Computational Complexity Theory

Lecture |5: Class NC and AC;
P-completeness

Department of Computer Science,
Indian Institute of Science

Recap: Lesson learnt from Cook-Levin

e Locality of computation implies that an algorithm A
working on inputs of some fixed length n and running
in time T(n) can be viewed as a Boolean circuit ¢ of
size O(T(n)?) s.t. A(x) = ¢(x) for every x € {0,1}".

* On the other hand, a circuit on inputs of length n and

of size S can be viewed as an algorithm working on
length n inputs and running in time S.

* To rule the existence of a sequence of algorithms —
one for each input length — we need to rule out the
existence of a sequence of (i.e., a family of) circuits.

Recap: Boolean circuits

e A Boolean circuit is a directed acyclic graph whose
nodes/gates are labelled as follows:

> A node with in-degree zero is labelled by an input
variable, and it outputs the value of the variable.

> Any other node is labelled by one of the three
operations A, V, 7, and it outputs the value of the
operation on its input.

Nodes with out-degree zero are the output gates.

» Size of circuit is the no. of edges in it. Depth is the
length of the longest path from an i/p to o/p node.

Recap: Class P/poly

e LetT: N— N be some function.

o Definition: A T(n)-size circuit family is a set of circuits
{C.}.en such that C_has n inputs and |C_| = T(n).

e Definition: A language L is in SIZE(T(n)) if there’s a
T(n)-size circuit family {C_} .\, such that

xelL ®&C (x) =1, wheren = |x].

e Defintion: Class P/poly = U SIZE(n).

Recap: Class P/poly

e Observation: P € P/poly .

* Proof. If L € P, then there’s a n°-time TM that decides
L for some constant c. By Cook-Levin, there’s a
O(n?*%)-size circuit family {C } .\, such that

xeL e»C (x)=1, wheren = |x]|.
(C,, is poly(n)-time computable from [".)

 Is P = P/poly? No! P/poly contains undecidable
languages.

Recap: Karp-Lipton theorem

e [heorem (Karp & Lipton 1982). If NP & P/poly then
PH=),.

* If we can show NP & P/poly assuming P # NP , then
NP ¢ P/poly & P # NP.

o Karp-Lipton theorem shows NP & P/poly assuming
the stronger statement PH # 5,

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly?

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Follows from a counting argument.

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

* Number of bits required to write the adjacency lists
it at most s(logs + 3) + 4(s + n) < 9s.log s .

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

o Number of circuits of size s is at most 3s.27slogs |

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

e Number of circuits of size s is at most 2!!slogs

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

* Number of circuits of size s is at most exp(2™').

* Number of functions in n variables is exp(2").

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many. Let exp(m) = 2™,

° |- exp(-2™'") fraction of Boolean functions
on n variables do not have circuits of size 2"/(22n) .

* Proof. Let s = 2"/(22n). A circuit of size s has at most
s internal nodes. It can be specified by giving the
labels of the internal nodes and the adjacency lists.

* So, circuits of size s can compute at most exp(-2"')
fraction of all Boolean functions on n variables.

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many.

* Is one out of so many functions outside P/poly in
NP?

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many.

* Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

There is a language L € NP such that any circuit C_
that decides LM{0,1}" requires 5n — o(n) many A and
V gates.

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many.

* Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

There is a language L € NP such that any circuit C_
that decides LM{0,1}" requires 5n — o(n) many A and
V gates. t

Results of this kind are known as
circuit lower bound.

Functions outside P/poly

* Are there Boolean functions (i.e., languages) outside
P/poly? There are many.

* Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

o Prove that NEXP ¢ P/poly .

Lower bounds for restricted circuits

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

Lower bounds for restricted circuits

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

e PARITY(x,, %x,, ..., x,) can be computed by a
circuit of size O(n) and a formula of size O(n?).

Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

° (Khrapchenko ~ 1971) Any formula
computing PARITY(x,, x5, ..., x_) has size Q(n?).

Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

e (Andreev 1987, Hastad 1998) There’s a f
that can be computed by a O(n)-size circuit such that
any formula computing f has size Q(n3°(!).

Shrinkage of formulas under random restrictions (Subbotovskaya 1961).

Lower bound for Boolean formulas

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

o (Circuits _more powerful than formulas)
There’s a f that can be computed by a O(n)-size circuit
such that any formula computing f has size n®(!) .

An interesting approach was given by
Karchmer, Raz & Wigderson (1995) .

LB for AC® and monotone circuits

e Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

e The proofs of these lower bounds introduced and
developed some highly interesting techniques.

e WEe'll discuss a super-polynomial lower bound for
constant depth circuits later.

Non-uniform size hierarchy

e Shanon’s result. There’s a constant ¢ = | such that
every Boolean function in n variables has a circuit of
size at most c.(2"/n).

o Theorem.There’sa constantd = | s.t.if T: N—=N &
T,:N =N and T (n) =d'.T,(n) £T,(n) < c.(2"/n) then
SIZE(T,(n)) & SIZE(T,(n)).

Non-uniform size hierarchy

e Shanon’s result. There’s a constant ¢ = | such that
every Boolean function in n variables has a circuit of
size at most c.(2"/n).

o Theorem.There’sa constantd = | s.t.if T: N—=N &
T,:N =N and T (n) =d'.T,(n) £T,(n) < c.(2"/n) then
SIZE(T (n)) & SIZE(T,(n)).

* Proof. Uses Shanon’s result and a counting argument.

(Homework)

Class NC' and AC

Class NC

e NC stands for Nick’s Class — named after Nick
Pippenger.

o For iEN, a language L is in NC' if there is a
polynomial function q(.) and a constant c s.t. L is

decided by a q(n)-size circuit family {C_} .\, wWhere
depth of C_ is at most c.(log n)' for every neN.

o NC = U NC.

iEN

Class NC

e NC stands for Nick’s Class — named after Nick
Pippenger.

e Definition. For iEN, a language L is in NC' if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {C_} .\, wWhere
depth of C_ is at most c.(log n)' for every neN.

e Definition.NC = U NC.
iEN

e Homework: PARITY is in NC!.

Class NC

e NC stands for Nick’s Class — named after Nick
Pippenger.

e Definition. For iEN, a language L is in NC' if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {C_} .\, wWhere
depth of C_ is at most c.(log n)' for every neN.

e Definition.NC = U NC.
iEN

*/NC' = poly(n)-size Boolean formulas.| (Assignment)

Class NC

e NC stands for Nick’s Class — named after Nick
Pippenger.

o For iEN, a language L is in NC' if there is a
polynomial function q(.) and a constant c s.t. L is

decided by a q(n)-size circuit family {C_} .\, wWhere
depth of C_ is at most c.(log n)' for every neN.

* Further, L is in log-space uniform NC' if C_ is
implicitly log-space computable from |".

Sometimes NC' is defined as
log-space uniform NC'.

Class NC

e NC stands for Nick’s Class — named after Nick
Pippenger.

o For iEN, a language L is in NC' if there is a
polynomial function q(.) and a constant c s.t. L is

decided by a q(n)-size circuit family {C_} .\, wWhere
depth of C_ is at most c.(log n)' for every neN.

* Further, L is in log-space uniform NC' if C_ is
implicitly log-space computable from |".

log-space uniform NC S P .

NC = Efficient parallel computation

° A language L can be decided efficiently in
barallel if there’s a polynomial function q(.) and
constants ¢ & i s.t. L{0,|}" can be decided using q(n)
many processors in c.(log n)' time.

NC = Efficient parallel computation

° A language L can be decided efficiently in
barallel if there’s a polynomial function q(.) and
constants ¢ & i s.t. L[{0,}" can be decided using q(n)
many processors in c.(log n)' time.

* Model: PRAM (has a central shared memory)

> A processor can “deliver” a message to any other
processor in O(log n) time.

> A processor has O(log n) bits of memory and
performs a poly-time computation at every step.

> Processor computation steps are synchronized.

NC = Efficient parallel computation

° A language L can be decided efficiently in
barallel if there’s a polynomial function q(.) and
constants ¢ & i s.t. L[{0,}" can be decided using q(n)
many processors in c.(log n)' time.

° A language L is in NC if and only if L
can be decided efficiently in parallel.

* Proof. Almost immediate from the assumptions on
the parallel computation model.

Class AC

For iENU{0}, a language L is in AC' if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C_} cn» Where depth of C_ is at most c.(log n)’
for every neN.

AC = U AC! (stands for Alternating Class)

i=0

Class AC

e Definition. For iENU{0}, a language L is in AC' if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C_} cn» Where depth of C_ is at most c.(log n)’
for every neN.

e Definition.AC = U AC..

i=0

e Observation. AC' € NC*l c AC*! foralli = 0.

Replace an unbounded fan-in gate by a
binary tree of bounded fan-in gates.

Class AC

e Definition. For iENU{0}, a language L is in AC' if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit

family {C } .\, Where depth of C_ is at most c.(log n)'
for every neN.

e Definition.AC = U AC..

i=0

e Observation. NC = AC.

Class AC

° For iENU{0}, a language L is in AC' if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a g(n)-size unbounded fan-in circuit
family {C, } ., Where depth of C_is at most c.(log n)'
for every neN.

o AC = U AC.

i=0

e |[n the next lecture, we’ll show that PARITY is not in
ACY i.e., AC° < NC!.

Class AC

° For iENU{0}, a language L is in AC' if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a g(n)-size unbounded fan-in circuit
family {C, } ., Where depth of C_is at most c.(log n)'
for every neN.

o AC = U AC.

i=0

* Further, L is in log-space uniform AC' if C_ is
implicitly log-space computable from |".

log-space uniform ACC P .

P-completeness

P-completeness

e Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

els P = (uniform) NC? Is P = L?...use log-space
reduction!

° A language L € P is P-complete if for every
U'inP,L 5/ L

P-complete problems

e Circuit value problem. Given a circuit and an input,

compute the output of the circuit. (The reduction in the
Cook-Levin theorem can be made a log-space reduction.)

 Linear programming. Check the feasibility of a system

of linear inequality constraints over rationals.
(Assignment problem)

e CFG membership. Given a context-free grammar and
a string, decide if the string can be generated by the
grammar.

No log-space algo for PC problems

e [heorem. Let L be a P-complete language. Then,
LisinL & P=1L.
e Proof. Easy.

e Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L.

No parallel algo for PC problems

e [heorem. Let L be a P-complete language. Then,
Lisin NC &= P C NC.

* Proof. = direction is straightforward.

e Can’t hope to get an efficient parallel algorithm for a
P-complete problem unless P © NC.

No parallel algo for PC problems

e [heorem. Let L be a P-complete language. Then,
_isin NC & P C NC.
* Proof.(=) Let L € PAs L is P-complete, L < L.

Size = poly(n)
Depth = poly(log n)

v
m = poly(n)

x € {0,1}" x € {0,1}"
Isx e L ?

No parallel algo for PC problems

e Theorem.

e Proof.(=»)

et L be a P-complete language. Then,
_isin NC & P C NC.

et L' € PAs L is P-complete, L </ L.

Size = poly(n)
Depth = poly(log n)

m = poly(n)

Need to replace
this by a NC ckt.

Parallelization of Log-space

* Do problems in L have efficient parallel algorithms?
Yes!

e [heorem. NL € (uniform) NC. (Assignment problem)

Parallelization of Log-space

* Do problems in L have efficient parallel algorithms?

° NL € (uniform) NC. (Assignment problem)
e Proof sketch.

e |. Construct the adjacency matrix A of the
configuration graph.

e 2. Use repeated squaring of A to find out if there’s a
path from start to accept configurations.

Complexity zoo

NEXP In fact, (uniform) NC' € L
and NL € (uniform) NC2
A (Assignment)

(uniform) NC

