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Recap: The Parity function 

 PARITY(x1, x2, …, xn)  =  x1 ⊕ x2 ⊕ … ⊕ xn . 

 

 Fact. PARITY(x1, x2, …, xn) can be computed by a 
circuit of size O(n) and a formula of size O(n2).  

 

 Theorem. (Khrapchenko 1971) Any formula computing 
PARITY(x1, x2, …, xn) has size 𝛀(n2).  

 

 Can poly-size constant depth circuits compute 
PARITY?  No! 

 

 



Recap: Depth 2 & 3 circuits for Parity 

 Without loss of generality, a depth 2 circuit is either a 
DNF or a CNF. 

 

 Obs.  Any DNF computing PARITY has ≥ 2n-1 terms. 

 

 Obs. There’s a 2O(√n) size depth 3 circuit for PARITY. 

 

  



Recap: Depth d circuit for Parity 

 

 Obs. There’s a exp(n1/(d-1)) size depth d circuit for 
PARITY, where exp(x) = 2x.     (Homework) 

 

 

 Is the exp(n1/(d-1)) upper bound on the size of depth d 
circuits computing PARITY tight?    “Yes” 
 



Recap: Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 

 Furst, Saxe and Sipser showed a quasi-polynomial 
lower bound. 

 Ajtai showed an exponential lower bound, but the 
bound wasn’t optimal. 

 Hastad showed an exp(𝝮(n1/(d-1))) lower bound. 

 Rossman (2015) showed an optimal exp(𝝮(dn1/(d-1))) 
lower bound. 

 



Recap: Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 

 

 Gives a super-polynomial lower bound for depth d 
circuits for d up to o(log n). 

 

 A lower bound for circuits of depth d = O(log n) 
implies a Boolean formula lower bound! 

 

 



Recap: Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof idea. A random assignment to a “large” 
fraction of the variables makes a constant depth 
circuit of polynomial size evaluate to a constant (i.e., 
the circuit stops depending on the unset variables). 
On the other hand, we cannot make PARITY evaluate 
to a constant by setting less than n variables. 

 

 



Recap: Lower bound for depth d circuits 

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86) 
Any depth d circuit computing PARITY has size     
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor. 

 Proof idea. A random assignment to a “large” 
fraction of the variables makes a constant depth 
circuit of polynomial size evaluate to a constant (i.e., 
the circuit stops depending on the unset variables).  

 

 We’ll prove this fact using Hastad’s Switching 
lemma. But first let us discuss some structural 
simplifications of depth d circuits. 

 



Recap: Random restrictions 

 A restriction 𝝈 is a partial assignment to a subset of the 
n variables. 

 

 A random restriction 𝝈 that leaves m variables 
alive/unset is obtained by picking a random subset S ⊆ 
[n] of size n-m and setting every variable in S to 0/1 
uniformly and independently. 

 

 Let f𝝈 denote the function obtained by applying the 
restriction 𝝈 on f. 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 

 We can interchange “CNF” and “DNF” in the above 
statement by applying the lemma on ¬f. 



The Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 

 We can interchange “CNF” and “DNF” in the above 
statement by applying the lemma on ¬f. 

 

 We have used the lemma in the last lecture to prove 
the lower bound for AC0 circuits computing parity. 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof.  We’ll present a proof due to Razborov. 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Let A𝓁 be the set of restrictions that keeps 𝓁 
variables alive. Then, |A𝓁| = (  ).2n-𝓁. n 𝓁 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Let A𝓁 be the set of restrictions that keeps 𝓁 
variables alive. Then, |A𝓁| = (  ).2n-𝓁. Let Bm,k ⊆ Am be 
the set of “bad” restrictions, i.e., a 𝝈 ∈ Am is in Bm,k iff  
f𝝈 can’t be represented as a k-DNF. 

 We need to upper bound |Bm,k|. 

n 𝓁 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Let A𝓁 be the set of restrictions that keeps 𝓁 
variables alive. Then, |A𝓁| = (  ).2n-𝓁. Let Bm,k ⊆ Am be 
the set of “bad” restrictions, i.e., a 𝝈 ∈ Am is in Bm,k iff  
f𝝈 can’t be represented as a k-DNF. 

 We need to upper bound |Bm,k|. 

 This is done by giving an injective map from Bm,k to 
Am-k x U, where U = {0,1}k(log t + 2).    |U| = (4t)k.   

n 𝓁 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Then, |Bm,k| ≤ (     ).2n-m+k.(4t)k. and so 

   |Bm,k|/|Am| ≤ [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)].2k.(4t)k  

                   

n 
m-k 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Then, |Bm,k| ≤ (     ).2n-m+k.(4t)k. and so 

   |Bm,k|/|Am| ≤ [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)].2k.(4t)k  

                  ≤ (m/(n-m))k . 2k . (4t)k 

                  = (p/(1-p))k . 2k . (4t)k     (as m = pn) 

                  ≤ pk . 2k . 2k . (4t)k          (as p < ½ ) 

                  = (16pt)k . 

n 
m-k 



Proof of the Switching Lemma 

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables 
alive, where p < ½.  Then, 

      Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k. 

 Proof. Next, we show an injection from Bm,k to Am-k x 
U, where U = {0,1}k(log t + 2).  



A definition and a notation 

 Definition. A min-term of a function g is a restriction 𝜋 
such that g𝜋 = 1, but no proper sub-restriction of 𝜋 
makes g evaluate to 1. 

 Obs. If g can’t be expressed as a k-DNF, then g has a 
min-term 𝜋 of width > k (i.e., 𝜋 assigns 0/1 values to 
more than k variables).          (Homework) 



A definition and a notation 

 Definition. A min-term of a function g is a restriction 𝜋 
such that g𝜋 = 1, but no proper sub-restriction of 𝜋 
makes g evaluate to 1. 

 Obs. If g can’t be expressed as a k-DNF, then g has a 
min-term 𝜋 of width > k (i.e., 𝜋 assigns 0/1 values to 
more than k variables).          (Homework) 

 Notation. If 𝝈 is a restriction that assigns 0/1 values to 
variables in S1 ⊆ [n] and 𝜋 is a restriction that assigns 
0/1 values to variables in S2 ⊆ [n]\S1, then 𝝈∘𝜋 is the 
“composed” restriction that assigns 0/1 values to S1 ⨃S2 consistent with 𝝈 and 𝜋.    |𝜋| := width of 𝜋. 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U :   (Overview) 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. We’ll carefully define a sub-
restriction 𝜋’ of 𝜋 of width k. 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U :   (Overview) 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. We’ll carefully define a sub-
restriction 𝜋’ of 𝜋 of width k. 

 Step 2: Using 𝜋’, we’ll carefully define a restriction 𝜌 that 
assigns 0/1 values to the same set of variables as 𝜋’.  

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U :   (Overview) 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. We’ll carefully define a sub-
restriction 𝜋’ of 𝜋 of width k. 

 Step 2: Using 𝜋’, we’ll carefully define a restriction 𝜌 that 
assigns 0/1 values to the same set of variables as 𝜋’.  

 Step 3: Using 𝜋’, define a u ∈ U.  Finally, 𝜒(𝝈) := (𝝈∘𝜌 , u). 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. Order the clauses of f, and order 
the ≤ t variables appearing within such a clause. 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 
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 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. Order the clauses of f, and order 
the ≤ t variables appearing within such a clause. C1 be the 
first surviving clause in f𝝈 and 𝜋(1) the assignment to its 
surviving variables made by 𝜋.   

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. Order the clauses of f, and order 
the ≤ t variables appearing within such a clause. C1 be the 
first surviving clause in f𝝈 and 𝜋(1) the assignment to its 
surviving variables made by 𝜋. C2 be the first surviving clause 
in f𝝈∘𝜋(1) and 𝜋(2) the assignment to its surviving variables 
made by 𝜋.  

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest 
min-term of f𝝈 of width > k. Order the clauses of f, and order 
the ≤ t variables appearing within such a clause. C1 be the 
first surviving clause in f𝝈 and 𝜋(1) the assignment to its 
surviving variables made by 𝜋. C2 be the first surviving clause 
in f𝝈∘𝜋(1) and 𝜋(2) the assignment to its surviving variables 
made by 𝜋. Continue like this..  Stop if |𝜋(1)∘…∘𝜋(r)| ≥ k . 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 1: If |𝜋(1)∘…∘𝜋(r)| > k, then “prune” 𝜋(r) by restricting 
it to the set of “smallest” variables in Cr so that  |𝜋(1)∘…∘𝜋
(r)| = k.   Define 𝜋’ := 𝜋(1)∘…∘𝜋(r);  |𝜋’| = k. 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 2: For i∈[r], let Si be the set of variables in the clause Ci 
that are assigned 0/1 values by 𝜋(i). |Si| = |𝜋(i)|. Let 𝜌(i) be the 
unique assignment to the variables in Si that makes the 
corresponding literals in Ci zero.   Define 𝜌 := 𝜌(1)∘…∘𝜌(r). 

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 2: For i∈[r], let Si be the set of variables in the clause Ci 
that are assigned 0/1 values by 𝜋(i). |Si| = |𝜋(i)|. Let 𝜌(i) be the 
unique assignment to the variables in Si that makes the 
corresponding literals in Ci zero.   Define 𝜌 := 𝜌(1)∘…∘𝜌(r). 

 Remark*. 𝜋(i) and 𝜌(i) are assignments to the same set of 
variables Si.  Ci remains unsatisfied under 𝜌(i).  

 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 3: For i∈[r], let u(i) be the string obtained by listing the 
indices (within the clause Ci) of the variables assigned by 𝜌(i) 
along with the values assigned to them by 𝜋(i).  

… u(i) 

log t bit index of a variable in Ci that is assigned by 𝜌(i)  

cell 



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 3: For i∈[r], let u(i) be the string obtained by listing the 
indices (within the clause Ci) of the variables assigned by 𝜌(i) 
along with the values assigned to them by 𝜋(i).  

… u(i) 

0/1 value of the variable assigned by 𝜋(i)  



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 3: For i∈[r], let u(i) be the string obtained by listing the 
indices (within the clause Ci) of the variables assigned by 𝜌(i) 
along with the values assigned to them by 𝜋(i).  

… u(i) 

Delimiter bit = 1 for the first cell; 0 otherwise.  



Injection from Bm,k to Am-k x U 

 f is a t-CNF on n variables. U = {0,1}k(log t + 2). 

 A𝓁 = set of restrictions that keeps 𝓁 variables alive. 

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}. 

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k. 

 A map 𝜒 from Bm,k to Am-k x U : 

 Step 3: For i∈[r], let u(i) be the string obtained by listing the 
indices (within the clause Ci) of the variables assigned by 𝜌(i) 
along with the values assigned to them by 𝜋(i). Define u by 
concatenating u(1), …, u(r) in order. Observe that |u| = k(log 
t + 2). Finally, 𝜒(𝝈) := (𝝈∘𝜌 , u). (Remark. The delimiter bits 
make it possible to extract u(i) from u.) 



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in 
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r)  is Ci .  

 Proof. Fix an i ∈ [r]. By construction, Ci is the first 
surviving clause in f𝝈∘𝜋(1)∘…∘𝜋(i-1). 



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in 
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r)  is Ci .  

 Proof. Fix an i ∈ [r]. By construction, Ci is the first 
surviving clause in f𝝈∘𝜋(1)∘…∘𝜋(i-1). Ci remains unsatisfied 
under 𝜌(i) (Remark*). Further, 𝜌(i+1),…, 𝜌(r) do not 
touch any variable of Ci. Hence, Ci is the first 
unsatisfied clause in f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r).   



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in 
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r)  is Ci .  

 Recovering 𝝈 from (𝝈∘𝜌 , u) : 

 Pick the first unsatisfied clause in f𝝈∘𝜌(1)∘…∘𝜌(r). This 
clause is C1 (Obs*). Now by looking at u(1), we can 
derive 𝜋(1). 

 



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in 
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r)  is Ci .  

 Recovering 𝝈 from (𝝈∘𝜌 , u) : 

 Pick the first unsatisfied clause in f𝝈∘𝜌(1)∘…∘𝜌(r). This 
clause is C1 (Obs*). Now by looking at u(1), we can 
derive 𝜋(1). Construct 𝝈∘𝜋(1)∘𝜌(2)∘…∘𝜌(r) from 𝝈∘𝜌(1)∘…∘𝜌(r) and 𝜋(1). 

 



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in 
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r)  is Ci .  

 Recovering 𝝈 from (𝝈∘𝜌 , u) : 

 Pick the first unsatisfied clause in f𝝈∘𝜋(1)∘𝜌(2)∘…∘𝜌(r). This 
clause is C2 (Obs*). Now by looking at u(2), we can 
derive 𝜋(2). Construct 𝝈∘𝜋(1)∘𝜋(2)∘𝜌(3)∘…∘𝜌(r) 
from 𝝈∘𝜋(1)∘𝜌(2)∘…∘𝜌(r) and 𝜋(2). 

 



Injection from Bm,k to Am-k x U 

 We’ll now show that it is possible to recover 𝝈 from  
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection. 

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in 
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r)  is Ci .  

 Recovering 𝝈 from (𝝈∘𝜌 , u) : 

 Continuing like this we can construct 𝝈∘𝜋(1)∘…∘𝜋 
(r) and also find 𝜋(1), …, 𝜋(r) in the process. From 
here, recovering 𝝈 is straightforward.  

 



 Ref. 
https://sites.math.rutgers.edu/~sk1233/courses/topics-
S13/lec3.pdf 



Probabilistic Turing Machines 



Randomized computation 

 So far, we have used deterministic TMs to model 
“real-world” computation. But, DTMs don’t have the 
ability to make random choices during a computation. 

 

 The usefulness of randomness in computation was 
realized as early as the 1940s when the first 
electronic computer, ENIAC, was developed.  
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“real-world” computation. But, DTMs don’t have the 
ability to make random choices during a computation. 

 

 The usefulness of randomness in computation was 
realized as early as the 1940s when the first 
electronic computer, ENIAC, was developed.  

The use of statistical methods in a computational 
model of a thermonuclear reaction for the ENIAC led 
to the invention of the Monte Carlo methods. 



Randomized computation 

 So far, we have used deterministic TMs to model 
“real-world” computation. But, DTMs don’t have the 
ability to make random choices during a computation. 

 

 The usefulness of randomness in computation was 
realized as early as the 1940s when the first 
electronic computer, ENIAC, was developed.  

 

 To study randomized computation, we need to give 
TMs the power of generating random numbers.  

 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 
1 with probability ½ 
0 with probability ½  
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 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 Many programming languages have built-in random 
number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  
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Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 Many programming languages have built-in random 
number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  

 
Square an n bit number to get a 2n bit 
number and take the middle n bits. 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 Many programming languages have built-in random 
number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  

 To what extent a PRG is adequate is studied under 
the topic `Pseudorandomness’ in complexity theory. 

 



Randomized computation 

 How realistic such a randomized TM model would be 
depends on our ability to generate bits that are 
“close” to being truly random. 

 Many programming languages have built-in random 
number generator functions. 

 Examples of pseudo-random number generators are 
linear congruential generators and von Neumann’s 
middle-square method.  

 We’ll assume that a TM can generate, or has access 
to, truly random bits/coins.  (We’ll touch upon “truly 
vs biased random bits” at end of the lecture.) 

 



Probabilistic Turing Machines 

 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). 
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(reject). M runs in T(n) time if M always halts within 
T(|x|) steps regardless of its random choices. 

 



Probabilistic Turing Machines 

 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). M runs in T(n) time if M always halts within 
T(|x|) steps regardless of its random choices. 

 

 Note. PTMs and NTMs are syntatically similar – both 
have two transition functions.  



Probabilistic Turing Machines 

 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). M runs in T(n) time if M always halts within 
T(|x|) steps regardless of its random choices. 

 

 Note. But, semantically, they are quite different – 
unlike NTMs, PTMs are meant to model realistic 
computation devices.  



Probabilistic Turing Machines 

 Definition. A probabilistic Turing machine (PTM) M has 
two transition functions 𝛿0 and 𝛿1. At each step of 
computation on input x∈{0,1}*, M applies one of 𝛿0 
and 𝛿1 uniformly at random (independent of the 
previous steps). M outputs either 1 (accept) or 0 
(reject). M runs in T(n) time if M always halts within 
T(|x|) steps regardless of its random choices. 

 

 Note.  The above definition allows a PTM M to not 
halt on some computation paths defined by its 
random choices (unless we explicitly say that M runs 
in T(n) time). More on this later when we define ZPP. 



Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 
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Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 

 

 Definition.  BPP  = ∪ BPTIME (nc). 

 

 Clearly, P ⊆ BPP. 

 

c > 0 

Remark. The defn of 
class BPP is robust. The 
class remains unaltered if 
we replace 2/3 by any 
constant strictly greater 
than (i.e., bounded 
away from) ½. We’ll 
discuss this next. 
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 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 

 

 Definition.  BPP  = ∪ BPTIME (nc). 

 

 Clearly, P ⊆ BPP. 

 

c > 0 

Remark. The defn of 
class BPP is robust. The 
class remains unaltered if 
we replace 2/3 by any 
constant strictly greater 
than (i.e., bounded 
away from) ½. We’ll 
discuss this next. 

Bounded-error Probabilistic Polynomial-time  



Class BPP 

 Definition. A PTM M decides a language L in time T(n) 
if M runs in T(n) time, and for every x∈{0,1}*,  

                    Pr[M(x) = L(x)] ≥ 2/3. 

 

 Definition. A language L is in BPTIME(T(n)) if there’s 
PTM that decides L in O(T(n)) time. 

 

 Definition.  BPP  = ∪ BPTIME (nc). 

 

 Clearly, P ⊆ BPP. 

 

c > 0 

Remark. Achieving 
success probability ½ is 
trivial for any language. If 
we replace ≥ 2/3 by > ½  
then the corresponding 
class is called PP, which is 
(presumably) larger than 
BPP.  More on PP later.  


