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Recap: Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Is one out of so many functions outside P/poly in 
NP? We don’t know even after ~40 yrs of research! 

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002) 
There is a language L ∈ NP such that any circuit Cn 
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates. 

 

 



 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

 Theorem. (Khrapchenko 1971) Any formula 
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).  

Recap: Lower bound for Boolean formulas 



 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Theorem. (Andreev 1987, Hastad 1998) There’s a f 
that can be computed by a O(n)-size circuit such that 
any formula computing f has size 𝛀(n3-o(1)).  

                                            

Recap: Lower bound for Boolean formulas 



Recap: Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Conjecture. (Circuits more powerful than formulas) 
There’s a f that can be computed by a O(n)-size circuit 
such that any formula computing f has size nω(1) .                     



Recap: Non-uniform size hierarchy 

 Shanon’s result. There’s a constant c ≥ 1 such that 
every Boolean function in n variables has a circuit of 
size at most c.(2n/n). 

 

 Theorem. There’s a constant d ≥ 1 s.t. if T1:   & 
T2:  and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then 

                     SIZE(T1(n)) ⊊ SIZE(T2(n)). 

 



Recap: Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Definition. NC = ∪  NCi. 

 

 PARITY is in NC1 = poly(n)-size Boolean formulas. 

i∈  



Recap: Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. (stands for Alternating Class) 

 

 Observation.  ACi ⊆ NCi+1 ⊆ ACi+1 for all i ≥ 0. 

i ≥ 0 

Replace an unbounded fan-in gate by a 
binary tree of bounded fan-in gates. 



Recap: Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 In this lecture, we’ll show that PARITY is not in AC0, 
i.e.,  AC0 ⊊ NC1. 

i ≥ 0 



Recap: P-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = (uniform) NC? Is P = L?…use log-space 
reduction! 

 

 Definition.  A language L ∈ P is P-complete if for every 
L’ in P , L’ ≤l L. 



Recap: P-complete problems 

 Circuit value problem. Given a circuit and an input, 
compute the output of the circuit. (The reduction in the 

Cook-Levin theorem can be made a log-space reduction.) 

 

 Linear programming. Check the feasibility of a system 
of linear inequality constraints over rationals. 
(Assignment problem) 

  

 CFG membership. Given a context-free grammar and 
a string, decide if the string can be generated by the 
grammar. 



Recap: No log-space algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in L          P = L. 

 

 

 Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L. 

 

 



Recap: No parallel algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in NC          P ⊆ NC. 

 

 

 Can’t hope to get an efficient parallel algorithm for a 
P-complete problem unless P ⊆ NC. 

 

 



Recap: Complexity zoo 

EXP 

PSPACE 

PH 

L 

NL 

P 

NP co-NP 

NC 

NEXP 

(uniform) NC 

In fact, (uniform) NC1 ⊆ L 
and NL ⊆ (uniform) NC2. 
          (Assignment) 



The Parity function 



The Parity function 

 PARITY(x1, x2, …, xn)  =  x1 ⊕ x2 ⊕ … ⊕ xn . 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

 

 Theorem. (Khrapchenko 1971) Any formula computing 
PARITY(x1, x2, …, xn) has size 𝛀(n2).  

 

 

has depth O(log n) has depth O(log n) 



The Parity function 

 PARITY(x1, x2, …, xn)  =  x1 ⊕ x2 ⊕ … ⊕ xn . 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

 

 Theorem. (Khrapchenko 1971) Any formula computing 
PARITY(x1, x2, …, xn) has size 𝛀(n2).  

 

 Can poly-size constant depth circuits compute 
PARITY?  No! 

 

 



Depth 2 circuit for Parity 

 Without loss of generality, a depth 2 circuit is either a 
DNF or a CNF. 

 

 

 

 

 Any Boolean function can be computed by a DNF 
(similarly, CNF) with 2n terms (respectively, clauses). 

 

 Can we do better for depth 2 circuits computing 
PARITY? 

∨ ∧ ∧ 

literals 

… 
DNF:  

A term 



Depth 2 circuit for Parity 

 Without loss of generality, a depth 2 circuit is either a 
DNF or a CNF. 

 

 Obs.  Any DNF computing PARITY has ≥ 2n-1 terms. 

 Proof. Let ϕ be a DNF computing PARITY. Then, every 
term in ϕ has n literals (otherwise, the value of 
PARITY can be fixed by fixing less than n variables 
which is false).  



Depth 2 circuit for Parity 

 Without loss of generality, a depth 2 circuit is either a 
DNF or a CNF. 

 

 Obs.  Any DNF computing PARITY has ≥ 2n-1 terms. 

 Proof. Let ϕ be a DNF computing PARITY. Then, every 
term in ϕ has n literals (otherwise, the value of 
PARITY can be fixed by fixing less than n variables 
which is false). Such a term corresponds to a unique 
assignment that makes the term evaluate to 1. Terms 
corresponding to assignments that set odd number of 
variables to 1 must be present in ϕ.  



Depth 3 circuit for Parity 

 Obs. There’s a 2O(√n) size depth 3 circuit for PARITY. 

 Proof.      x1 ⊕ x2 ⊕ … ⊕ x√n  ⊕ … ⊕  xn-√n ⊕ x2 ⊕ … ⊕ xn   

 

  PARITY =          y1   ⊕         …       ⊕   y√n 

 

 Divide & conquer: Compute yi and ¬yi by 2O(√n) size 
DNFs on the x literals. Compute y1 ⊕ … ⊕ y√n by a 
2O(√n) size CNF on the y literals. “Attach” the CNF 
with the DNFs and “merge” the two middle layers of ∨ gates. 

 



Depth 3 circuit for Parity 

 Obs. There’s a 2O(√n) size depth 3 circuit for PARITY. 

 Proof.      x1 ⊕ x2 ⊕ … ⊕ x√n  ⊕ … ⊕  xn-√n ⊕ x2 ⊕ … ⊕ xn   

 

  PARITY =          y1   ⊕         …       ⊕   y√n 

 

 Divide & conquer: Compute yi and ¬yi by 2O(√n) size 
DNFs on the x literals. Compute y1 ⊕ … ⊕ y√n by a 
2O(√n) size CNF on the y literals. “Attach” the CNF 
with the DNFs and “merge” the two middle layers of ∨ gates. 

 
Is the 2O(√n) upper bound on the size of depth 3 circuits 
computing PARITY tight?    “Yes” 



Depth d circuit for Parity 

 Obs. There’s a exp(n1/(d-1)) size depth d circuit for 
PARITY, where exp(x) = 2x.     (Homework) 

 Proof sketch.  “Divide & conquer” for d-1 levels. 
Alternate between CNFs and DNFs. “Attach” the 
CNFs and the DNFs appropriately, and then “merge” 
the intermediate layers to bring the depth down to d.     

 

 Is the exp(n1/(d-1)) upper bound on the size of depth d 
circuits computing PARITY tight?    “Yes” 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 

 Furst, Saxe and Sipser showed a quasi-polynomial 
lower bound. 

 Ajtai showed an exponential lower bound, but the 
bound wasn’t optimal. 

 Hastad showed an exp(𝝮(n1/(d-1))) lower bound. 

 Rossman (2015) showed an optimal exp(𝝮(dn1/(d-1))) 
lower bound. 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 

 

 Gives a super-polynomial lower bound for depth d 
circuits for d up to o(log n). 

 

 A lower bound for circuits of depth d = O(log n) 
implies a Boolean formula lower bound! 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof idea. A random assignment to a “large” 
fraction of the variables makes a constant depth 
circuit of polynomial size evaluate to a constant (i.e., 
the circuit stops depending on the unset variables). 
On the other hand, we cannot make PARITY evaluate 
to a constant by setting less than n variables. 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof idea. A random assignment to a “large” 
fraction of the variables makes a constant depth 
circuit of polynomial size evaluate to a constant (i.e., 
the circuit stops depending on the unset variables).  

 

 We’ll prove this fact using Hastad’s Switching 
lemma. But first let us discuss some structural 
simplifications of depth d circuits. 

 



Simplifying depth d circuits 

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth 
d and size s, then f is also computable by a circuit C of 
depth d and size O(s) such that C has no ¬ gates and 
the inputs to C are x1, …, xn and ¬x1, …, ¬xn. 

 

 

 

 



Simplifying depth d circuits 

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth 
d and size s, then f is also computable by a circuit C of 
depth d and size O(s) such that C has no ¬ gates and 
the inputs to C are x1, …, xn and ¬x1, …, ¬xn. 

 Fact 2. If f is computable by a circuit of depth d and 
size s, then f is also computable by a formula of depth 
d and size O(s)d. 

 

 

 

 



Simplifying depth d circuits 

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth 
d and size s, then f is also computable by a circuit C of 
depth d and size O(s) such that C has no ¬ gates and 
the inputs to C are x1, …, xn and ¬x1, …, ¬xn. 

 Fact 2. If f is computable by a circuit of depth d and 
size s, then f is also computable by a formula of depth 
d and size O(s)d. 

 Fact 3. If f is computable by a formula of depth d and 
size s, then f is computable by a formula C of depth d 
and size O(sd) that has alternating layers of ∨ and ∧ 
gates with inputs feeding into only the bottom layer.  

 



Simplifying depth d circuits 

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth 
d and size s, then f is also computable by a circuit C of 
depth d and size O(s) such that C has no ¬ gates and 
the inputs to C are x1, …, xn and ¬x1, …, ¬xn. 

 Fact 2. If f is computable by a circuit of depth d and 
size s, then f is also computable by a formula of depth 
d and size O(s)d. 

 Fact 3. If f is computable by a formula of depth d and 
size s, then f is computable by a formula C of depth d 
and size O(sd) that has alternating layers of ∨ and ∧ 
gates with inputs feeding into only the bottom layer.  

 Homework:   Prove the above facts. 



Random restrictions 

 A restriction 𝝈 is a partial assignment to a subset of the 
n variables. 

 

 A random restriction 𝝈 that leaves m variables 
alive/unset is obtained by picking a random subset S ⊆ 
[n] of size n-m and setting every variable in S to 0/1 
uniformly and independently. 

 

 Let f𝝈 denote the function obtained by applying the 
restriction 𝝈 on f. 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 

 We can interchange “CNF” and “DNF” in the above 
statement by applying the lemma on ¬f. 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 

 We can interchange “CNF” and “DNF” in the above 
statement by applying the lemma on ¬f. 

 

 Before proving the lemma, let us see how it is used to 
prove lower bound for depth d circuits. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. Bottom-up application of the switching lemma. 

 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 

and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 Let t be a parameter that we’ll fix later in the analysis. 
If a ∨ gate in the last layer has fan-in > t, then the 
probability it doesn’t evaluate to 1 is ≤ (3/4)t .  

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 Let t be a parameter that we’ll fix later in the analysis. 
If a ∨ gate in the last layer has fan-in > t, then the 
probability it doesn’t evaluate to 1 is ≤ (3/4)t. So, 

     Pr[a fan-in > t last layer ∨ gate survives] ≤ s(3/4)t. 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 Let t be a parameter that we’ll fix later in the analysis. 
If a ∨ gate in the last layer has fan-in > t, then the 
probability it doesn’t evaluate to 1 is ≤ (3/4)t. So, 

     Pr[a fan-in > t last layer ∨ gate survives] ≤ s(3/4)t. 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 With probability ≥ 1 - s(3/4)t, every ∧ gate of the 
second-last layer of C1 computes a t-CNF. 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 With probability ≥ 1 - s(3/4)t, every ∧ gate of the 
second-last layer of C1 computes a t-CNF. 

 Let n1 be the no. of unset variables after Step 0. By 
Chernoff bound, n1 ≥ n/4 with probability 1 – 2-𝛀(n). 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 With probability ≥ 1 - s(3/4)t, every ∧ gate of the 
second-last layer of C1 computes a t-CNF. 

 Let n1 be the no. of unset variables after Step 0. By 
Chernoff bound, n1 ≥ n/4 with probability 1 – 2-𝛀(n). 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 By the Switching lemma, probability that any of the t-
CNFs computed at the second-last layer of C1 cannot 
be expressed as a t-DNF is ≤ s.(16pt)t. 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 By the Switching lemma, probability that any of the t-
CNFs computed at the second-last layer of C1 cannot 
be expressed as a t-DNF is ≤ s.(16pt)t. 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 Replace the t-CNFs by the corresponding t-DNFs. 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 Replace the t-CNFs by the corresponding t-DNFs. 

 Merge the ∨ gates of the second-last layer with the ∨ 
gates of the layer above. C2 be the resulting ckt. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 The no. of ∨ gates of the second-last layer of the 
resulting circuit C2 equals the no. of ∨ gates of the 
third-last layer of C1. So, this no. is ≤ s. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 Merging reduces the depth to d-1. 

 All the gates of the second-last layer of C2 compute t-
DNFs with probability ≥ 1 - s.(16pt)t. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  

 By the Switching lemma, probability that any of the t-
DNFs computed at the second-last layer of C2 cannot 
be expressed as a t-CNF is ≤ s.(16pt)t. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  

 By the Switching lemma, probability that any of the t-
DNFs computed at the second-last layer of C2 cannot 
be expressed as a t-CNF is ≤ s.(16pt)t. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  

 Replace the t-DNFs by the corresponding t-CNFs. 

 Merge the ∧ gates of the second-last layer with the ∧ 
gates of the layer above. C3 be the resulting ckt. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  

 The no. of ∧ gates of the second-last layer of the 
resulting circuit C3 equals the no. of ∧ gates of the 
third-last layer of C2. So, this no. is ≤ s (why?). 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  

 Merging reduces the depth to d-2. 

 All the gates of the second-last layer of C3 compute t-
CNFs with probability ≥ 1 - s.(16pt)t. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C3) ≤ s. 

 Step 3: Apply a random restriction 𝝈3 on the n3 
variables that leaves n4 = pn3 variables alive, where p 
is same as before. Continue as before.. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. After Step d-2, we are left with a depth 2 
circuit, i.e., a t-CNF or a t-DNF with probability ≥  

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t. 

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. After Step d-2, we are left with a depth 2 
circuit, i.e., a t-CNF or a t-DNF with probability ≥  

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t. 

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4. 

 Observe that by setting t more variables, we can now 
fix the value of the circuit. But, recall that the value of 
PARITY cannot be fixed by setting < n variables.   



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. After Step d-2, we are left with a depth 2 
circuit, i.e., a t-CNF or a t-DNF with probability ≥  

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t. 

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4. 

 Hence,  

       either  1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t ≤  0, 

        or       pd-2n1   ≤   t . 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. After Step d-2, we are left with a depth 2 
circuit, i.e., a t-CNF or a t-DNF with probability ≥  

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t. 

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4. 

 By choosing t = O(n1/(d-1)) and p = 1/(160 t), we can 
make sure that 

                         pd-2n1   >   t . < ½  



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. After Step d-2, we are left with a depth 2 
circuit, i.e., a t-CNF or a t-DNF with probability ≥  

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t. 

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4. 

 Therefore, for t = O(n1/(d-1)) and p = 1/(160 t), 

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t ≤  0, 

                      s = exp(𝝮(n1/(d-1))). 


