
Computational Complexity Theory 

 

  Lecture 16:  Parity not in AC0 

 

 

Department of Computer Science, 
Indian Institute of Science 



Recap: Functions outside P/poly 

 Are there Boolean functions (i.e., languages) outside 
P/poly?  Yes! There are many. Let exp(m) = 2m. 

 Theorem. 1- exp(-2n-1) fraction of Boolean functions 
on n variables do not have circuits of size 2n/(22n) . 

 Is one out of so many functions outside P/poly in 
NP? We don’t know even after ~40 yrs of research! 

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002) 
There is a language L ∈ NP such that any circuit Cn 
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates. 

 

 



 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

 Theorem. (Khrapchenko 1971) Any formula 
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).  

Recap: Lower bound for Boolean formulas 



 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Theorem. (Andreev 1987, Hastad 1998) There’s a f 
that can be computed by a O(n)-size circuit such that 
any formula computing f has size 𝛀(n3-o(1)).  

                                            

Recap: Lower bound for Boolean formulas 



Recap: Lower bound for Boolean formulas 

 Nevertheless, the clean combinatorial structure of a 
circuit has been used to prove lower bounds for 
some natural classes of circuits. 

 The proofs of these lower bounds introduced and 
developed some highly interesting techniques. 

 

 Conjecture. (Circuits more powerful than formulas) 
There’s a f that can be computed by a O(n)-size circuit 
such that any formula computing f has size nω(1) .                     



Recap: Non-uniform size hierarchy 

 Shanon’s result. There’s a constant c ≥ 1 such that 
every Boolean function in n variables has a circuit of 
size at most c.(2n/n). 

 

 Theorem. There’s a constant d ≥ 1 s.t. if T1:   & 
T2:  and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then 

                     SIZE(T1(n)) ⊊ SIZE(T2(n)). 

 



Recap: Class NC 

 NC stands for Nick’s Class – named after Nick 
Pippenger. 

 Definition. For i∈ , a language L is in NCi if there is a 
polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size circuit family {Cn}n∈ , where 
depth of Cn is at most c.(log n)i for every n∈ .  

 

 Definition. NC = ∪  NCi. 

 

 PARITY is in NC1 = poly(n)-size Boolean formulas. 

i∈  



Recap: Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. (stands for Alternating Class) 

 

 Observation.  ACi ⊆ NCi+1 ⊆ ACi+1 for all i ≥ 0. 

i ≥ 0 

Replace an unbounded fan-in gate by a 
binary tree of bounded fan-in gates. 



Recap: Class AC 

 Definition. For i∈ ∪{0}, a language L is in ACi if there 
is a polynomial function q(.) and a constant c s.t. L is 
decided by a q(n)-size unbounded fan-in circuit 
family {Cn}n∈ , where depth of Cn is at most c.(log n)i 
for every n∈ .  

 

 Definition. AC = ∪  ACi. 

 

 In this lecture, we’ll show that PARITY is not in AC0, 
i.e.,  AC0 ⊊ NC1. 

i ≥ 0 



Recap: P-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is P = (uniform) NC? Is P = L?…use log-space 
reduction! 

 

 Definition.  A language L ∈ P is P-complete if for every 
L’ in P , L’ ≤l L. 



Recap: P-complete problems 

 Circuit value problem. Given a circuit and an input, 
compute the output of the circuit. (The reduction in the 

Cook-Levin theorem can be made a log-space reduction.) 

 

 Linear programming. Check the feasibility of a system 
of linear inequality constraints over rationals. 
(Assignment problem) 

  

 CFG membership. Given a context-free grammar and 
a string, decide if the string can be generated by the 
grammar. 



Recap: No log-space algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in L          P = L. 

 

 

 Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L. 

 

 



Recap: No parallel algo for PC problems 

 Theorem.  Let L be a P-complete language. Then,  

                   L is in NC          P ⊆ NC. 

 

 

 Can’t hope to get an efficient parallel algorithm for a 
P-complete problem unless P ⊆ NC. 

 

 



Recap: Complexity zoo 

EXP 

PSPACE 

PH 

L 

NL 

P 

NP co-NP 

NC 

NEXP 

(uniform) NC 

In fact, (uniform) NC1 ⊆ L 
and NL ⊆ (uniform) NC2. 
          (Assignment) 



The Parity function 



The Parity function 

 PARITY(x1, x2, …, xn)  =  x1 ⊕ x2 ⊕ … ⊕ xn . 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

 

 Theorem. (Khrapchenko 1971) Any formula computing 
PARITY(x1, x2, …, xn) has size 𝛀(n2).  

 

 

has depth O(log n) has depth O(log n) 



The Parity function 

 PARITY(x1, x2, …, xn)  =  x1 ⊕ x2 ⊕ … ⊕ xn . 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

 

 Theorem. (Khrapchenko 1971) Any formula computing 
PARITY(x1, x2, …, xn) has size 𝛀(n2).  

 

 Can poly-size constant depth circuits compute 
PARITY?  No! 

 

 



Depth 2 circuit for Parity 

 Without loss of generality, a depth 2 circuit is either a 
DNF or a CNF. 

 

 

 

 

 Any Boolean function can be computed by a DNF 
(similarly, CNF) with 2n terms (respectively, clauses). 

 

 Can we do better for depth 2 circuits computing 
PARITY? 

∨ ∧ ∧ 

literals 

… 
DNF:  

A term 



Depth 2 circuit for Parity 

 Without loss of generality, a depth 2 circuit is either a 
DNF or a CNF. 

 

 Obs.  Any DNF computing PARITY has ≥ 2n-1 terms. 

 Proof. Let ϕ be a DNF computing PARITY. Then, every 
term in ϕ has n literals (otherwise, the value of 
PARITY can be fixed by fixing less than n variables 
which is false).  



Depth 2 circuit for Parity 

 Without loss of generality, a depth 2 circuit is either a 
DNF or a CNF. 

 

 Obs.  Any DNF computing PARITY has ≥ 2n-1 terms. 

 Proof. Let ϕ be a DNF computing PARITY. Then, every 
term in ϕ has n literals (otherwise, the value of 
PARITY can be fixed by fixing less than n variables 
which is false). Such a term corresponds to a unique 
assignment that makes the term evaluate to 1. Terms 
corresponding to assignments that set odd number of 
variables to 1 must be present in ϕ.  



Depth 3 circuit for Parity 

 Obs. There’s a 2O(√n) size depth 3 circuit for PARITY. 

 Proof.      x1 ⊕ x2 ⊕ … ⊕ x√n  ⊕ … ⊕  xn-√n ⊕ x2 ⊕ … ⊕ xn   

 

  PARITY =          y1   ⊕         …       ⊕   y√n 

 

 Divide & conquer: Compute yi and ¬yi by 2O(√n) size 
DNFs on the x literals. Compute y1 ⊕ … ⊕ y√n by a 
2O(√n) size CNF on the y literals. “Attach” the CNF 
with the DNFs and “merge” the two middle layers of ∨ gates. 

 



Depth 3 circuit for Parity 

 Obs. There’s a 2O(√n) size depth 3 circuit for PARITY. 

 Proof.      x1 ⊕ x2 ⊕ … ⊕ x√n  ⊕ … ⊕  xn-√n ⊕ x2 ⊕ … ⊕ xn   

 

  PARITY =          y1   ⊕         …       ⊕   y√n 

 

 Divide & conquer: Compute yi and ¬yi by 2O(√n) size 
DNFs on the x literals. Compute y1 ⊕ … ⊕ y√n by a 
2O(√n) size CNF on the y literals. “Attach” the CNF 
with the DNFs and “merge” the two middle layers of ∨ gates. 

 
Is the 2O(√n) upper bound on the size of depth 3 circuits 
computing PARITY tight?    “Yes” 



Depth d circuit for Parity 

 Obs. There’s a exp(n1/(d-1)) size depth d circuit for 
PARITY, where exp(x) = 2x.     (Homework) 

 Proof sketch.  “Divide & conquer” for d-1 levels. 
Alternate between CNFs and DNFs. “Attach” the 
CNFs and the DNFs appropriately, and then “merge” 
the intermediate layers to bring the depth down to d.     

 

 Is the exp(n1/(d-1)) upper bound on the size of depth d 
circuits computing PARITY tight?    “Yes” 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 

 Furst, Saxe and Sipser showed a quasi-polynomial 
lower bound. 

 Ajtai showed an exponential lower bound, but the 
bound wasn’t optimal. 

 Hastad showed an exp(𝝮(n1/(d-1))) lower bound. 

 Rossman (2015) showed an optimal exp(𝝮(dn1/(d-1))) 
lower bound. 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 

 

 Gives a super-polynomial lower bound for depth d 
circuits for d up to o(log n). 

 

 A lower bound for circuits of depth d = O(log n) 
implies a Boolean formula lower bound! 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof idea. A random assignment to a “large” 
fraction of the variables makes a constant depth 
circuit of polynomial size evaluate to a constant (i.e., 
the circuit stops depending on the unset variables). 
On the other hand, we cannot make PARITY evaluate 
to a constant by setting less than n variables. 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof idea. A random assignment to a “large” 
fraction of the variables makes a constant depth 
circuit of polynomial size evaluate to a constant (i.e., 
the circuit stops depending on the unset variables).  

 

 We’ll prove this fact using Hastad’s Switching 
lemma. But first let us discuss some structural 
simplifications of depth d circuits. 

 



Simplifying depth d circuits 

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth 
d and size s, then f is also computable by a circuit C of 
depth d and size O(s) such that C has no ¬ gates and 
the inputs to C are x1, …, xn and ¬x1, …, ¬xn. 

 

 

 

 



Simplifying depth d circuits 

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth 
d and size s, then f is also computable by a circuit C of 
depth d and size O(s) such that C has no ¬ gates and 
the inputs to C are x1, …, xn and ¬x1, …, ¬xn. 

 Fact 2. If f is computable by a circuit of depth d and 
size s, then f is also computable by a formula of depth 
d and size O(s)d. 

 

 

 

 



Simplifying depth d circuits 

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth 
d and size s, then f is also computable by a circuit C of 
depth d and size O(s) such that C has no ¬ gates and 
the inputs to C are x1, …, xn and ¬x1, …, ¬xn. 

 Fact 2. If f is computable by a circuit of depth d and 
size s, then f is also computable by a formula of depth 
d and size O(s)d. 

 Fact 3. If f is computable by a formula of depth d and 
size s, then f is computable by a formula C of depth d 
and size O(sd) that has alternating layers of ∨ and ∧ 
gates with inputs feeding into only the bottom layer.  

 



Simplifying depth d circuits 

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth 
d and size s, then f is also computable by a circuit C of 
depth d and size O(s) such that C has no ¬ gates and 
the inputs to C are x1, …, xn and ¬x1, …, ¬xn. 

 Fact 2. If f is computable by a circuit of depth d and 
size s, then f is also computable by a formula of depth 
d and size O(s)d. 

 Fact 3. If f is computable by a formula of depth d and 
size s, then f is computable by a formula C of depth d 
and size O(sd) that has alternating layers of ∨ and ∧ 
gates with inputs feeding into only the bottom layer.  

 Homework:   Prove the above facts. 



Random restrictions 

 A restriction 𝝈 is a partial assignment to a subset of the 
n variables. 

 

 A random restriction 𝝈 that leaves m variables 
alive/unset is obtained by picking a random subset S ⊆ 
[n] of size n-m and setting every variable in S to 0/1 
uniformly and independently. 

 

 Let f𝝈 denote the function obtained by applying the 
restriction 𝝈 on f. 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 

 We can interchange “CNF” and “DNF” in the above 
statement by applying the lemma on ¬f. 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 

 We can interchange “CNF” and “DNF” in the above 
statement by applying the lemma on ¬f. 

 

 Before proving the lemma, let us see how it is used to 
prove lower bound for depth d circuits. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. Bottom-up application of the switching lemma. 

 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 

and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 Let t be a parameter that we’ll fix later in the analysis. 
If a ∨ gate in the last layer has fan-in > t, then the 
probability it doesn’t evaluate to 1 is ≤ (3/4)t .  

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 Let t be a parameter that we’ll fix later in the analysis. 
If a ∨ gate in the last layer has fan-in > t, then the 
probability it doesn’t evaluate to 1 is ≤ (3/4)t. So, 

     Pr[a fan-in > t last layer ∨ gate survives] ≤ s(3/4)t. 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 Let t be a parameter that we’ll fix later in the analysis. 
If a ∨ gate in the last layer has fan-in > t, then the 
probability it doesn’t evaluate to 1 is ≤ (3/4)t. So, 

     Pr[a fan-in > t last layer ∨ gate survives] ≤ s(3/4)t. 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 With probability ≥ 1 - s(3/4)t, every ∧ gate of the 
second-last layer of C1 computes a t-CNF. 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 With probability ≥ 1 - s(3/4)t, every ∧ gate of the 
second-last layer of C1 computes a t-CNF. 

 Let n1 be the no. of unset variables after Step 0. By 
Chernoff bound, n1 ≥ n/4 with probability 1 – 2-𝛀(n). 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. W.l.o.g C is in the simplified form and the 
bottom/last layer consists of ∨ gates.  Size(C) = s. 

 Step 0: Pick every variable independently with prob. ½, 
and then set it to 0/1 uniformly.  C1 be the resulting ckt.  

 With probability ≥ 1 - s(3/4)t, every ∧ gate of the 
second-last layer of C1 computes a t-CNF. 

 Let n1 be the no. of unset variables after Step 0. By 
Chernoff bound, n1 ≥ n/4 with probability 1 – 2-𝛀(n). 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 By the Switching lemma, probability that any of the t-
CNFs computed at the second-last layer of C1 cannot 
be expressed as a t-DNF is ≤ s.(16pt)t. 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 By the Switching lemma, probability that any of the t-
CNFs computed at the second-last layer of C1 cannot 
be expressed as a t-DNF is ≤ s.(16pt)t. 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 Replace the t-CNFs by the corresponding t-DNFs. 

 

 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 Replace the t-CNFs by the corresponding t-DNFs. 

 Merge the ∨ gates of the second-last layer with the ∨ 
gates of the layer above. C2 be the resulting ckt. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 The no. of ∨ gates of the second-last layer of the 
resulting circuit C2 equals the no. of ∨ gates of the 
third-last layer of C1. So, this no. is ≤ s. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C1) ≤ s. 

 Step 1: Apply a random restriction 𝝈1 on the n1 
variables that leaves n2 = pn1 variables alive, where p < 
½ will be fixed later.   

 Merging reduces the depth to d-1. 

 All the gates of the second-last layer of C2 compute t-
DNFs with probability ≥ 1 - s.(16pt)t. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  

 By the Switching lemma, probability that any of the t-
DNFs computed at the second-last layer of C2 cannot 
be expressed as a t-CNF is ≤ s.(16pt)t. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  

 By the Switching lemma, probability that any of the t-
DNFs computed at the second-last layer of C2 cannot 
be expressed as a t-CNF is ≤ s.(16pt)t. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  

 Replace the t-DNFs by the corresponding t-CNFs. 

 Merge the ∧ gates of the second-last layer with the ∧ 
gates of the layer above. C3 be the resulting ckt. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  

 The no. of ∧ gates of the second-last layer of the 
resulting circuit C3 equals the no. of ∧ gates of the 
third-last layer of C2. So, this no. is ≤ s (why?). 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∨ gates of the second-last layer of C2) ≤ s. 

 Step 2: Apply a random restriction 𝝈2 on the n2 
variables that leaves n3 = pn2 variables alive, where p 
is same as before.  

 Merging reduces the depth to d-2. 

 All the gates of the second-last layer of C3 compute t-
CNFs with probability ≥ 1 - s.(16pt)t. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof.  # (∧ gates of the second-last layer of C3) ≤ s. 

 Step 3: Apply a random restriction 𝝈3 on the n3 
variables that leaves n4 = pn3 variables alive, where p 
is same as before. Continue as before.. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. After Step d-2, we are left with a depth 2 
circuit, i.e., a t-CNF or a t-DNF with probability ≥  

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t. 

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4. 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. After Step d-2, we are left with a depth 2 
circuit, i.e., a t-CNF or a t-DNF with probability ≥  

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t. 

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4. 

 Observe that by setting t more variables, we can now 
fix the value of the circuit. But, recall that the value of 
PARITY cannot be fixed by setting < n variables.   



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. After Step d-2, we are left with a depth 2 
circuit, i.e., a t-CNF or a t-DNF with probability ≥  

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t. 

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4. 

 Hence,  

       either  1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t ≤  0, 

        or       pd-2n1   ≤   t . 



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. After Step d-2, we are left with a depth 2 
circuit, i.e., a t-CNF or a t-DNF with probability ≥  

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t. 

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4. 

 By choosing t = O(n1/(d-1)) and p = 1/(160 t), we can 
make sure that 

                         pd-2n1   >   t . < ½  



Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit C computing PARITY has size 
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof. After Step d-2, we are left with a depth 2 
circuit, i.e., a t-CNF or a t-DNF with probability ≥  

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t. 

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4. 

 Therefore, for t = O(n1/(d-1)) and p = 1/(160 t), 

                      1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t ≤  0, 

                      s = exp(𝝮(n1/(d-1))). 


