L vy, € {0,1}90) ¢(x,u,u,) € SAT.

* A), statement to capture membership in L.
XEL =
3D, € {0,1}™wvu, € {0,1}90x) N(x,D_,u,) = I.

Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* If we can show NP & P/poly assuming P # NP , then
NP ¢ P/poly & P # NP.

o Karp-Lipton theorem shows NP & P/poly assuming
the stronger statement PH # 5,

