Computational Complexity Theory

Lecture 16: Parity not in AC⁰

Department of Computer Science, Indian Institute of Science

Recap: Functions outside P/poly

- Are there Boolean functions (i.e., languages) outside P/poly? Yes! There are many. Let exp(m) = 2^m.
- Theorem. I- exp(-2ⁿ⁻¹) fraction of Boolean functions on n variables do not have circuits of size 2ⁿ/(22n).
- Is one out of so many functions outside P/poly in NP? We don't know even after ~40 yrs of research!
- Theorem. (Iwama, Lachish, Morizumi & Raz 2002) There is a language $L \in NP$ such that any circuit C_n that decides $L \cap \{0,1\}^n$ requires 5n - o(n) many Λ and V gates.

Recap: Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- Fact. $PARITY(x_1, x_2, ..., x_n)$ can be computed by a circuit of size O(n) and a formula of size $O(n^2)$.
- Theorem. (*Khrapchenko* 1971) Any formula computing PARITY($x_1, x_2, ..., x_n$) has size $\Omega(n^2)$.

Recap: Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- Theorem. (Andreev 1987, Hastad 1998) There's a f that can be computed by a O(n)-size circuit such that any formula computing f has size $\Omega(n^{3-o(1)})$.

Recap: Lower bound for Boolean formulas

- Nevertheless, the <u>clean combinatorial structure</u> of a circuit has been used to prove lower bounds for some <u>natural classes of circuits</u>.
- The proofs of these lower bounds introduced and developed some highly <u>interesting techniques</u>.
- Conjecture. (*Circuits more powerful than formulas*) There's a f that can be computed by a O(n)-size circuit such that any formula computing f has size $n^{\omega(1)}$.

Recap: Non-uniform size hierarchy

- Shanon's result. There's a constant c ≥ I such that every Boolean function in n variables has a circuit of size at most c.(2ⁿ/n).
- Theorem. There's a constant $d \ge I$ s.t. if $T_1: N \rightarrow N \& T_2: N \rightarrow N$ and $T_1(n) \le d^{-1} \cdot T_2(n) \le T_2(n) \le c \cdot (2^n/n)$ then SIZE $(T_1(n)) \subseteq SIZE(T_2(n))$.

Recap: Class NC

- NC stands for <u>Nick's Class</u> named after Nick Pippenger.
- Definition. For $i \in \mathbb{N}$, a language L is in \mathbb{NC}^i if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c.(log n)ⁱ for every $n \in \mathbb{N}$.
- Definition. NC = $\bigcup_{i \in \mathbb{N}} NC^{i}$.
- **PARITY** is in $NC^{I} = poly(n)$ -size Boolean formulas.

Recap: Class AC

- Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in ACⁱ if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size <u>unbounded fan-in</u> circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition.AC = $\bigcup_{i \ge 0} AC^{i}$. (stands for Alternating Class)
- Observation. $AC^i \subseteq NC^{i+1} \subseteq AC^{i+1}$ for all $i \ge 0$.

Replace an unbounded fan-in gate by a binary tree of bounded fan-in gates.

Recap: Class AC

- Definition. For $i \in \mathbb{N} \cup \{0\}$, a language L is in ACⁱ if there is a polynomial function q(.) and a constant c s.t. L is decided by a q(n)-size <u>unbounded fan-in</u> circuit family $\{C_n\}_{n \in \mathbb{N}}$, where depth of C_n is at most c. $(\log n)^i$ for every $n \in \mathbb{N}$.
- Definition.AC = $\bigcup_{i \ge 0} AC^{i}$.
- In this lecture, we'll show that PARITY is not in AC⁰,
 i.e., AC⁰ ⊊ NC¹.

Recap: P-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = (uniform) NC? Is P = L?...use log-space reduction!
- Definition. A language $L \in P$ is P-complete if for every L' in P, L' \leq_{I} L.

Recap: P-complete problems

- Circuit value problem. Given a circuit and an input, compute the output of the circuit. (The reduction in the Cook-Levin theorem can be made a log-space reduction.)
- Linear programming. Check the feasibility of a system of linear inequality constraints over rationals. (Assignment problem)
- CFG membership. Given a context-free grammar and a string, decide if the string can be generated by the grammar.

Recap: No log-space algo for PC problems

Theorem. Let L be a P-complete language. Then,
 L is in L \limits P = L.

 Can't hope to get a log-space algorithm for a Pcomplete problem unless P = L.

Recap: No parallel algo for PC problems

• Theorem. Let L be a P-complete language. Then, L is in NC \iff P \subseteq NC.

 Can't hope to get an efficient parallel algorithm for a P-complete problem unless P ⊆ NC.

Recap: Complexity zoo

The Parity function

The Parity function

• PARITY($x_1, x_2, ..., x_n$) = $x_1 \oplus x_2 \oplus ... \oplus x_n$.

- Fact. $PARITY(x_1, x_2, ..., x_n)$ can be computed by a circuit of size O(n) and a formula of size $O(n^2)$. has depth $O(\log n)$ has depth $O(\log n)$
- Theorem. (*Khrapchenko 1971*) Any formula computing PARITY($x_1, x_2, ..., x_n$) has size $\Omega(n^2)$.

The Parity function

• PARITY $(x_1, x_2, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n$.

- Fact. $PARITY(x_1, x_2, ..., x_n)$ can be computed by a circuit of size O(n) and a formula of size $O(n^2)$.
- Theorem. (*Khrapchenko 1971*) Any formula computing PARITY($x_1, x_2, ..., x_n$) has size $\Omega(n^2)$.
- Can poly-size <u>constant depth</u> circuits compute PARITY? No!

Depth 2 circuit for Parity

 Without loss of generality, a depth 2 circuit is either a DNF or a CNF.

- Any Boolean function can be computed by a DNF (similarly, CNF) with 2ⁿ terms (respectively, clauses).
- Can we do better for depth 2 circuits computing PARITY?

Depth 2 circuit for Parity

- Without loss of generality, a depth 2 circuit is either a DNF or a CNF.
- Obs. Any DNF computing PARITY has $\geq 2^{n-1}$ terms.
- Proof. Let \$\overline\$ be a DNF computing PARITY. Then, every term in \$\overline\$ has n literals (otherwise, the value of PARITY can be fixed by fixing less than n variables which is false).

Depth 2 circuit for Parity

- Without loss of generality, a depth 2 circuit is either a DNF or a CNF.
- Obs. Any DNF computing PARITY has $\geq 2^{n-1}$ terms.
- Proof. Let \$\overline\$ be a DNF computing PARITY. Then, every term in \$\overline\$ has n literals (otherwise, the value of PARITY can be fixed by fixing less than n variables which is false). Such a term corresponds to a *unique* assignment that makes the term evaluate to 1. Terms corresponding to assignments that set odd number of variables to 1 must be present in \$\overline\$.

Depth 3 circuit for Parity

• Obs. There's a $2^{O(\sqrt{n})}$ size depth 3 circuit for PARITY.

• Proof. $x_1 \oplus x_2 \oplus ... \oplus x_{\sqrt{n}} \oplus ... \oplus x_{n-\sqrt{n}} \oplus x_2 \oplus ... \oplus x_n$ PARITY = $y_1 \oplus ... \oplus y_{\sqrt{n}}$

• <u>Divide & conquer</u>: Compute y_i and $\neg y_i$ by $2^{O(\sqrt{n})}$ size DNFs on the x literals. Compute $y_1 \bigoplus ... \bigoplus y_{\sqrt{n}}$ by a $2^{O(\sqrt{n})}$ size CNF on the y literals. "Attach" the CNF with the DNFs and "merge" the two middle layers of V gates.

Depth 3 circuit for Parity

• Obs. There's a $2^{O(\sqrt{n})}$ size depth 3 circuit for PARITY.

• Proof. $x_1 \oplus x_2 \oplus ... \oplus x_{\sqrt{n}} \oplus ... \oplus x_{n-\sqrt{n}} \oplus x_2 \oplus ... \oplus x_n$ PARITY = $y_1 \oplus ... \oplus y_{\sqrt{n}}$

• <u>Divide & conquer</u>: Compute y_i and $\neg y_i$ by $2^{O(\sqrt{n})}$ size DNFs on the x literals. Compute $y_1 \bigoplus ... \bigoplus y_{\sqrt{n}}$ by a $2^{O(\sqrt{n})}$ size CNF on the y literals. "Attach" the CNF with the DNFs and "merge" the two middle layers of V gates.

Is the $2^{O(\sqrt{n})}$ upper bound on the size of depth 3 circuits computing PARITY tight? "Yes"

Depth d circuit for Parity

- Obs. There's a exp(n^{1/(d-1)}) size depth d circuit for PARITY, where exp(x) = 2^x. (Homework)
- Proof sketch. "Divide & conquer" for d-1 levels. Alternate between CNFs and DNFs. "Attach" the CNFs and the DNFs appropriately, and then "merge" the intermediate layers to bring the depth down to d.
- Is the exp(n^{1/(d-1)}) upper bound on the size of depth d circuits computing PARITY tight? "Yes"

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d⁻¹ factor.
- Furst, Saxe and Sipser showed a quasi-polynomial lower bound.
- Ajtai showed an exponential lower bound, but the bound wasn't optimal.
- Hastad showed an $\exp(\Omega(n^{1/(d-1)}))$ lower bound.
- Rossman (2015) showed an optimal $\exp(\Omega(dn^{1/(d-1)}))$ lower bound.

• Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d⁻¹ factor.

- Gives a super-polynomial lower bound for depth d circuits for d up to o(log n).
- A lower bound for circuits of depth d = O(log n) implies a Boolean formula lower bound!

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d⁻¹ factor.
- Proof idea. A random assignment to a "large" fraction of the variables makes a constant depth circuit of polynomial size evaluate to a constant (i.e., the circuit stops depending on the unset variables). On the other hand, we cannot make PARITY evaluate to a constant by setting less than n variables.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d⁻¹ factor.
- Proof idea. A random assignment to a "large" fraction of the variables makes a constant depth circuit of polynomial size evaluate to a constant (i.e., the circuit stops depending on the unset variables).
- We'll prove this fact using Hastad's <u>Switching</u>
 <u>lemma</u>. But first let us discuss some structural simplifications of depth d circuits.

Fact I. If f(x₁,..., x_n) is computable by a circuit of depth d and size s, then f is also computable by a circuit C of depth d and size O(s) such that C has <u>no ¬ gates</u> and the inputs to C are x₁, ..., x_n and ¬x₁, ..., ¬x_n.

- Fact I. If f(x₁,..., x_n) is computable by a circuit of depth d and size s, then f is also computable by a circuit C of depth d and size O(s) such that C has <u>no ¬ gates</u> and the inputs to C are x₁, ..., x_n and ¬x₁, ..., ¬x_n.
- Fact 2. If f is computable by a circuit of depth d and size s, then f is also computable by a <u>formula</u> of depth d and size O(s)^d.

- Fact I. If f(x₁,..., x_n) is computable by a circuit of depth d and size s, then f is also computable by a circuit C of depth d and size O(s) such that C has <u>no ¬ gates</u> and the inputs to C are x₁, ..., x_n and ¬x₁, ..., ¬x_n.
- Fact 2. If f is computable by a circuit of depth d and size s, then f is also computable by a <u>formula</u> of depth d and size O(s)^d.
- Fact 3. If f is computable by a formula of depth d and size s, then f is computable by a formula C of depth d and size O(sd) that has <u>alternating layers</u> of V and Λ gates with inputs feeding into *only* the bottom layer.

- Fact I. If f(x₁,..., x_n) is computable by a circuit of depth d and size s, then f is also computable by a circuit C of depth d and size O(s) such that C has <u>no ¬ gates</u> and the inputs to C are x₁, ..., x_n and ¬x₁, ..., ¬x_n.
- Fact 2. If f is computable by a circuit of depth d and size s, then f is also computable by a <u>formula</u> of depth d and size O(s)^d.
- Fact 3. If f is computable by a formula of depth d and size s, then f is computable by a formula C of depth d and size O(sd) that has <u>alternating layers</u> of V and A gates with inputs feeding into *only* the bottom layer.

Homework: Prove the above facts.

Random restrictions

- A <u>restriction</u> σ is a partial assignment to a subset of the n variables.
- A <u>random restriction</u> σ that leaves m variables alive/unset is obtained by picking a random subset S ⊆
 [n] of size n-m and setting every variable in S to 0/1 uniformly and independently.
- Let f_{σ} denote the function obtained by applying the restriction σ on f.

The Switching Lemma

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

The Switching Lemma

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

 We can interchange "CNF" and "DNF" in the above statement by applying the lemma on ¬f.

The Switching Lemma

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

- We can interchange "CNF" and "DNF" in the above statement by applying the lemma on ¬f.
- Before proving the lemma, let us see how it is used to prove lower bound for depth d circuits.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. Bottom-up application of the switching lemma.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- Step 0: Pick every variable independently with prob. ¹/₂, and then set it to 0/1 uniformly. C₁ be the resulting ckt.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- Step 0: Pick every variable independently with prob. ¹/₂, and then set it to 0/1 uniformly. C₁ be the resulting ckt.
- Let t be a parameter that we'll fix later in the analysis.
 If a ∨ gate in the last layer has fan-in > t, then the probability it doesn't evaluate to | is ≤ (3/4)^t.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- Step 0: Pick every variable independently with prob. ¹/₂, and then set it to 0/1 uniformly. C₁ be the resulting ckt.
- Let t be a parameter that we'll fix later in the analysis.
 If a ∨ gate in the last layer has fan-in > t, then the probability it doesn't evaluate to | is ≤ (3/4)^t. So,
 Pr[a fan-in > t last layer ∨ gate survives] ≤ s(3/4)^t.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- Step 0: Pick every variable independently with prob. ¹/₂, and then set it to 0/1 uniformly. C₁ be the resulting ckt.
- Let t be a parameter that we'll fix later in the analysis.
 If a ∨ gate in the last layer has fan-in > t, then the probability it doesn't evaluate to I is ≤ (3/4)^t. So,
 Pr[a fan-in > t last layer ∨ gate survives] ≤ s(3/4)^t.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- Step 0: Pick every variable independently with prob. ¹/₂, and then set it to 0/1 uniformly. C₁ be the resulting ckt.
- With probability $\geq 1 s(3/4)^t$, every \wedge gate of the second-last layer of C₁ computes a t-CNF.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- Step 0: Pick every variable independently with prob. ¹/₂, and then set it to 0/1 uniformly. C₁ be the resulting ckt.
- With probability $\geq 1 s(3/4)^t$, every \wedge gate of the second-last layer of C₁ computes a t-CNF.
- Let n_1 be the no. of unset variables after Step 0. By Chernoff bound, $n_1 \ge n/4$ with probability $1 2^{-\Omega(n)}$.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. W.I.o.g C is in the simplified form and the bottom/last layer consists of V gates. Size(C) = s.
- Step 0: Pick every variable independently with prob. ¹/₂, and then set it to 0/1 uniformly. C₁ be the resulting ckt.
- With probability ≥ I s(3/4)^t, every ∧ gate of the second-last layer of C₁ computes a t-CNF.
- Let n_1 be the no. of unset variables after Step 0. By Chernoff bound, $n_1 \ge n/4$ with probability $I 2^{-\Omega(n)}$.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (\land gates of the second-last layer of $C_{|} \le s$.
- Step I: Apply a random restriction σ_1 on the n_1 variables that leaves $n_2 = pn_1$ variables alive, where $p < \frac{1}{2}$ will be fixed later.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (\land gates of the second-last layer of $C_{|} \le s$.
- Step I: Apply a random restriction σ_1 on the n_1 variables that leaves $n_2 = pn_1$ variables alive, where $p < \frac{1}{2}$ will be fixed later.
- By the Switching lemma, probability that any of the t-CNFs computed at the second-last layer of C₁ cannot be expressed as a t-DNF is ≤ s.(16pt)^t.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (\land gates of the second-last layer of $C_{|} \le s$.
- Step I: Apply a random restriction σ_1 on the n_1 variables that leaves $n_2 = pn_1$ variables alive, where $p < \frac{1}{2}$ will be fixed later.
- By the Switching lemma, probability that any of the t-CNFs computed at the second-last layer of C₁ cannot be expressed as a t-DNF is ≤ s.(16pt)^t.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (Λ gates of the second-last layer of C_1) \leq s.
- Step I: Apply a random restriction σ_1 on the n_1 variables that leaves $n_2 = pn_1$ variables alive, where $p < \frac{1}{2}$ will be fixed later.
- Replace the t-CNFs by the corresponding t-DNFs.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (Λ gates of the second-last layer of C_1) \leq s.
- Step I: Apply a random restriction σ_1 on the n_1 variables that leaves $n_2 = pn_1$ variables alive, where $p < \frac{1}{2}$ will be fixed later.
- Replace the t-CNFs by the corresponding t-DNFs.
- Merge the V gates of the second-last layer with the V gates of the layer above. C₂ be the resulting ckt.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (\land gates of the second-last layer of $C_{|} \le s$.
- Step I: Apply a random restriction σ_1 on the n_1 variables that leaves $n_2 = pn_1$ variables alive, where $p < \frac{1}{2}$ will be fixed later.
- The no. of V gates of the second-last layer of the resulting circuit C₂ <u>equals</u> the no. of V gates of the third-last layer of C₁. So, this no. is ≤ s.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (\land gates of the second-last layer of $C_{|} \le s$.
- Step I: Apply a random restriction σ_1 on the n_1 variables that leaves $n_2 = pn_1$ variables alive, where $p < \frac{1}{2}$ will be fixed later.
- Merging reduces the depth to d-l.
- All the gates of the second-last layer of C_2 compute t-DNFs with probability $\geq 1 - s.(16pt)^t$.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (V gates of the second-last layer of C_2) \leq s.
- Step 2: Apply a random restriction σ_2 on the n_2 variables that leaves $n_3 = pn_2$ variables alive, where p is same as before.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (V gates of the second-last layer of C_2) \leq s.
- Step 2: Apply a random restriction σ_2 on the n_2 variables that leaves $n_3 = pn_2$ variables alive, where p is same as before.
- By the Switching lemma, probability that any of the t-DNFs computed at the second-last layer of C₂ cannot be expressed as a t-CNF is ≤ s.(16pt)^t.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (V gates of the second-last layer of C_2) \leq s.
- Step 2: Apply a random restriction σ_2 on the n_2 variables that leaves $n_3 = pn_2$ variables alive, where p is same as before.
- By the Switching lemma, probability that any of the t-DNFs computed at the second-last layer of C₂ cannot be expressed as a t-CNF is ≤ s.(16pt)^t.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (V gates of the second-last layer of C_2) \leq s.
- Step 2: Apply a random restriction σ_2 on the n_2 variables that leaves $n_3 = pn_2$ variables alive, where p is same as before.
- Replace the t-DNFs by the corresponding t-CNFs.
- Merge the Λ gates of the second-last layer with the Λ gates of the layer above. C₃ be the resulting ckt.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (V gates of the second-last layer of C_2) \leq s.
- Step 2: Apply a random restriction σ_2 on the n_2 variables that leaves $n_3 = pn_2$ variables alive, where p is same as before.
- The no. of Λ gates of the second-last layer of the resulting circuit C_3 <u>equals</u> the no. of Λ gates of the third-last layer of C_2 . So, this no. is \leq s (why?).

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (V gates of the second-last layer of $C_2 \le s$.
- Step 2: Apply a random restriction σ_2 on the n_2 variables that leaves $n_3 = pn_2$ variables alive, where p is same as before.
- Merging reduces the depth to d-2.
- All the gates of the second-last layer of C_3 compute t-CNFs with probability $\geq 1 - s.(16pt)^t$.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. # (\land gates of the second-last layer of C_3) \leq s.
- Step 3: Apply a random restriction σ_3 on the n_3 variables that leaves $n_4 = pn_3$ variables alive, where p is same as before. Continue as before..

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. After Step d-2, we are left with a depth 2 circuit, i.e., a t-CNF or a t-DNF with probability \geq | - s.(d-2)(16pt)^t - 2^{- Ω (n)} - s(3/4)^t.
- The number of variables alive is $p^{d-2}n_1 \ge (p^{d-2}n)/4$.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. After Step d-2, we are left with a depth 2 circuit, i.e., a t-CNF or a t-DNF with probability \geq $| - s.(d-2)(|6pt)^t - 2^{-\Omega(n)} - s(3/4)^t$.
- The number of variables alive is $p^{d-2}n_1 \ge (p^{d-2}n)/4$.
- Observe that by setting t more variables, we can now fix the value of the circuit. But, recall that the value of PARITY cannot be fixed by setting < n variables.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. After Step d-2, we are left with a depth 2 circuit, i.e., a t-CNF or a t-DNF with probability \geq | - s.(d-2)(16pt)^t - 2^{- Ω (n)} - s(3/4)^t.
- The number of variables alive is $p^{d-2}n_1 \ge (p^{d-2}n)/4$.
- Hence,

 $\begin{array}{lll} \text{either} & I \, - \, s.(d-2)(\,I\,6pt)^t - \, 2^{-\Omega(n)} - \, s(3/4)^t \leq \, 0, \\ \\ \text{or} & p^{d-2}n_1 \, \leq \, t \, . \end{array}$

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. After Step d-2, we are left with a depth 2 circuit, i.e., a t-CNF or a t-DNF with probability \geq

 $I - s.(d-2)(I6pt)^{t} - 2^{-\Omega(n)} - s(3/4)^{t}$.

- The number of variables alive is $p^{d-2}n_1 \ge (p^{d-2}n)/4$.
- By choosing $t = O(n^{1/(d-1)})$ and p = 1/(160 t), we can make sure that

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86)
 Any depth d circuit C computing PARITY has size exp(Ω_d(n^{1/(d-1)})), where Ω_d() is hiding a d⁻¹ factor.
- Proof. After Step d-2, we are left with a depth 2 circuit, i.e., a t-CNF or a t-DNF with probability \geq $| - s.(d-2)(|6pt)^t - 2^{-\Omega(n)} - s(3/4)^t$.
- The number of variables alive is $p^{d-2}n_1 \ge (p^{d-2}n)/4$.
- Therefore, for $t = O(n^{1/(d-1)})$ and p = 1/(160 t),

I - s.(d-2)(I6pt)^t - 2^{-Ω(n)} - s(3/4)^t ≤ 0,

 \implies s = exp($\Omega(n^{1/(d-1)})$).