
Computational Complexity Theory 

 

 Lecture 14:  Polynomial Hierarchy (contd.); 

      Boolean Circuits; 

      Karp-Lipton theorem   

   

Department of Computer Science, 
Indian Institute of Science 



Recap:  Class ∑i 

 Definition. A language L is in ∑i if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L       ∃u1 ∈ {0,1}q(|x|)  ∀u2 ∈ {0,1}q(|x|)  Qiui ∈ {0,1}q(|x|)   

                              s.t.  M(x,u1,…, ui) = 1, 

   where Qi is ∃ or ∀ if i is odd or even, respectively. 

 

 Obs. ∑i ⊆ ∑i+1 for every i. 



Recap:  Polynomial Hierarchy 

 Definition. A language L is in ∑i if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L       ∃u1 ∈ {0,1}q(|x|)  ∀u2 ∈ {0,1}q(|x|)  Qiui ∈ {0,1}q(|x|)   

                              s.t.  M(x,u1,…, ui) = 1, 

   where Qi is ∃ or ∀ if i is odd or even, respectively. 

 

 Definition. (Meyer & Stockmeyer 1972) 

                      PH = ∪ ∑i . 
i ∈ N 

∑0 = P 

∑1 = NP 

∑2  

∑3  

. 

. 

. 



Recap:  Class ∏i 

 Definition.  ∏i  =  co-∑i  =  { L :  L ∈ ∑i }.  

 

 Obs. A language L is in ∏i if there’s a polynomial 
function q(.) and a poly-time TM M (the “verifier”) s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|)  Qiui ∈ {0,1}q(|x|)   

                              s.t.  M(x,u1,…, ui) = 1, 

   where Qi is ∀ or ∃ if i is odd or even, respectively. 

 

 Obs. ∑i ⊆ ∏i+1 ⊆ ∑i+2 . 



Recap:  Polynomial Hierarchy 

 Obs. PH = ∪ ∑i = ∪ ∏i . 

 
i ∈ N i ∈ N 

∑0 = P 

∑1 = NP 

∑2  

∑3  

. 

. 

. 

∏1 = co-NP 

∏2  

∏3  

PH  =  



Recap:  Polynomial Hierarchy 

 Claim. PH ⊆ PSPACE . 

 Proof.  Similar to the proof of  TQBF ∈ PSPACE.  

 

∑0 = P 

∑1 = NP 

∑2  

∑3  

. 

. 

. 

∏1 = co-NP 

∏2  

∏3  

PH 

PSPACE 



Recap:  Does PH collapse? 

 General belief. Just as many of us believe P ≠ NP (i.e. 
∑0 ≠ ∑1) and NP ≠ co-NP (i.e. ∑1 ≠ ∏1), we also 
believe that for every i,    ∑i ≠ ∑i+1   and   ∑i ≠ ∏i . 

    

 Definition. We say PH collapses to the i-th level if     
∑i = ∑i+1 .  (justified in the next theorem) 

 

 Conjecture. There is no i such that PH collapses to 
the i-th level.  

This is stronger than the P ≠ NP conjecture. 



Recap:  PH collapse theorems 

 Theorem. If ∑i = ∑i+1 then PH = ∑i . 

 

 Theorem. If ∑i = ∏i then PH = ∑i . 

 

    



Recap:  Complete problems in PH ? 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = PH ? …use poly-time Karp reduction! 

 

 Definition.  A language L’ is PH-hard if for every L in 
PH, L ≤pL’.  Further, if L’ is in PH then L’ is PH-complete. 



Recap:  Complete problems in PH ? 

 Fact. If L is poly-time reducible to a language in ∑i  

then L is in ∑i .      (we’ve seen a similar fact for NP) 

 

 Observation.  If PH has a complete problem then PH  
collapses. 



Recap:  Complete problems in PH ? 

 Fact. If L is poly-time reducible to a language in ∑i  

then L is in ∑i .      (we’ve seen a similar fact for NP) 

 Corollary.  PH ⊊ PSPACE unless PH collapses. 

EXP 

PSPACE 

PH 

NP co-NP 

P 
NL 

L 



Recap:  Complete problems in ∑i  

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = ∑i  ? …use poly-time Karp reduction! 

 

 Definition.  A language L’ is ∑i -hard if for every L in ∑i , 
L ≤p L’.  Further, if L’ is in ∑i  then L’ is ∑i -complete. 



Recap:  Complete problems in ∑i  

 Definition. The language ∑i-SAT contains all true QBF 
with i alternating quantifiers starting with ∃. 

 

 Theorem.  ∑i-SAT is ∑i -complete.  (∑1-SAT is just SAT) 

 

 

 Observation. Owing to the proof of the Cook-Levin 
theorem, we can assume that the formula in a ∑i-SAT 
instance is a CNF (if i is odd) or a DNF (if i is even).    



Recap:  Other complete problems in ∑2  

 Ref. “Completeness in the Polynomial-Time Hierarchy:  A 
Compendium” by Schaefer and Umans (2008). 

 

 Theorem.  Eq-DNF and Succinct-SetCover are  

                   ∑2 -complete.  



An alternate characterization of PH 



Oracle definition of ∑i  

 Definition.  A language L is in NP     if there is a poly-
time NTM with oracle access to ∑i-SAT that decides L. 

 

 Theorem.  ∑i+1 = NP       . 

∑i-SAT 

∑i-SAT 



Oracle definition of ∑i  

 Definition.  A language L is in NP     if there is a poly-
time NTM with oracle access to ∑i-SAT that decides L. 

 

 Theorem.  ∑i+1 = NP       . 

 

 Observe that ∑1-SAT = SAT.  We’ll prove the special 
case ∑2 = NPSAT.  The proof of the theorem is similar.  

∑i-SAT 

∑i-SAT 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof.  Let L be a language in ∑2. There’s a polynomial 
function q(.) and a poly-time TM M s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|)  s.t.  M(x,u,v) = 1. 

 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof.  Let L be a language in ∑2. There’s a polynomial 
function q(.) and a poly-time TM M s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|)  s.t.  ϕ(x,u,v) = 1. 

 

 

 

 In fact, owing to the proof of the Cook-Levin 
theorem, we can assume that ϕ is a DNF.    

 

Boolean circuit 
  (by Cook-Levin) 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof.  Let L be a language in ∑2. There’s a polynomial 
function q(.) and a poly-time TM M s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|) s.t. ¬ϕ(x,u,v) = 0. 

 

 Think of a NTM N that has the knowledge of M. On 
input x, it guesses u ∈ {0,1}q(|x|) non-deterministically 
and computes the circuit ϕ(x,u,v). Then, it queries the 
SAT oracle with ¬ϕ(x,u,v).  

   

 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof.  Let L be a language in ∑2. There’s a polynomial 
function q(.) and a poly-time TM M s.t. 

   x ∈ L         ∃u ∈ {0,1}q(|x|)  ∀v ∈ {0,1}q(|x|) s.t. ¬ϕ(x,u,v) = 0. 

 

 Think of a NTM N that has the knowledge of M. On 
input x, it guesses u ∈ {0,1}q(|x|) non-deterministically 
and computes the circuit ϕ(x,u,v). Then, it queries the 
SAT oracle with ¬ϕ(x,u,v).  

 Note that ¬ϕ(x,u,v) is a CNF. 

   

 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 We need to construct a ∑2-statement that captures 
N’s computation on input x. 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 

 M simulates N on input x with w as the non-
deterministic choices.  



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 

 M simulates N on input x with w as the computation 
path. Suppose ϕ is the query asked by N on the path 
of computation defined by w. 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 

 If a1 = 1 and ϕ(u1) = 1, M continues the simulation; 
else it stops and outputs 0.  (In this case, M ignores v1.) 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 

 If a1 = 0 and ϕ(v1) = 0, M continues the simulation; 
else it stops and outputs 0.  (In this case, M ignores u1.) 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Think of a TM M that takes input x and w ∈ {0,1}q(|x|), 
a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the 
runtime of N on input x, and does the following: 

 At the end of the simulation, M outputs whatever N 
outputs.    Note:  M is a poly-time TM. 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.   

 

        (…will prove the observation shortly. Let’s finish the proof.) 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 x ∈ L        ∃w ∈ {0,1}q(|x|) , a1∈ {0,1} s.t 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x      ∃w ∈ {0,1}q(|x|) , a1∈ {0,1}  

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.   

 

         



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 x ∈ L        ∃w ∈ {0,1}q(|x|) , a1∈ {0,1} s.t 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x      ∃w ∈ {0,1}q(|x|) , a1∈ {0,1}  

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.   

 

         
Call it u 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 Special case: N asks at most one query to the SAT 
oracle on every computation path on input x. 

 x ∈ L        ∃w ∈ {0,1}q(|x|) , a1∈ {0,1} s.t 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x 

    ∃u ∈ {0,1}2q(|x|)+1  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,u,v1) = 1.   

 Therefore,  L is in ∑2 . 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   )  M simulates N on computation path w. 
Let ϕ be the query asked by N to SAT.  

• If a1 = 1, ∃u1 ∈ {0,1}q(|x|) ϕ(u1) = 1 and N accepts x. 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   )  M simulates N on computation path w. 
Let ϕ be the query asked by N to SAT.  

• If a1 = 1, ∃u1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1. 

In this case, M ignores v1. 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   )  M simulates N on computation path w. 
Let ϕ be the query asked by N to SAT.  

• If a1 = 0, ∀v1 ∈ {0,1}q(|x|) ϕ(v1) = 0 and N accepts x. 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   )  M simulates N on computation path w. 
Let ϕ be the query asked by N to SAT.  

• If a1 = 0, ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1. 

 In this case, M ignores u1. 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   )  M simulates N on computation path w. 
Let ϕ be the query asked by N to SAT.  

• Irrespective of the value of a1,  

    ∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1. 

 



Proof of the observation 

 Observation.  For any w ∈ {0,1}q(|x|) and a1∈ {0,1}, 

 N on computation path w gets answer a1 from the 
SAT oracle and accepts x   

    ∃u1 ∈ {0,1}q(|x|)  ∀v1 ∈ {0,1}q(|x|)  s.t.  M(x,w, a1,u1,v1) = 1.  

• Proof.(   ) Need to show that N on computation 
path w gets answer a1 from the SAT oracle. 
(Homework) 



Oracle definition of ∑i  

 Theorem. ∑2 = NPSAT . 

 Proof. Let L be a language in NPSAT. There’s a NTM N 
that decides L with oracle access to SAT.  

 General case: N asks at most q(|x|) queries to SAT 
oracle on every computation path on input x.  

 Homework:  Prove the general case. Define the poly-
time machine M appropriately. 



Oracles versus efficient algorithms 

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L. 

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 . 

 A SAT oracle gives us the ability to solve SAT 
efficiently “much like” a poly-time algorithm for SAT. 



Oracles versus efficient algorithms 

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L. 

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 . 

 A SAT oracle gives us the ability to solve SAT 
efficiently “much like” a poly-time algorithm for SAT. 

 

 Yet, in the first case we believe PSAT ≠ NPSAT,  
(otherwise, PH collapses to ∑2) 



Oracles versus efficient algorithms 

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L. 

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 . 

 A SAT oracle gives us the ability to solve SAT 
efficiently “much like” a poly-time algorithm for SAT. 

 

 Yet, in the first case we believe PSAT ≠ NPSAT, whereas 
in the second case PH collapses to P, i.e., PSAT = NPSAT. 



Oracles versus efficient algorithms 

 Definition. A language L is in PSAT if there is a poly-
time TM with oracle access to SAT that decides L. 

 ∆2 := PSAT ⊆ ∑2 ∩ ∏2 . 

 A SAT oracle gives us the ability to solve SAT 
efficiently “much like” a poly-time algorithm for SAT. 

 

 Yet, in the first case we believe PSAT ≠ NPSAT, whereas 
in the second case PH collapses to P, i.e., PSAT = NPSAT. 

 Why? Think to understand the difference between 
oracles and poly-time algorithms for SAT (Homework). 



Boolean Circuits 



An algorithm for every input length? 

 “One might imagine that P ≠ NP, but SAT is tractable in 
the following sense: for every 𝓁 there is a very short 
program that runs in time 𝓁 

2 and correctly treats all 
instances of size 𝓁.”   ---   Karp and Lipton (1982).  

 

 



An algorithm for every input length? 

 “One might imagine that P ≠ NP, but SAT is tractable in 
the following sense: for every 𝓁 there is a very short 
program that runs in time 𝓁 

2 and correctly treats all 
instances of size 𝓁.”   ---   Karp and Lipton (1982).  

 

 

 P ≠ NP rules out the existence of a single efficient 
algorithm for SAT that handles all input lengths. But, it 
doesn’t rule out the possibility of having a sequence of 
efficient SAT algorithms – one for each input length.  



Lesson learnt from Cook-Levin 

 Locality of computation implies that an algorithm A 
working on inputs of some fixed length n and running 
in time T(n) can be viewed as a Boolean circuit ϕ of 
size O(T(n)2) s.t.   A(x) = ϕ(x) for every x ∈ {0,1}n . 

 On the other hand, a circuit on inputs of length n and 
of size S can be viewed as an algorithm working on 
length n inputs and running in time S.  



Lesson learnt from Cook-Levin 

 Locality of computation implies that an algorithm A 
working on inputs of some fixed length n and running 
in time T(n) can be viewed as a Boolean circuit ϕ of 
size O(T(n)2) s.t.   A(x) = ϕ(x) for every x ∈ {0,1}n . 

 On the other hand, a circuit on inputs of length n and 
of size S can be viewed as an algorithm working on 
length n inputs and running in time S.  

 

 To rule the existence of a sequence of algorithms – 
one for each input length – we need to rule out the 
existence of a sequence of (i.e., a family of) circuits.     



Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  



Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 Typically, we’ll consider circuits with one output gate, 
and with nodes having in-degree at most two. 



Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 Size of circuit is the no. of edges in it. Depth is the 
length of the longest path from an i/p to o/p node. 



Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 Size of circuit is the no. of edges in it. Depth is the 
length of the longest path from an i/p to o/p node. 

     𝚹(no. of nodes) 
           



Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 Size corresponds to “sequential time complexity”. 
Depth corresponds to “parallel time complexity”. 



Boolean circuits 

 A Boolean circuit is a directed acyclic graph whose 
nodes/gates are labelled as follows: 

 A node with in-degree zero is labelled by an input 
variable, and it outputs the value of the variable. 

 Any other node is labelled by one of the three 
operations ∧, ∨, ¬, and it outputs the value of the 
operation on its input. 

  Nodes with out-degree zero are the output gates.  

 

 If every node in a circuit has out-degree at most one, 
then the circuit is called a formula. 



A circuit for Parity 

 PARITY(x1, x2, …, xn)  =  x1 ⊕ x2 ⊕ … ⊕ xn . 

∨ 

∧ ∧ 

¬ ¬ 

x1 x2 

x1 ⊕ x2  =  (x1∧¬x2) ∨ (¬x1∧ x2) 

Size(ϕ) = |ϕ| = 8 
Depth(ϕ) = 3 

ϕ 



Circuit family 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 



Class P/poly 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 

 Definition:  A language L is in SIZE(T(n)) if there’s a 
T(n)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

 

 Defintion: Class P/poly = ∪ SIZE(nc). 
c ≥ 1 



Class P/poly 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 

 Definition:  A language L is in SIZE(T(n)) if there’s a 
T(n)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

 

 Defintion: Class P/poly = ∪ SIZE(nc). 
c ≥ 1 

The circuit family 
{Cn}n∈  decides L, i.e., 
Cn decides L∩{0,1}n. 
 



Class P/poly 

 Let T:  be some function. 

 Definition: A T(n)-size circuit family is a set of circuits 
{Cn}n∈  such that Cn has n inputs and |Cn| ≤ T(n). 

 

 Definition:  A language L is in SIZE(T(n)) if there’s a 
T(n)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

 

 Defintion: Class P/poly = ∪ SIZE(nc). 
c ≥ 1 

Alternatively, we say 
Cn computes the 
characteristic 
function of L∩{0,1}n. 
 



Class P/poly 

 Observation:  P ⊆ P/poly . 

 Proof. If L ∈ P, then there’s a nc-time TM that decides 
L for some constant c. By Cook-Levin, there’s a 
O(n2c)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

    



Class P/poly 

 Observation:  P ⊆ P/poly . 

 Proof. If L ∈ P, then there’s a nc-time TM that decides 
L for some constant c. By Cook-Levin, there’s a 
O(n2c)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

   (Note:  Cn is poly(n)-time computable from 1n.) 

 

 Is P = P/poly?   

 



Class P/poly 

 Observation:  P ⊆ P/poly . 

 Proof. If L ∈ P, then there’s a nc-time TM that decides 
L for some constant c. By Cook-Levin, there’s a 
O(n2c)-size circuit family {Cn}n∈   such that 

             x ∈ L        Cn(x) = 1,  where n = |x|. 

   (Note:  Cn is poly(n)-time computable from 1n.) 

 

 Is P = P/poly? No! P/poly contains undecidable 
languages. 

 



Class P/poly 

 Let HALT = {(M,y) : M halts on input y}. HALT is an 
undecidable language.  

 Notation.  #(M,y) = number corresponding to the 
binary string (M,y).  

 Let UHALT = {1#(M,y)  :  (M,y) ∈ HALT}. Then, UHALT 
is also an undecidable language. 

 



Class P/poly 

 Let HALT = {(M,y) : M halts on input y}. HALT is an 
undecidable language.  

 Notation.  #(M,y) = number corresponding to the 
binary string (M,y).  

 Let UHALT = {1#(M,y)  :  (M,y) ∈ HALT}. Then, UHALT 
is also an undecidable language. 

 

 Obs.  Any unary language is in P/poly.  (Homework) 

   Hence, P ⊊ P/poly . 



Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 



Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 

 P/poly is a non-uniform class as a language in this class 
is allowed to have different algorithms/circuits for 
different input lengths.  

 P is a uniform class as a language in this class has one 
algorithm for all inputs. 



Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 

 P/poly is a non-uniform class as a language in this class 
is allowed to have different algorithms/circuits for 
different input lengths.  

 P is a uniform class as a language in this class has one 
algorithm for all inputs. Model What it captures 

An algo for all inputs 

An algo per i/p length 

TM (uniform) 

Circuits (non-uniform) 



Class P/poly 

 What makes P/poly contain undecidable languages?  
Ans: L ∈ P/poly implies that L is decided by a circuit 
family {Cn}, where |Cn| = nO(1). We don’t require that 
Cn is poly-time computable from 1n. 

 P/poly is a non-uniform class as a language in this class 
is allowed to have different algorithms/circuits for 
different input lengths.  

 P is a uniform class as a language in this class has one 
algorithm for all inputs. 

 Is SAT ∈ P/poly? In other words, is NP ⊊ P/poly? 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. We’ll show that NP ⊊ P/poly implies ∏2 = ∑2 . 
It’s sufficient to show that ∏2 ⊆ ∑2 . 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|)  M(x,u1, u2) = 1. 

 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|)  M(x,u1, u2) = 1. 

 Goal. Come up with a polynomial function p(.) and a 
poly-time TM N s.t. 

   x ∈ L       ∃v1 ∈ {0,1}p(|x|) ∀v2 ∈ {0,1}p(|x|)  N(x,v1, v2) = 1. 

 Think about designing such a TM N. 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1. 

 

 

 

 

by Cook-Levin 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1. 

 

 If M runs in time T(n) = nO(1) on (x,u1, u2), where |x| 
= n, then |ϕ| = O(T(n)2). Let m = #(bits to write ϕ). 

 N can compute ϕ from M in poly(|x|) time. 

 

 

 

by Cook-Levin 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1. 

 

 If M runs in time T(n) = nO(1) on (x,u1, u2), where |x| 
= n, then |ϕ| = O(T(n)2). Let m = length of ϕ . 

 N can compute ϕ from M in poly(|x|) time. 

 

 

 

by Cook-Levin 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) ϕ(x,u1, u2) = 1. 

 

 

 

 

 

ϕ(x,u1, u2) as a function of u2 is 
satisfiable. Wlog ϕ is a CNF (why?). 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 By assumption, SAT ∈ P/poly, i.e., there’s a circuit Cm 
of size p(m) = mO(1) that correctly decides satifiability 
of all input circuits ϕ of length m.   

 

 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 First attempt. A ∑2 statement to capture membership 
of strings in L. 

   x ∈ L      ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1. 

 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 First attempt. A ∑2 statement to capture membership 
of strings in L. 

   x ∈ L      ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1. 

 

 Wrong!  Think about a Cm that always outputs 1. 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 First attempt. A ∑2 statement to capture membership 
of strings in L. 

   x ∈ L      ∃Cm∈ {0,1}p(m) ∀u1 ∈ {0,1}q(|x|) Cm(ϕ(x,u1, u2))=1. 

 

 Need to be sure that Cm is the right circuit. 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 If there’s a circuit Cm of size mO(1) that correctly 
decides satifiability of all input circuits ϕ of length m, 
then by self-reducibility of SAT, there’s a multi-output 
circuit Dm of size r(m) = mO(1) that outputs a 
satisfying assignment for input ϕ if ϕ ∈ SAT.  (Homework) 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 A ∑2 statement to capture membership in L. 

   x ∈ L       

    ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, Dm(ϕ(x,u1, u2)) = 1. 

 

 
assignment to the u2 variables 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 A ∑2 statement to capture membership in L. 

   x ∈ L       

    ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, Dm(ϕ(x,u1, u2)) = 1. 

 

 
Can be checked by a poly-time TM N. 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 Proof. Let L ∈ ∏2 . There’s a polynomial function q(.) 
and a poly-time TM M s.t. 

   x ∈ L       ∀u1 ∈ {0,1}q(|x|)  ϕ(x,u1, u2) ∈ SAT. 

 A ∑2 statement to capture membership in L. 

   x ∈ L       

    ∃Dm∈ {0,1}r(m) ∀u1 ∈ {0,1}q(|x|)  N(x, Dm, u1) = 1. 

 

 



Karp-Lipton theorem 

 Theorem (Karp & Lipton 1982). If NP ⊊ P/poly then 
PH = ∑2 . 

 

 If we can show NP ⊄ P/poly assuming P ≠ NP , then 

            NP ⊄ P/poly            P ≠ NP . 

 

 Karp-Lipton theorem shows NP ⊄ P/poly assuming 
the stronger statement PH ≠ ∑2 . 

 

 


