Computational Complexity Theory

Lecture |7: Switching lemma; PTMs
Class BPP

Department of Computer Science,
Indian Institute of Science

Recap: The Parity function

e PARITY (X}, X5, ..., X)) = X, D x, D ... D x,.

o Fact. PARITY(x,, x5, ..., x,) can be computed by a
circuit of size O(n) and a formula of size O(n?).

o [heorem. (Khrapchenko 19/71) Any formula computing
PARITY (x|, X, ..., x_) has size (n?).

e Can poly-size constant depth circuits compute
PARITY? No!

Recap: Depth 2 & 3 circuits for Parity

e Without loss of generality, a depth 2 circuit is either a
DNF or a CNF.

o Obs. Any DNF computing PARITY has = 2" terms.

o Obs.There’s a 2°0' size depth 3 circuit for PARITY.

Recap: Depth d circuit for Parity

o Obs. There’s a exp(n'/¢!) size depth d circuit for
PARITY, where exp(x) = 2%,

e Is the exp(n'¢-)) upper bound on the size of depth d
circuits computing PARITY tight! “Yes”

Recap: Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Furst, Saxe and Sipser showed a quasi-polynomial
lower bound.

e Ajtai showed an exponential lower bound, but the
bound wasn’t optimal.

» Hastad showed an exp(€Q(n'1)) lower bound.

* Rossman (2015) showed an optimal exp(Q(dn'/(¢-1))
lower bound.

Recap: Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

e Gives a super-polynomial lower bound for depth d
circuits for d up to o(log n).

* A lower bound for circuits of depth d = O(log n)
implies a Boolean formula lower bound!

Recap: Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).
On the other hand, we cannot make PARITY evaluate
to a constant by setting less than n variables.

Recap: Lower bound for depth d circuits

Any depth d circuit computing PARITY has size
exp(Q4(n"4-N)), where Q () is hiding a d*' factor.

* Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).

e We'll prove this fact using Hastad’'s Switching
lemma. But first let us discuss some structural
simplifications of depth d circuits.

Recap: Random restrictions

* A restriction o is a partial assighment to a subset of the
n variables.

e A random restriction o that leaves m variables
alive/unset is obtained by picking a random subset S C
[n] of size n-m and setting every variable in S to 0/|
uniformly and independently.

e Let f, denote the function obtained by applying the
restriction o on f.

The Switching Lemma

e Switching lemma. Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

The Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

* We can interchange “CNF”’ and “DNF” in the above
statement by applying the lemma on —f.

The Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

* We can interchange “CNF”’ and “DNF” in the above
statement by applying the lemma on —f.

* We have used the lemma in the last lecture to prove
the lower bound for AC circuits computing parity.

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

* Proof. We'll present a proof due to Razborov.

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

e Proof. Let A, be the set of restrictions that keeps ¥
variables alive. Then, |A,| = (}).2".

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

e Proof. Let A, be the set of restrictions that keeps ¥
variables alive. Then, |A,| = (,).2"*. Let B, S A, be

m,k —

the set of “bad” restrictions,i.e,a 0 € A_isin B iff
f_can’t be represented as a k-DNF.

* We need to upper bound |B

m,I<|°

Proof of the Switching Lemma

° Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

e Proof. Let A, be the set of restrictions that keeps ¥
variables alive. Then, |A,| = (,).2"*. Let B, S A, be

m,k —

the set of “bad” restrictions,i.e,a 0 € A_isin B iff
f_can’t be represented as a k-DNF.

* We need to upper bound |B

m,I<|°
* This is done by giving an injective map from B, to
A_ . x U, where U = {0, [}logt*2) " |U| = (4t)*.

Proof of the Switching Lemma

e Switching lemma. Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.
* Proof. Then, |B_ | = ()2 (4t) and so

1B J/|A| = [(m! .(n-nr:)!) [((m-k)! . (n-m+k)!)].2k.(4t)*

m,k

Proof of the Switching Lemma

e Switching lemma. Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.
* Proof. Then, |B_ | = ()2 (4t) and so
B [/JA | < [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)].2% (4t)
< (m/(n-m))k . 2k . (4t)k
= (p/(1-p))* . 2¢ . (4t) (as m = pn)
< pk.2k .2k (4e)k (asp < '2)
= (l16pt)~.

m,k

Proof of the Switching Lemma

e Switching lemma. Let f be a t-CNF on n variables and
o a random restriction that leaves m = pn variables
alive, where p < 2. Then,

Pr_ [f can’t be represented as a k-DNF] < (I6pt)~.

* Proof. Next, we show an injection from B, to A, X
U, where U = {0, | }(logt*2),

A definition and a notation

° A min-term of a function g is a restriction 7
such that g_ = |, but no proper sub-restriction of 7
makes g evaluate to |.

° If ¢ can’t be expressed as a k-DNF, then g has a
min-term 77 of width > k (i.e., 7 assigns O/l values to
more than k variables). ()

A definition and a notation

° A min-term of a function g is a restriction 7
such that g_ = |, but no proper sub-restriction of 7

makes g evaluate to |.

° If ¢ can’t be expressed as a k-DNF, then g has a
min-term 77 of width > k (i.e., 7t assigns 0/] values to

more than k variables).

()

° If o is a restriction that assigns 0/ values to
variables in S, € [n] and 7 is a restriction that assigns
O/l values to variables in S, € [n]\S|, then|oom
“composed” restriction that assigns 0/| values to S,

1JS, consistent with ¢ and .

|1r| := width of ni

is the

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
e Obs.If 0 € B then f, has a min-term of width > k.

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o €B

e Amap y fromB_, toA_, xU: (Overview)

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. We’ll carefully define a sub-
restriction 77’ of 7 of width k.

then f_ has a min-term of width > k.

m, k

Injection from B_, to A, x U

m, Kk

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
° If o €B

e Amap y fromB_

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. We’ll carefully define a sub-
restriction 77’ of 7 of width k.

then f_ has a min-term of width > k.
toA . xU: (Overview)

m, k

> Step 2: Using ', we'll carefully define a restriction p that
assigns 0/1 values to the same set of variables as 77'.

Injection from B_, to A, x U

m, Kk

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.

* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o € B, then f, has a min-term of width > k.

e Amap y fromB_, toA_, xU: (Overview)

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. We’ll carefully define a sub-
restriction 77’ of 7 of width k.

> Step 2: Using ', we'll carefully define a restriction p that
assigns 0/1 values to the same set of variables as 77'.

> Step 3: Using 7’, define a u € U. Finally, y(o) := (o°p , u).

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o € B, then f_, has a min-term of width > k.

e Amap y fromB_ toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. Order the clauses of f,and order
the =< t variables appearing within such a clause.

m, k

m-k

Injection from B_, to A, x U

m, Kk

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)
e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.

o If o € B, then f_, has a min-term of width > k.

e Amap y fromB_ toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. Order the clauses of f,and order
the = t variables appearing within such a clause. C, be the
first surviving clause in f, and 7(l) the assignment to its
surviving variables made by 7.

m, k

m-k

Injection from B_, to A, x U

m, Kk

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)
e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.

o If o € B, then f_, has a min-term of width > k.

e Amap y fromB_ toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. Order the clauses of f,and order
the = t variables appearing within such a clause. C, be the
first surviving clause in f, and 7(l) the assignment to its
surviving variables made by 7. C, be the first surviving clause

in f,..) and 1(2) the assignment to its surviving variables

made by 7.

m, k

m-k

Injection from B_, to A, x U

m, Kk

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)
e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.

o If o € B, then f_, has a min-term of width > k.

e Amap y fromB_ toA , xU:

» Step l:For o € B, let ™ be the lexicographically smallest
min-term of f_ of width > k. Order the clauses of f,and order
the = t variables appearing within such a clause. C, be the
first surviving clause in f, and 7(l) the assignment to its
surviving variables made by 7. C, be the first surviving clause
in f and 7(2) the assighment to its surviving variables

gor(l)

made by 7. Continue like this.. Stop if |7z(1)o...om(r)| 2 k.

m, k

m-k

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
e Obs.If o0 € B, then f, has a min-term of width > k.

e Amap y fromB_ toA , xU:

> Step l:If |(l)o...om(r)| > k, then “prune” 7(r) by restricting
it to the set of “smallest” variables in C_so that |m(l)o...om
(r)| = k. Define " := 1(l)o...0om(r); |7’| = k.

m, k

m-k

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.

* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o €B

e Amap y fromB_ toA , xU:

> Step 2:For i€[r], let S, be the set of variables in the clause C,
that are assigned 0/| values by 7z(i). |S.| = |7(i)|. Let p(i) be the
unigue assignment to the variables in S. that makes the
corresponding literals in C. zero. Define p := p(l)o...op(r).

then f_ has a min-term of width > k.

m, k

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o € B, then f_, has a min-term of width > k.

e Amap y fromB_ toA , xU:

> Step 2:For i€[r], let S, be the set of variables in the clause C,
that are assigned 0/| values by 7z(i). |S.| = |7(i)|. Let p(i) be the
unigue assignment to the variables in S. that makes the
corresponding literals in C. zero. Define p := p(l)o...op(r).

m, k

m-k

> 7(i) and p(i) are assignments to the same set of
variables S. C. remains unsatisfied under p(i).

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
e Obs.If o0 € B, then f, has a min-term of width > k.

e Amap y fromB_ toA , xU:

> Step 3:For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C)) of the variables assigned by p(i)

along with the values assigned to them by 7z(i).
cell «

m, k

u(i)

¥

log t bit index of a variable in C. that is assigned by p(i)

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
e Obs.If o0 € B, then f, has a min-term of width > k.

e Amap y fromB_ toA , xU:

> Step 3:For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C)) of the variables assigned by p(i)
along with the values assigned to them by 7z(i).

m, k

u(i)

¥

0/l value of the variable assigned by (i)

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
e Obs.If o0 € B, then f, has a min-term of width > k.

e Amap y fromB_ toA , xU:

> Step 3:For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C)) of the variables assigned by p(i)
along with the values assigned to them by 7z(i).

m, k

u(i)

¥

Delimiter bit = | for the first cell; 0 otherwise.

Injection from B_, to A, x U

m, k

o fis a t-CNF on n variables. U = {0, |}(cgt*?2)

e A, = set of restrictions that keeps ¢ variables alive.
* B, ={0o €A, :f, can’t be represented as a k-DNF}.
o If o € B, then f, has a min-term of width > k.

e Amap y fromB_ toA , xU:

> Step 3:For i€[r], let u(i) be the string obtained by listing the
indices (within the clause C)) of the variables assigned by p(i)
along with the values assigned to them by 7(i). Define u by
concatenating u(l), ..., u(r) in order. Observe that |u| = k(log
t + 2). Finally, y(o) = (o°p , u). (The delimiter bits
make it possible to extract u(i) from u.)

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.
o For every i € [r], the first “unsatisfied” clause in

facn(l)c...cn(i-I)op(i)O...op(r) is C;.

* Proof. Fix an i € [r]. By construction, C. is the first

surviving clause in f . . ori)

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

o Obs™ For every i € [r], the first “unsatisfied” clause in

facn(l)c...cn(i-I)op(i)O...op(r) is C;.

* Proof. Fix an i € [r]. By construction, C. is the first
surviving clause in f . . .z C remains unsatisfied
under p(i) (Remark®). Further, p(i+l),..., p(r) do not
touch any variable of C. Hence, C is the first

unsatisfied clause in f . . orii)ep()e.. op(r):

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

o Obs™ For every i € [r], the first “unsatisfied” clause in
f) is G,

oott(l)o...om(i-1)op(i)o...op(r
e Recovering o from (o°p ,u) :

> Pick the first unsatisfied clause in f;, ;). ., This
clause is C, (Obs™). Now by looking at u(l), we can
derive 17(1).

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

o Obs™ For every i € [r], the first “unsatisfied” clause in

facn(l)c...on(i-I)op(i)O...op(r) is C,.

e Recovering o from (o°p ,u) :

> Pick the first unsatisfied clause in f;,, . ., This
clause is C, (Obs™). Now by looking at u(l), we can

derive 17(1). Construct gom(l)op(2)e...op(r) from oo
p(l)o...op(r) and m(l).

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

o Obs™ For every i € [r], the first “unsatisfied” clause in

facn(l)c...on(i-I)op(i)O...op(r) is C,.

e Recovering o from (o°p ,u) :

> Pick the first unsatisfied clause in f;.;1y.,2)0. . op(r)- This
clause is C, (Obs™). Now by looking at u(2), we can
derive m(2). Construct oom(l)om(2)op(3)o...op(r)
from ogom(1)op(2)o...op(r) and 1(2).

Injection from B, to A, x U

* We'll now show that it is possible to recover o from
(aop ,u) which will then imply y is an injection.

o Obs™ For every i € [r], the first “unsatisfied” clause in
f is C..
) i

oott(l)o...om(i-1)op(i)o...op(r
e Recovering o from (o°p ,u) :

> Continuing like this we can construct gom(l)o...om
(r) and also find 7(l), ..., 7(r) in the process. From
here, recovering o is straightforward.

https://sites.math.rutgers.edu/~sk1233/courses/topics-
S|3/lec3.pdf

Probabilistic Turing Machines

Randomized computation

* So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

e The usefulness of randomness in computation was

realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

Randomized computation

* So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

e The usefulness of randomness in computation was
realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

»The use of statistical methods in a computational

model of a thermonuclear reaction for the ENIAC led
to the invention of the Monte Carlo methods.

Randomized computation

* So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

e The usefulness of randomness in computation was
realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

* To study randomized computation, we need to give
TMs the power of generating random numbers.

Randomized computation

* How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

l

| with probability />
0 with probability >

Randomized computation

* How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

e Many programming languages have built-in random
number generator functions.

e Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

Randomized computation

* How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

e Many programming languages have built-in random
number generator functions.

e Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s

middle-square method. \

Xy = aX, + ¢ (mod m)

Randomized computation

* How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

e Many programming languages have built-in random
number generator functions.

e Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

\

Square an n bit number to get a 2n bit
number and take the middle n bits.

Randomized computation

* How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

e Many programming languages have built-in random
number generator functions.

e Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

* To what extent a PRG is adequate is studied under
the topic "Pseudorandomness’ in complexity theory.

Randomized computation

* How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

e Many programming languages have built-in random
number generator functions.

e Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

 WEe'll assume that a TM can generate, or has access
to, truly random bits/coins. (We'll touch upon “truly
vs biased random bits” at end of the lecture.)

Probabilistic Turing Machines

A probabilistic Turing machine (PTM) M has
two transition functions 6, and 0,. At each step of
computation on input x€{0,1}*, M applies one of §,
and 0, uniformly at random (independent of the

previous steps). M outputs either | (accept) or 0
(reject).

Probabilistic Turing Machines

A probabilistic Turing machine (PTM) M has
two transition functions 6, and 0,. At each step of
computation on input x€{0,1}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

Probabilistic Turing Machines

A probabilistic Turing machine (PTM) M has
two transition functions 6, and 0,. At each step of
computation on input x€{0,1}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

PTMs and NTMs are syntatically similar — both
have two transition functions.

Probabilistic Turing Machines

° A probabilistic Turing machine (PTM) M has
two transition functions 6, and 0,. At each step of
computation on input x€{0,1}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

° But, semantically, they are quite different —
unlike NTMs, PTMs are meant to model realistic
computation devices.

Probabilistic Turing Machines

° A probabilistic Turing machine (PTM) M has
two transition functions 6, and 0,. At each step of
computation on input x€{0,1}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

° The above definition allows a PTM M to not
halt on some computation paths defined by its
random choices (unless we explicitly say that M runs
in T(n) time). More on this later when we define ZPP.

Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x€{0, | }*

Pr[M(x) = L(x)] = 2/3.

e Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x€{0, | }*

Pr[M(x) = L(x)] = 2/3.

e Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

e Definition. BPP = U BPTIME (n°).

c>0

e Clearly, P < BPP.

Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x€{0, | }*

PrM(x) = L(x)] = 2/3.

Success probability

e Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

e Definition. BPP = U BPTIME (n°).

c>0

e Clearly, P < BPP.

Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x€{0, | }*,

Pr[M(x) = L(x)] 2

e Definition. A language L is in BPTIME
PTM that decides L in O(T(n)) time.

e Definition. BPP = U BPTIME (n°).

e Clearly, P < BPP.

c>0

)) if there’s

Remark. The defn of
class BPP is robust. The
class remains unaltered if
we replace 2/3 by any
constant strictly greater
than (i.e, bounded
away from) 2. We'll
discuss this next.

Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x€{0, | }*,

Pr[M(x) = L(x)] 2

o Definition. A language L is in BPTIME(™Nn)) if there’s

PTM that decides L in O(T(n)) time.

Remark. The defn of
class BPP is robust. The

e Definition. BPP = U BPTIME (nc). class remains unaltered if

‘l' c>0 we replace 2/3 by any

constant strictly greater
than (i.e, bounded
e Clearly, P < BPF. away from) "2 We'll

discuss this next.

Bounded-error Probabilistic Polynomial-time

Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x€{0, | }*,

Pr[M(x) = L(x)] 2

e Definition. A language L is in BPTIME
PTM that decides L in O(T(n)) time.

)) if there’s

Remark. Achieving
success probability 2 is
e Definition. BPP = U BPTIME (n<), |l for any language. If

c>0 we replace = 2/3 by > />
then the corresponding
class is called PF, which is

o Clearly’ P C BPP (presumably) larger than
BPP. More on PP later.

