
Computational Complexity Theory

 Lecture 16: Parity not in AC0

Department of Computer Science,
Indian Institute of Science

Recap: Functions outside P/poly

 Are there Boolean functions (i.e., languages) outside
P/poly? Yes! There are many. Let exp(m) = 2m.

 Theorem. 1- exp(-2n-1) fraction of Boolean functions
on n variables do not have circuits of size 2n/(22n) .

 Is one out of so many functions outside P/poly in
NP? We don’t know even after ~40 yrs of research!

 Theorem. (Iwama, Lachish, Morizumi & Raz 2002)
There is a language L ∈ NP such that any circuit Cn
that decides L∩{0,1}n requires 5n – o(n) many ∧ and ∨ gates.

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Fact. PARITY(x1, x2, …, xn) can be computed by a
circuit of size O(n) and a formula of size O(n2).

 Theorem. (Khrapchenko 1971) Any formula
computing PARITY(x1, x2, …, xn) has size 𝛀(n2).

Recap: Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Theorem. (Andreev 1987, Hastad 1998) There’s a f
that can be computed by a O(n)-size circuit such that
any formula computing f has size 𝛀(n3-o(1)).

Recap: Lower bound for Boolean formulas

Recap: Lower bound for Boolean formulas

 Nevertheless, the clean combinatorial structure of a
circuit has been used to prove lower bounds for
some natural classes of circuits.

 The proofs of these lower bounds introduced and
developed some highly interesting techniques.

 Conjecture. (Circuits more powerful than formulas)
There’s a f that can be computed by a O(n)-size circuit
such that any formula computing f has size nω(1) .

Recap: Non-uniform size hierarchy

 Shanon’s result. There’s a constant c ≥ 1 such that
every Boolean function in n variables has a circuit of
size at most c.(2n/n).

 Theorem. There’s a constant d ≥ 1 s.t. if T1: &
T2: and T1(n) ≤ d-1.T2(n) ≤ T2(n) ≤ c.(2n/n) then

 SIZE(T1(n)) ⊊ SIZE(T2(n)).

Recap: Class NC

 NC stands for Nick’s Class – named after Nick
Pippenger.

 Definition. For i∈ , a language L is in NCi if there is a
polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size circuit family {Cn}n∈ , where
depth of Cn is at most c.(log n)i for every n∈ .

 Definition. NC = ∪ NCi.

 PARITY is in NC1 = poly(n)-size Boolean formulas.

i∈

Recap: Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi. (stands for Alternating Class)

 Observation. ACi ⊆ NCi+1 ⊆ ACi+1 for all i ≥ 0.

i ≥ 0

Replace an unbounded fan-in gate by a
binary tree of bounded fan-in gates.

Recap: Class AC

 Definition. For i∈ ∪{0}, a language L is in ACi if there
is a polynomial function q(.) and a constant c s.t. L is
decided by a q(n)-size unbounded fan-in circuit
family {Cn}n∈ , where depth of Cn is at most c.(log n)i
for every n∈ .

 Definition. AC = ∪ ACi.

 In this lecture, we’ll show that PARITY is not in AC0,
i.e., AC0 ⊊ NC1.

i ≥ 0

Recap: P-completeness

 Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

 What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

 Is P = (uniform) NC? Is P = L?…use log-space
reduction!

 Definition. A language L ∈ P is P-complete if for every
L’ in P , L’ ≤l L.

Recap: P-complete problems

 Circuit value problem. Given a circuit and an input,
compute the output of the circuit. (The reduction in the

Cook-Levin theorem can be made a log-space reduction.)

 Linear programming. Check the feasibility of a system
of linear inequality constraints over rationals.
(Assignment problem)

 CFG membership. Given a context-free grammar and
a string, decide if the string can be generated by the
grammar.

Recap: No log-space algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in L P = L.

 Can’t hope to get a log-space algorithm for a P-
complete problem unless P = L.

Recap: No parallel algo for PC problems

 Theorem. Let L be a P-complete language. Then,

 L is in NC P ⊆ NC.

 Can’t hope to get an efficient parallel algorithm for a
P-complete problem unless P ⊆ NC.

Recap: Complexity zoo

EXP

PSPACE

PH

L

NL

P

NP co-NP

NC

NEXP

(uniform) NC

In fact, (uniform) NC1 ⊆ L
and NL ⊆ (uniform) NC2.
 (Assignment)

The Parity function

The Parity function

 PARITY(x1, x2, …, xn) = x1 ⊕ x2 ⊕ … ⊕ xn .

 Fact. PARITY(x1, x2, …, xn) can be computed by a
circuit of size O(n) and a formula of size O(n2).

 Theorem. (Khrapchenko 1971) Any formula computing
PARITY(x1, x2, …, xn) has size 𝛀(n2).

has depth O(log n) has depth O(log n)

The Parity function

 PARITY(x1, x2, …, xn) = x1 ⊕ x2 ⊕ … ⊕ xn .

 Fact. PARITY(x1, x2, …, xn) can be computed by a
circuit of size O(n) and a formula of size O(n2).

 Theorem. (Khrapchenko 1971) Any formula computing
PARITY(x1, x2, …, xn) has size 𝛀(n2).

 Can poly-size constant depth circuits compute
PARITY? No!

Depth 2 circuit for Parity

 Without loss of generality, a depth 2 circuit is either a
DNF or a CNF.

 Any Boolean function can be computed by a DNF
(similarly, CNF) with 2n terms (respectively, clauses).

 Can we do better for depth 2 circuits computing
PARITY?

∨ ∧ ∧

literals

…
DNF:

A term

Depth 2 circuit for Parity

 Without loss of generality, a depth 2 circuit is either a
DNF or a CNF.

 Obs. Any DNF computing PARITY has ≥ 2n-1 terms.

 Proof. Let ϕ be a DNF computing PARITY. Then, every
term in ϕ has n literals (otherwise, the value of
PARITY can be fixed by fixing less than n variables
which is false).

Depth 2 circuit for Parity

 Without loss of generality, a depth 2 circuit is either a
DNF or a CNF.

 Obs. Any DNF computing PARITY has ≥ 2n-1 terms.

 Proof. Let ϕ be a DNF computing PARITY. Then, every
term in ϕ has n literals (otherwise, the value of
PARITY can be fixed by fixing less than n variables
which is false). Such a term corresponds to a unique
assignment that makes the term evaluate to 1. Terms
corresponding to assignments that set odd number of
variables to 1 must be present in ϕ.

Depth 3 circuit for Parity

 Obs. There’s a 2O(√n) size depth 3 circuit for PARITY.

 Proof. x1 ⊕ x2 ⊕ … ⊕ x√n ⊕ … ⊕ xn-√n ⊕ x2 ⊕ … ⊕ xn

 PARITY = y1 ⊕ … ⊕ y√n

 Divide & conquer: Compute yi and ¬yi by 2O(√n) size
DNFs on the x literals. Compute y1 ⊕ … ⊕ y√n by a
2O(√n) size CNF on the y literals. “Attach” the CNF
with the DNFs and “merge” the two middle layers of ∨ gates.

Depth 3 circuit for Parity

 Obs. There’s a 2O(√n) size depth 3 circuit for PARITY.

 Proof. x1 ⊕ x2 ⊕ … ⊕ x√n ⊕ … ⊕ xn-√n ⊕ x2 ⊕ … ⊕ xn

 PARITY = y1 ⊕ … ⊕ y√n

 Divide & conquer: Compute yi and ¬yi by 2O(√n) size
DNFs on the x literals. Compute y1 ⊕ … ⊕ y√n by a
2O(√n) size CNF on the y literals. “Attach” the CNF
with the DNFs and “merge” the two middle layers of ∨ gates.

Is the 2O(√n) upper bound on the size of depth 3 circuits
computing PARITY tight? “Yes”

Depth d circuit for Parity

 Obs. There’s a exp(n1/(d-1)) size depth d circuit for
PARITY, where exp(x) = 2x. (Homework)

 Proof sketch. “Divide & conquer” for d-1 levels.
Alternate between CNFs and DNFs. “Attach” the
CNFs and the DNFs appropriately, and then “merge”
the intermediate layers to bring the depth down to d.

 Is the exp(n1/(d-1)) upper bound on the size of depth d
circuits computing PARITY tight? “Yes”

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Furst, Saxe and Sipser showed a quasi-polynomial
lower bound.

 Ajtai showed an exponential lower bound, but the
bound wasn’t optimal.

 Hastad showed an exp(𝝮(n1/(d-1))) lower bound.

 Rossman (2015) showed an optimal exp(𝝮(dn1/(d-1)))
lower bound.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Gives a super-polynomial lower bound for depth d
circuits for d up to o(log n).

 A lower bound for circuits of depth d = O(log n)
implies a Boolean formula lower bound!

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).
On the other hand, we cannot make PARITY evaluate
to a constant by setting less than n variables.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).

 We’ll prove this fact using Hastad’s Switching
lemma. But first let us discuss some structural
simplifications of depth d circuits.

Simplifying depth d circuits

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no ¬ gates and
the inputs to C are x1, …, xn and ¬x1, …, ¬xn.

Simplifying depth d circuits

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no ¬ gates and
the inputs to C are x1, …, xn and ¬x1, …, ¬xn.

 Fact 2. If f is computable by a circuit of depth d and
size s, then f is also computable by a formula of depth
d and size O(s)d.

Simplifying depth d circuits

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no ¬ gates and
the inputs to C are x1, …, xn and ¬x1, …, ¬xn.

 Fact 2. If f is computable by a circuit of depth d and
size s, then f is also computable by a formula of depth
d and size O(s)d.

 Fact 3. If f is computable by a formula of depth d and
size s, then f is computable by a formula C of depth d
and size O(sd) that has alternating layers of ∨ and ∧
gates with inputs feeding into only the bottom layer.

Simplifying depth d circuits

 Fact 1. If f(x1,…, xn) is computable by a circuit of depth
d and size s, then f is also computable by a circuit C of
depth d and size O(s) such that C has no ¬ gates and
the inputs to C are x1, …, xn and ¬x1, …, ¬xn.

 Fact 2. If f is computable by a circuit of depth d and
size s, then f is also computable by a formula of depth
d and size O(s)d.

 Fact 3. If f is computable by a formula of depth d and
size s, then f is computable by a formula C of depth d
and size O(sd) that has alternating layers of ∨ and ∧
gates with inputs feeding into only the bottom layer.

 Homework: Prove the above facts.

Random restrictions

 A restriction 𝝈 is a partial assignment to a subset of the
n variables.

 A random restriction 𝝈 that leaves m variables
alive/unset is obtained by picking a random subset S ⊆
[n] of size n-m and setting every variable in S to 0/1
uniformly and independently.

 Let f𝝈 denote the function obtained by applying the
restriction 𝝈 on f.

The Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

The Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

 We can interchange “CNF” and “DNF” in the above
statement by applying the lemma on ¬f.

The Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

 We can interchange “CNF” and “DNF” in the above
statement by applying the lemma on ¬f.

 Before proving the lemma, let us see how it is used to
prove lower bound for depth d circuits.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. Bottom-up application of the switching lemma.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. W.l.o.g C is in the simplified form and the
bottom/last layer consists of ∨ gates. Size(C) = s.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. W.l.o.g C is in the simplified form and the
bottom/last layer consists of ∨ gates. Size(C) = s.

 Step 0: Pick every variable independently with prob. ½,
and then set it to 0/1 uniformly. C1 be the resulting ckt.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. W.l.o.g C is in the simplified form and the
bottom/last layer consists of ∨ gates. Size(C) = s.

 Step 0: Pick every variable independently with prob. ½,

and then set it to 0/1 uniformly. C1 be the resulting ckt.

 Let t be a parameter that we’ll fix later in the analysis.
If a ∨ gate in the last layer has fan-in > t, then the
probability it doesn’t evaluate to 1 is ≤ (3/4)t .

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. W.l.o.g C is in the simplified form and the
bottom/last layer consists of ∨ gates. Size(C) = s.

 Step 0: Pick every variable independently with prob. ½,
and then set it to 0/1 uniformly. C1 be the resulting ckt.

 Let t be a parameter that we’ll fix later in the analysis.
If a ∨ gate in the last layer has fan-in > t, then the
probability it doesn’t evaluate to 1 is ≤ (3/4)t. So,

 Pr[a fan-in > t last layer ∨ gate survives] ≤ s(3/4)t.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. W.l.o.g C is in the simplified form and the
bottom/last layer consists of ∨ gates. Size(C) = s.

 Step 0: Pick every variable independently with prob. ½,
and then set it to 0/1 uniformly. C1 be the resulting ckt.

 Let t be a parameter that we’ll fix later in the analysis.
If a ∨ gate in the last layer has fan-in > t, then the
probability it doesn’t evaluate to 1 is ≤ (3/4)t. So,

 Pr[a fan-in > t last layer ∨ gate survives] ≤ s(3/4)t.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. W.l.o.g C is in the simplified form and the
bottom/last layer consists of ∨ gates. Size(C) = s.

 Step 0: Pick every variable independently with prob. ½,
and then set it to 0/1 uniformly. C1 be the resulting ckt.

 With probability ≥ 1 - s(3/4)t, every ∧ gate of the
second-last layer of C1 computes a t-CNF.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. W.l.o.g C is in the simplified form and the
bottom/last layer consists of ∨ gates. Size(C) = s.

 Step 0: Pick every variable independently with prob. ½,
and then set it to 0/1 uniformly. C1 be the resulting ckt.

 With probability ≥ 1 - s(3/4)t, every ∧ gate of the
second-last layer of C1 computes a t-CNF.

 Let n1 be the no. of unset variables after Step 0. By
Chernoff bound, n1 ≥ n/4 with probability 1 – 2-𝛀(n).

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. W.l.o.g C is in the simplified form and the
bottom/last layer consists of ∨ gates. Size(C) = s.

 Step 0: Pick every variable independently with prob. ½,
and then set it to 0/1 uniformly. C1 be the resulting ckt.

 With probability ≥ 1 - s(3/4)t, every ∧ gate of the
second-last layer of C1 computes a t-CNF.

 Let n1 be the no. of unset variables after Step 0. By
Chernoff bound, n1 ≥ n/4 with probability 1 – 2-𝛀(n).

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∧ gates of the second-last layer of C1) ≤ s.

 Step 1: Apply a random restriction 𝝈1 on the n1
variables that leaves n2 = pn1 variables alive, where p <
½ will be fixed later.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∧ gates of the second-last layer of C1) ≤ s.

 Step 1: Apply a random restriction 𝝈1 on the n1
variables that leaves n2 = pn1 variables alive, where p <
½ will be fixed later.

 By the Switching lemma, probability that any of the t-
CNFs computed at the second-last layer of C1 cannot
be expressed as a t-DNF is ≤ s.(16pt)t.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∧ gates of the second-last layer of C1) ≤ s.

 Step 1: Apply a random restriction 𝝈1 on the n1
variables that leaves n2 = pn1 variables alive, where p <
½ will be fixed later.

 By the Switching lemma, probability that any of the t-
CNFs computed at the second-last layer of C1 cannot
be expressed as a t-DNF is ≤ s.(16pt)t.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∧ gates of the second-last layer of C1) ≤ s.

 Step 1: Apply a random restriction 𝝈1 on the n1
variables that leaves n2 = pn1 variables alive, where p <
½ will be fixed later.

 Replace the t-CNFs by the corresponding t-DNFs.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∧ gates of the second-last layer of C1) ≤ s.

 Step 1: Apply a random restriction 𝝈1 on the n1
variables that leaves n2 = pn1 variables alive, where p <
½ will be fixed later.

 Replace the t-CNFs by the corresponding t-DNFs.

 Merge the ∨ gates of the second-last layer with the ∨
gates of the layer above. C2 be the resulting ckt.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∧ gates of the second-last layer of C1) ≤ s.

 Step 1: Apply a random restriction 𝝈1 on the n1
variables that leaves n2 = pn1 variables alive, where p <
½ will be fixed later.

 The no. of ∨ gates of the second-last layer of the
resulting circuit C2 equals the no. of ∨ gates of the
third-last layer of C1. So, this no. is ≤ s.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∧ gates of the second-last layer of C1) ≤ s.

 Step 1: Apply a random restriction 𝝈1 on the n1
variables that leaves n2 = pn1 variables alive, where p <
½ will be fixed later.

 Merging reduces the depth to d-1.

 All the gates of the second-last layer of C2 compute t-
DNFs with probability ≥ 1 - s.(16pt)t.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∨ gates of the second-last layer of C2) ≤ s.

 Step 2: Apply a random restriction 𝝈2 on the n2
variables that leaves n3 = pn2 variables alive, where p
is same as before.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∨ gates of the second-last layer of C2) ≤ s.

 Step 2: Apply a random restriction 𝝈2 on the n2
variables that leaves n3 = pn2 variables alive, where p
is same as before.

 By the Switching lemma, probability that any of the t-
DNFs computed at the second-last layer of C2 cannot
be expressed as a t-CNF is ≤ s.(16pt)t.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∨ gates of the second-last layer of C2) ≤ s.

 Step 2: Apply a random restriction 𝝈2 on the n2
variables that leaves n3 = pn2 variables alive, where p
is same as before.

 By the Switching lemma, probability that any of the t-
DNFs computed at the second-last layer of C2 cannot
be expressed as a t-CNF is ≤ s.(16pt)t.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∨ gates of the second-last layer of C2) ≤ s.

 Step 2: Apply a random restriction 𝝈2 on the n2
variables that leaves n3 = pn2 variables alive, where p
is same as before.

 Replace the t-DNFs by the corresponding t-CNFs.

 Merge the ∧ gates of the second-last layer with the ∧
gates of the layer above. C3 be the resulting ckt.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∨ gates of the second-last layer of C2) ≤ s.

 Step 2: Apply a random restriction 𝝈2 on the n2
variables that leaves n3 = pn2 variables alive, where p
is same as before.

 The no. of ∧ gates of the second-last layer of the
resulting circuit C3 equals the no. of ∧ gates of the
third-last layer of C2. So, this no. is ≤ s (why?).

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∨ gates of the second-last layer of C2) ≤ s.

 Step 2: Apply a random restriction 𝝈2 on the n2
variables that leaves n3 = pn2 variables alive, where p
is same as before.

 Merging reduces the depth to d-2.

 All the gates of the second-last layer of C3 compute t-
CNFs with probability ≥ 1 - s.(16pt)t.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. # (∧ gates of the second-last layer of C3) ≤ s.

 Step 3: Apply a random restriction 𝝈3 on the n3
variables that leaves n4 = pn3 variables alive, where p
is same as before. Continue as before..

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. After Step d-2, we are left with a depth 2
circuit, i.e., a t-CNF or a t-DNF with probability ≥

 1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t.

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. After Step d-2, we are left with a depth 2
circuit, i.e., a t-CNF or a t-DNF with probability ≥

 1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t.

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4.

 Observe that by setting t more variables, we can now
fix the value of the circuit. But, recall that the value of
PARITY cannot be fixed by setting < n variables.

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. After Step d-2, we are left with a depth 2
circuit, i.e., a t-CNF or a t-DNF with probability ≥

 1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t.

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4.

 Hence,

 either 1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t ≤ 0,

 or pd-2n1 ≤ t .

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. After Step d-2, we are left with a depth 2
circuit, i.e., a t-CNF or a t-DNF with probability ≥

 1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t.

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4.

 By choosing t = O(n1/(d-1)) and p = 1/(160 t), we can
make sure that

 pd-2n1 > t . < ½

Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit C computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof. After Step d-2, we are left with a depth 2
circuit, i.e., a t-CNF or a t-DNF with probability ≥

 1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t.

 The number of variables alive is pd-2n1 ≥ (pd-2n)/4.

 Therefore, for t = O(n1/(d-1)) and p = 1/(160 t),

 1 - s.(d-2)(16pt)t - 2-𝛀(n) - s(3/4)t ≤ 0,

 s = exp(𝝮(n1/(d-1))).

