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Recap: The Parity function 

 PARITY(x1, x2, …, xn)  =  x1 ⊕ x2 ⊕ … ⊕ xn . 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

 

 Theorem. (Khrapchenko 1971) Any formula computing 
PARITY(x1, x2, …, xn) has size 𝛀(n2).  

 

 Can poly-size constant depth circuits compute 
PARITY?  No! 

 

 



Recap: Depth 2 & 3 circuits for Parity 

 Without loss of generality, a depth 2 circuit is either a 
DNF or a CNF. 

 

 Obs.  Any DNF computing PARITY has ≥ 2n-1 terms. 

 

 Obs. There’s a 2O(√n) size depth 3 circuit for PARITY. 

 

  



Recap: Depth d circuit for Parity 

 

 Obs. There’s a exp(n1/(d-1)) size depth d circuit for 
PARITY, where exp(x) = 2x.     (Homework) 

 

 

 Is the exp(n1/(d-1)) upper bound on the size of depth d 
circuits computing PARITY tight?    “Yes” 
 



Recap: Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 

 Furst, Saxe and Sipser showed a quasi-polynomial 
lower bound. 

 Ajtai showed an exponential lower bound, but the 
bound wasn’t optimal. 

 Hastad showed an exp(𝝮(n1/(d-1))) lower bound. 

 Rossman (2015) showed an optimal exp(𝝮(dn1/(d-1))) 
lower bound. 

 



Recap: Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 

 

 Gives a super-polynomial lower bound for depth d 
circuits for d up to o(log n). 

 

 A lower bound for circuits of depth d = O(log n) 
implies a Boolean formula lower bound! 

 

 



Recap: Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof idea. A random assignment to a “large” 
fraction of the variables makes a constant depth 
circuit of polynomial size evaluate to a constant (i.e., 
the circuit stops depending on the unset variables). 
On the other hand, we cannot make PARITY evaluate 
to a constant by setting less than n variables. 

 

 



Recap: Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof idea. A random assignment to a “large” 
fraction of the variables makes a constant depth 
circuit of polynomial size evaluate to a constant (i.e., 
the circuit stops depending on the unset variables).  

 

 We’ll prove this fact using Hastad’s Switching 
lemma. But first let us discuss some structural 
simplifications of depth d circuits. 

 



Recap: Random restrictions 

 A restriction 𝝈 is a partial assignment to a subset of the 
n variables. 

 

 A random restriction 𝝈 that leaves m variables 
alive/unset is obtained by picking a random subset S ⊆ 
[n] of size n-m and setting every variable in S to 0/1 
uniformly and independently. 

 

 Let f𝝈 denote the function obtained by applying the 
restriction 𝝈 on f. 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 

 We can interchange “CNF” and “DNF” in the above 
statement by applying the lemma on ¬f. 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 

 We can interchange “CNF” and “DNF” in the above 
statement by applying the lemma on ¬f. 

 

 We have used the lemma in the last lecture to prove 
the lower bound for AC0 circuits computing parity. 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof.  We’ll present a proof due to Razborov. 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Let A𝓁 be the set of restrictions that keeps 𝓁 
variables alive. Then, |A𝓁| = (  ).2n-𝓁. n 𝓁 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Let A𝓁 be the set of restrictions that keeps 𝓁 
variables alive. Then, |A𝓁| = (  ).2n-𝓁. Let Bm,k ⊆ Am be 
the set of “bad” restrictions, i.e., a 𝝈 ∈ Am is in Bm,k iff  
f𝝈 can’t be represented as a k-DNF. 

 We need to upper bound |Bm,k|. 

n 𝓁 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Let A𝓁 be the set of restrictions that keeps 𝓁 
variables alive. Then, |A𝓁| = (  ).2n-𝓁. Let Bm,k ⊆ Am be 
the set of “bad” restrictions, i.e., a 𝝈 ∈ Am is in Bm,k iff  
f𝝈 can’t be represented as a k-DNF. 

 We need to upper bound |Bm,k|. 

 This is done by giving an injective map from Bm,k to 
Am-k x U, where U = {0,1}k(log t + 2).    |U| = (4t)k.   

n 𝓁 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Then, |Bm,k| ≤ (     ).2n-m+k.(4t)k. and so 

   |Bm,k|/|Am| ≤ [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)].2k.(4t)k  

                   

n 
m-k 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Then, |Bm,k| ≤ (     ).2n-m+k.(4t)k. and so 

   |Bm,k|/|Am| ≤ [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)].2k.(4t)k  

                  ≤ (m/(n-m))k . 2k . (4t)k 

                  = (p/(1-p))k . 2k . (4t)k     (as m = pn) 

                  ≤ pk . 2k . 2k . (4t)k          (as p < ½ ) 

                  = (16pt)k . 

n 
m-k 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Next, we show an injection from Bm,k to Am-k x 
U, where U = {0,1}k(log t + 2).  



A definition and a notation 

 Definition. A min-term of a function g is a restriction 𝜋 
such that g𝜋 = 1, but no proper sub-restriction of 𝜋 
makes g evaluate to 1. 

 Obs. If g can’t be expressed as a k-DNF, then g has a 
min-term 𝜋 of width > k (i.e., 𝜋 assigns 0/1 values to 
more than k variables).          (Homework) 



A definition and a notation 

 Definition. A min-term of a function g is a restriction 𝜋 
such that g𝜋 = 1, but no proper sub-restriction of 𝜋 
makes g evaluate to 1. 

 Obs. If g can’t be expressed as a k-DNF, then g has a 
min-term 𝜋 of width > k (i.e., 𝜋 assigns 0/1 values to 
more than k variables).          (Homework) 

 Notation. If 𝝈 is a restriction that assigns 0/1 values to 
variables in S1 ⊆ [n] and 𝜋 is a restriction that assigns 
0/1 values to variables in S2 ⊆ [n]\S1, then 𝝈∘𝜋 is the 
“composed” restriction that assigns 0/1 values to S1 ⨃S2 consistent with 𝝈 and 𝜋.    |𝜋| := width of 𝜋. 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U :   (Overview) 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. We’ll carefully define a sub-
restriction 𝜋’ of 𝜋 of width k. 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U :   (Overview) 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. We’ll carefully define a sub-
restriction 𝜋’ of 𝜋 of width k. 

 Step 2: Using 𝜋’, we’ll carefully define a restriction 𝜌 that 
assigns 0/1 values to the same set of variables as 𝜋’.  

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U :   (Overview) 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. We’ll carefully define a sub-
restriction 𝜋’ of 𝜋 of width k. 

 Step 2: Using 𝜋’, we’ll carefully define a restriction 𝜌 that 
assigns 0/1 values to the same set of variables as 𝜋’.  

 Step 3: Using 𝜋’, define a u ∈ U.  Finally, 𝜒(𝝈) := (𝝈∘𝜌 , u). 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. Order the clauses of f, and order 
the ≤ t variables appearing within such a clause. 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 
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 A map 𝜒 from Bm,k to Am-k x U : 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. Order the clauses of f, and order 
the ≤ t variables appearing within such a clause. C1 be the 
first surviving clause in f𝝈 and 𝜋(1) the assignment to its 
surviving variables made by 𝜋.   

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. Order the clauses of f, and order 
the ≤ t variables appearing within such a clause. C1 be the 
first surviving clause in f𝝈 and 𝜋(1) the assignment to its 
surviving variables made by 𝜋. C2 be the first surviving clause 
in f𝝈∘𝜋(1) and 𝜋(2) the assignment to its surviving variables 
made by 𝜋.  

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. Order the clauses of f, and order 
the ≤ t variables appearing within such a clause. C1 be the 
first surviving clause in f𝝈 and 𝜋(1) the assignment to its 
surviving variables made by 𝜋. C2 be the first surviving clause 
in f𝝈∘𝜋(1) and 𝜋(2) the assignment to its surviving variables 
made by 𝜋. Continue like this..  Stop if |𝜋(1)∘…∘𝜋(r)| ≥ k . 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 1: If |𝜋(1)∘…∘𝜋(r)| > k, then “prune” 𝜋(r) by restricting 
it to the set of “smallest” variables in Cr so that  |𝜋(1)∘…∘𝜋
(r)| = k.   Define 𝜋’ := 𝜋(1)∘…∘𝜋(r);  |𝜋’| = k. 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 2: For i∈[r], let Si be the set of variables in the clause Ci 
that are assigned 0/1 values by 𝜋(i). |Si| = |𝜋(i)|. Let 𝜌(i) be the 
unique assignment to the variables in Si that makes the 
corresponding literals in Ci zero.   Define 𝜌 := 𝜌(1)∘…∘𝜌(r). 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 2: For i∈[r], let Si be the set of variables in the clause Ci 
that are assigned 0/1 values by 𝜋(i). |Si| = |𝜋(i)|. Let 𝜌(i) be the 
unique assignment to the variables in Si that makes the 
corresponding literals in Ci zero.   Define 𝜌 := 𝜌(1)∘…∘𝜌(r). 

 Remark*. 𝜋(i) and 𝜌(i) are assignments to the same set of 
variables Si.  Ci remains unsatisfied under 𝜌(i).  

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 3: For i∈[r], let u(i) be the string obtained by listing the 
indices (within the clause Ci) of the variables assigned by 𝜌(i) 
along with the values assigned to them by 𝜋(i).  

… u(i) 

log t bit index of a variable in Ci that is assigned by 𝜌(i)  

cell 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 3: For i∈[r], let u(i) be the string obtained by listing the 
indices (within the clause Ci) of the variables assigned by 𝜌(i) 
along with the values assigned to them by 𝜋(i).  

… u(i) 

0/1 value of the variable assigned by 𝜋(i)  



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 3: For i∈[r], let u(i) be the string obtained by listing the 
indices (within the clause Ci) of the variables assigned by 𝜌(i) 
along with the values assigned to them by 𝜋(i).  

… u(i) 

Delimiter bit = 1 for the first cell; 0 otherwise.  



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 3: For i∈[r], let u(i) be the string obtained by listing the 
indices (within the clause Ci) of the variables assigned by 𝜌(i) 
along with the values assigned to them by 𝜋(i). Define u by 
concatenating u(1), …, u(r) in order. Observe that |u| = k(log 
t + 2). Finally, 𝜒(𝝈) := (𝝈∘𝜌 , u). (Remark. The delimiter bits 
make it possible to extract u(i) from u.) 



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in 
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r)  is Ci .  

 Proof. Fix an i ∈ [r]. By construction, Ci is the first 
surviving clause in f𝝈∘𝜋(1)∘…∘𝜋(i-1). 



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in 
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r)  is Ci .  

 Proof. Fix an i ∈ [r]. By construction, Ci is the first 
surviving clause in f𝝈∘𝜋(1)∘…∘𝜋(i-1). Ci remains unsatisfied 
under 𝜌(i) (Remark*). Further, 𝜌(i+1),…, 𝜌(r) do not 
touch any variable of Ci. Hence, Ci is the first 
unsatisfied clause in f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r).   



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in 
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r)  is Ci .  

 Recovering 𝝈 from (𝝈∘𝜌 , u) : 

 Pick the first unsatisfied clause in f𝝈∘𝜌(1)∘…∘𝜌(r). This 
clause is C1 (Obs*). Now by looking at u(1), we can 
derive 𝜋(1). 
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Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in 
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r)  is Ci .  

 Recovering 𝝈 from (𝝈∘𝜌 , u) : 

 Pick the first unsatisfied clause in f𝝈∘𝜋(1)∘𝜌(2)∘…∘𝜌(r). This 
clause is C2 (Obs*). Now by looking at u(2), we can 
derive 𝜋(2). Construct 𝝈∘𝜋(1)∘𝜋(2)∘𝜌(3)∘…∘𝜌(r) 
from 𝝈∘𝜋(1)∘𝜌(2)∘…∘𝜌(r) and 𝜋(2). 

 



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in 
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r)  is Ci .  

 Recovering 𝝈 from (𝝈∘𝜌 , u) : 

 Continuing like this we can construct 𝝈∘𝜋(1)∘…∘𝜋 
(r) and also find 𝜋(1), …, 𝜋(r) in the process. From 
here, recovering 𝝈 is straightforward.  

 



 Ref. 
https://sites.math.rutgers.edu/~sk1233/courses/topics-
S13/lec3.pdf 



Probabilistic Turing Machines 



Randomized computation 

 So far, we have used deterministic TMs to model 
“real-world” computation. But, DTMs don’t have the 
ability to make random choices during a computation. 

 

 The usefulness of randomness in computation was 
realized as early as the 1940s when the first 
electronic computer, ENIAC, was developed.  
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“real-world” computation. But, DTMs don’t have the 
ability to make random choices during a computation. 

 

 The usefulness of randomness in computation was 
realized as early as the 1940s when the first 
electronic computer, ENIAC, was developed.  

The use of statistical methods in a computational 
model of a thermonuclear reaction for the ENIAC led 
to the invention of the Monte Carlo methods. 



Randomized computation 

 So far, we have used deterministic TMs to model 
“real-world” computation. But, DTMs don’t have the 
ability to make random choices during a computation. 

 

 The usefulness of randomness in computation was 
realized as early as the 1940s when the first 
electronic computer, ENIAC, was developed.  

 

 To study randomized computation, we need to give 
TMs the power of generating random numbers.  

 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 
1 with probability ½ 
0 with probability ½  
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number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  
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Xi+1  =  aXi + c  (mod m) 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 Many programming languages have built-in random 
number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  

 
Square an n bit number to get a 2n bit 
number and take the middle n bits. 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 Many programming languages have built-in random 
number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  

 To what extent a PRG is adequate is studied under 
the topic `Pseudorandomness’ in complexity theory. 

 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 Many programming languages have built-in random 
number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  

 We’ll assume that a TM can generate, or has access 
to, truly random bits/coins.  (We’ll touch upon “truly 
vs biased random bits” at end of the lecture.) 

 



Probabilistic Turing Machines 

 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). 
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T(|x|) steps regardless of its random choices. 

 



Probabilistic Turing Machines 

 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). M runs in T(n) time if M always halts within 
T(|x|) steps regardless of its random choices. 

 

 Note. PTMs and NTMs are syntatically similar – both 
have two transition functions.  
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 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). M runs in T(n) time if M always halts within 
T(|x|) steps regardless of its random choices. 

 

 Note. But, semantically, they are quite different – 
unlike NTMs, PTMs are meant to model realistic 
computation devices.  



Probabilistic Turing Machines 

 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). M runs in T(n) time if M always halts within 
T(|x|) steps regardless of its random choices. 

 

 Note.  The above definition allows a PTM M to not 
halt on some computation paths defined by its 
random choices (unless we explicitly say that M runs 
in T(n) time). More on this later when we define ZPP. 



Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 
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 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 
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 Clearly, P ⊆ BPP. 

c > 0 

Success probability 



Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 

 

 Definition.  BPP  = ∪ BPTIME (nc). 

 

 Clearly, P ⊆ BPP. 

 

c > 0 

Remark. The defn of 
class BPP is robust. The 
class remains unaltered if 
we replace 2/3 by any 
constant strictly greater 
than (i.e., bounded 
away from) ½. We’ll 
discuss this next. 
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 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 

 

 Definition.  BPP  = ∪ BPTIME (nc). 

 

 Clearly, P ⊆ BPP. 

 

c > 0 

Remark. The defn of 
class BPP is robust. The 
class remains unaltered if 
we replace 2/3 by any 
constant strictly greater 
than (i.e., bounded 
away from) ½. We’ll 
discuss this next. 

Bounded-error Probabilistic Polynomial-time  



Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 

 

 Definition.  BPP  = ∪ BPTIME (nc). 

 

 Clearly, P ⊆ BPP. 

 

c > 0 

Remark. Achieving 
success probability ½ is 
trivial for any language. If 
we replace ≥ 2/3 by > ½  
then the corresponding 
class is called PP, which is 
(presumably) larger than 
BPP.  More on PP later.  


