Computational Complexity Theory

Lecture 17: Switching lemma; PTMs Class BPP

Department of Computer Science, Indian Institute of Science

Recap: The Parity function

• PARITY $(x_1, x_2, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n$.

- Fact. $PARITY(x_1, x_2, ..., x_n)$ can be computed by a circuit of size O(n) and a formula of size $O(n^2)$.
- Theorem. (*Khrapchenko 1971*) Any formula computing PARITY($x_1, x_2, ..., x_n$) has size $\Omega(n^2)$.
- Can poly-size <u>constant depth</u> circuits compute PARITY? No!

Recap: Depth 2 & 3 circuits for Parity

- Without loss of generality, a depth 2 circuit is either a DNF or a CNF.
- Obs. Any DNF computing PARITY has $\geq 2^{n-1}$ terms.
- Obs. There's a $2^{O(\sqrt{n})}$ size depth 3 circuit for PARITY.

Recap: Depth d circuit for Parity

 Obs. There's a exp(n^{1/(d-1)}) size depth d circuit for PARITY, where exp(x) = 2^x. (Homework)

 Is the exp(n^{1/(d-1)}) upper bound on the size of depth d circuits computing PARITY tight? "Yes"

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d⁻¹ factor.
- Furst, Saxe and Sipser showed a quasi-polynomial lower bound.
- Ajtai showed an exponential lower bound, but the bound wasn't optimal.
- Hastad showed an $\exp(\Omega(n^{1/(d-1)}))$ lower bound.
- Rossman (2015) showed an optimal $\exp(\Omega(dn^{1/(d-1)}))$ lower bound.

• Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d⁻¹ factor.

- Gives a super-polynomial lower bound for depth d circuits for d up to o(log n).
- A lower bound for circuits of depth d = O(log n) implies a Boolean formula lower bound!

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d⁻¹ factor.
- Proof idea. A random assignment to a "large" fraction of the variables makes a constant depth circuit of polynomial size evaluate to a constant (i.e., the circuit stops depending on the unset variables). On the other hand, we cannot make PARITY evaluate to a constant by setting less than n variables.

- Theorem. (Furst, Saxe, Sipser '81; Ajtai '83; Hastad '86) Any depth d circuit computing PARITY has size $\exp(\Omega_d(n^{1/(d-1)}))$, where $\Omega_d()$ is hiding a d⁻¹ factor.
- Proof idea. A random assignment to a "large" fraction of the variables makes a constant depth circuit of polynomial size evaluate to a constant (i.e., the circuit stops depending on the unset variables).
- We'll prove this fact using Hastad's <u>Switching</u>
 <u>lemma</u>. But first let us discuss some structural simplifications of depth d circuits.

Recap: Random restrictions

- A <u>restriction</u> σ is a partial assignment to a subset of the **n** variables.
- A <u>random restriction</u> σ that leaves m variables alive/unset is obtained by picking a random subset S ⊆
 [n] of size n-m and setting every variable in S to 0/1 uniformly and independently.
- Let f_{σ} denote the function obtained by applying the restriction σ on f.

The Switching Lemma

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

The Switching Lemma

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

 We can interchange "CNF" and "DNF" in the above statement by applying the lemma on ¬f.

The Switching Lemma

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

- We can interchange "CNF" and "DNF" in the above statement by applying the lemma on ¬f.
- We have used the lemma in the last lecture to prove the lower bound for AC⁰ circuits computing parity.

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

• Proof. We'll present a proof due to Razborov.

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

• Proof. Let A_{ℓ} be the set of restrictions that keeps ℓ variables alive. Then, $|A_{\ell}| = \binom{n}{\ell} . 2^{n-\ell}$.

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

- Proof. Let A_{ℓ} be the set of restrictions that keeps ℓ variables alive. Then, $|A_{\ell}| = \binom{n}{\ell} .2^{n-\ell}$. Let $B_{m,k} \subseteq A_m$ be the set of "bad" restrictions, i.e., a $\sigma \in A_m$ is in $B_{m,k}$ iff f_{σ} can't be represented as a k-DNF.
- We need to upper bound $|B_{m,k}|$.

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

- Proof. Let A_{ℓ} be the set of restrictions that keeps ℓ variables alive. Then, $|A_{\ell}| = \binom{n}{\ell} .2^{n-\ell}$. Let $B_{m,k} \subseteq A_m$ be the set of "bad" restrictions, i.e., a $\sigma \in A_m$ is in $B_{m,k}$ iff f_{σ} can't be represented as a k-DNF.
- We need to upper bound $|B_{m,k}|$.
- This is done by giving an <u>injective map</u> from $B_{m,k}$ to $A_{m-k} \ge U$, where $U = \{0, I\}^{k(\log t + 2)}$. $|U| = (4t)^k$.

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

• Proof. Then, $|B_{m,k}| \le {\binom{n}{m-k}}.2^{n-m+k}.(4t)^k$. and so $|B_{m,k}|/|A_m| \le [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)].2^k.(4t)^k$

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k. • Proof. Then, $|B_{m,k}| \leq {n \choose m-k} \cdot 2^{n-m+k} \cdot (4t)^k$. and so $|B_{m,k}|/|A_m| \le [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)].2^k.(4t)^k$ $\leq (m/(n-m))^k \cdot 2^k \cdot (4t)^k$ $= (p/(1-p))^{k} \cdot 2^{k} \cdot (4t)^{k}$ (as m = pn) $\leq p^{k} \cdot 2^{k} \cdot 2^{k} \cdot (4t)^{k}$ $(as p < \frac{1}{2})$ $= (|6pt)^{k}$.

• Switching lemma. Let f be a t-CNF on n variables and σ a random restriction that leaves m = pn variables alive, where p < $\frac{1}{2}$. Then,

 \Pr_{σ} [f_{σ} can't be represented as a k-DNF] \leq (16pt)^k.

• Proof. Next, we show an injection from $B_{m,k}$ to $A_{m-k} \times U$, where $U = \{0, I\}^{k(\log t + 2)}$.

A definition and a notation

- Definition. A <u>min-term</u> of a function g is a restriction π such that $g_{\pi} = 1$, but **no** <u>proper sub-restriction</u> of π makes g evaluate to 1.
- Obs. If g can't be expressed as a k-DNF, then g has a min-term π of <u>width</u> > k (i.e., π assigns 0/1 values to more than k variables). (Homework)

A definition and a notation

- Definition. A <u>min-term</u> of a function g is a restriction π such that $g_{\pi} = 1$, but no proper sub-restriction of π makes g evaluate to 1.
- Obs. If g can't be expressed as a k-DNF, then g has a min-term π of width > k (i.e., π assigns 0/1 values to more than k variables). (Homework)
- Notation. If σ is a restriction that assigns 0/1 values to variables in $S_1 \subseteq [n]$ and π is a restriction that assigns 0/1 values to variables in $S_2 \subseteq [n] \setminus S_1$, then $\sigma \circ \pi$ is the "composed" restriction that assigns 0/1 values to $S_1 \cup S_2$ consistent with σ and π . $[\pi] :=$ width of π .

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{ \sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF} \}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{\sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF}\}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$: (Overview)
- Step I: For $\sigma \in B_{m,k}$, let π be the lexicographically smallest min-term of f_{σ} of width > k. We'll carefully define a <u>sub-restriction π </u> of π of width k.

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{\sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF}\}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$: (Overview)
- Step I: For $\sigma \in B_{m,k}$, let π be the lexicographically smallest min-term of f_{σ} of width > k. We'll carefully define a <u>sub-restriction π </u> of π of width k.
- > **Step 2:** Using π ', we'll carefully define a <u>restriction ρ </u> that assigns 0/1 values to the same set of variables as π '.

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{\sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF}\}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$: (Overview)
- Step I: For $\sigma \in B_{m,k}$, let π be the lexicographically smallest min-term of f_{σ} of width > k. We'll carefully define a <u>sub-restriction π </u> of π of width k.
- > Step 2: Using π ', we'll carefully define a <u>restriction ρ </u> that assigns 0/1 values to the same set of variables as π '.
- > **Step 3:** Using π ', <u>define a u</u> ∈ U. Finally, $\chi(\sigma) := (\sigma \circ \rho, u)$.

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{\sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF}\}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$:
- Step I: For $\sigma \in B_{m,k}$, let π be the lexicographically smallest min-term of f_{σ} of width > k. Order the clauses of f, and order the $\leq t$ variables appearing within such a clause.

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{ \sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF} \}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$:
- Step I: For $\sigma \in B_{m,k}$, let π be the lexicographically smallest min-term of f_{σ} of width > k. Order the clauses of f, and order the $\leq t$ variables appearing within such a clause. C_1 be the first <u>surviving</u> clause in f_{σ} and $\pi(1)$ the assignment to its surviving variables made by π .

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{ \sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF} \}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$:
- Step I: For $\sigma \in B_{m,k}$, let π be the lexicographically smallest min-term of f_{σ} of width > k. Order the clauses of f, and order the \leq t variables appearing within such a clause. C_1 be the first surviving clause in f_{σ} and $\pi(1)$ the assignment to its surviving variables made by π . C_2 be the first surviving clause in $f_{\sigma \circ \pi(1)}$ and $\pi(2)$ the assignment to its surviving variables made by π .

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{ \sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF} \}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$:
- Step I: For $\sigma \in B_{m,k}$, let π be the lexicographically smallest min-term of f_{σ} of width > k. Order the clauses of f, and order the \leq t variables appearing within such a clause. C_1 be the first surviving clause in f_{σ} and $\pi(1)$ the assignment to its surviving variables made by π . C_2 be the first surviving clause in $f_{\sigma \circ \pi(1)}$ and $\pi(2)$ the assignment to its surviving variables made by π . Continue like this.. Stop if $|\pi(1) \circ ... \circ \pi(r)| \geq k$.

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{ \sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF} \}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$:
- Step I: If $|\pi(1) \circ ... \circ \pi(r)| > k$, then "prune" $\pi(r)$ by restricting it to the set of "smallest" variables in C_r so that $|\pi(1) \circ ... \circ \pi$ (r)| = k. Define $\pi' := \pi(1) \circ ... \circ \pi(r)$; $|\pi'| = k$.

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{ \sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF} \}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$:
- Step 2: For $i \in [r]$, let S_i be the set of variables in the clause C_i that are assigned 0/1 values by $\pi(i)$. $|S_i| = |\pi(i)|$. Let $\rho(i)$ be the <u>unique</u> assignment to the variables in S_i that makes the corresponding literals in C_i zero. Define $\rho := \rho(1) \circ ... \circ \rho(r)$.

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{ \sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF} \}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$:
- Step 2: For $i \in [r]$, let S_i be the set of variables in the clause C_i that are assigned 0/1 values by $\pi(i)$. $|S_i| = |\pi(i)|$. Let $\rho(i)$ be the <u>unique</u> assignment to the variables in S_i that makes the corresponding literals in C_i zero. Define $\rho := \rho(1) \circ ... \circ \rho(r)$.
- > Remark*. $\pi(i)$ and $\rho(i)$ are assignments to the same set of variables S_i. C_i remains unsatisfied under $\rho(i)$.

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{ \sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF} \}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$:
- Step 3: For $i \in [r]$, let u(i) be the string obtained by listing the indices (*within* the clause C_i) of the variables assigned by $\rho(i)$ along with the values assigned to them by $\pi(i)$.

log t bit index of a variable in C_i that is assigned by $\rho(i)$

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{ \sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF} \}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$:
- Step 3: For $i \in [r]$, let u(i) be the string obtained by listing the indices (*within* the clause C_i) of the variables assigned by $\rho(i)$ along with the values assigned to them by $\pi(i)$.

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{ \sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF} \}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$:
- Step 3: For $i \in [r]$, let u(i) be the string obtained by listing the indices (*within* the clause C_i) of the variables assigned by $\rho(i)$ along with the values assigned to them by $\pi(i)$.

- f is a t-CNF on n variables. $U = \{0, I\}^{k(\log t + 2)}$.
- A_{ℓ} = set of restrictions that keeps ℓ variables alive.
- $B_{m,k} = \{ \sigma \in A_m : f_\sigma \text{ can't be represented as a k-DNF} \}.$
- Obs. If $\sigma \in B_{m,k}$ then f_{σ} has a min-term of width > k.
- A map χ from $B_{m,k}$ to $A_{m-k} \times U$:
- Step 3: For $i \in [r]$, let u(i) be the string obtained by listing the indices (*within* the clause C_i) of the variables assigned by $\rho(i)$ along with the values assigned to them by $\pi(i)$. Define u by concatenating u(1), ..., u(r) in order. Observe that $|u| = k(\log t + 2)$. Finally, $\chi(\sigma) := (\sigma \circ \rho, u)$. (Remark. The delimiter bits make it possible to extract u(i) from u.)

• We'll now show that it is possible to recover σ from $(\sigma \circ \rho, \mathbf{u})$ which will then imply χ is an injection.

- We'll now show that it is possible to recover σ from $(\sigma \circ \rho, \mathbf{u})$ which will then imply χ is an injection.
- Obs*. For every i ∈ [r], the first "unsatisfied" clause in f_{σ∘π(1)∘...∘π(i-1)∘ρ(i)∘...∘ρ(r)} is C_i.
- Proof. Fix an $i \in [r]$. By construction, C_i is the first surviving clause in $f_{\sigma \circ \pi(1) \circ \dots \circ \pi(i-1)}$.

- We'll now show that it is possible to recover σ from $(\sigma \circ \rho, \mathbf{u})$ which will then imply χ is an injection.
- Obs*. For every i ∈ [r], the first "unsatisfied" clause in f_{σ∘π(1)∘...∘π(i-1)∘ρ(i)∘...∘ρ(r)} is C_i.
- Proof. Fix an i ∈ [r]. By construction, C_i is the first surviving clause in f_{σ∘π(1)∘...∘π(i-1)}. C_i remains unsatisfied under ρ(i) (Remark*). Further, ρ(i+1),..., ρ(r) do not touch any variable of C_i. Hence, C_i is the first unsatisfied clause in f<sub>σ∘π(1)∘...∘π(i-1)∘ρ(i)∘...∘ρ(r).
 </sub>

- We'll now show that it is possible to recover σ from $(\sigma \circ \rho, \mathbf{u})$ which will then imply χ is an injection.
- Obs*. For every $i \in [r]$, the first "unsatisfied" clause in $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1) \circ \rho(i) \circ \ldots \circ \rho(r)}$ is C_i .
- Recovering σ from $(\sigma \circ \rho, u)$:
- > Pick the first unsatisfied clause in $f_{\sigma \circ \rho(1) \circ ... \circ \rho(r)}$. This clause is C_1 (Obs*). Now by looking at u(1), we can derive $\pi(1)$.

- We'll now show that it is possible to recover σ from $(\sigma \circ \rho, \mathbf{u})$ which will then imply χ is an injection.
- Obs*. For every $i \in [r]$, the first "unsatisfied" clause in $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1) \circ \rho(i) \circ \ldots \circ \rho(r)}$ is C_i .
- Recovering σ from $(\sigma \circ \rho, u)$:
- > Pick the first unsatisfied clause in $f_{\sigma \circ \rho(1) \circ ... \circ \rho(r)}$. This clause is C_1 (Obs*). Now by looking at u(1), we can derive $\pi(1)$. Construct $\sigma \circ \pi(1) \circ \rho(2) \circ ... \circ \rho(r)$ from $\sigma \circ \rho(1) \circ ... \circ \rho(r)$ and $\pi(1)$.

- We'll now show that it is possible to recover σ from $(\sigma \circ \rho, \mathbf{u})$ which will then imply χ is an injection.
- Obs*. For every $i \in [r]$, the first "unsatisfied" clause in $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1) \circ \rho(i) \circ \ldots \circ \rho(r)}$ is C_i .
- Recovering $\boldsymbol{\sigma}$ from $(\boldsymbol{\sigma} \circ \rho, \mathbf{u})$:
- > Pick the first unsatisfied clause in $f_{\sigma \circ \pi(1) \circ \rho(2) \circ \ldots \circ \rho(r)}$. This clause is C_2 (Obs*). Now by looking at u(2), we can derive $\pi(2)$. Construct $\sigma \circ \pi(1) \circ \pi(2) \circ \rho(3) \circ \ldots \circ \rho(r)$ from $\sigma \circ \pi(1) \circ \rho(2) \circ \ldots \circ \rho(r)$ and $\pi(2)$.

- We'll now show that it is possible to recover σ from $(\sigma \circ \rho, \mathbf{u})$ which will then imply χ is an injection.
- Obs*. For every $i \in [r]$, the first "unsatisfied" clause in $f_{\sigma \circ \pi(1) \circ \ldots \circ \pi(i-1) \circ \rho(i) \circ \ldots \circ \rho(r)}$ is C_i .
- Recovering σ from $(\sigma \circ \rho, u)$:
- > Continuing like this we can construct $\sigma \circ \pi(1) \circ ... \circ \pi$ (r) and also find $\pi(1), ..., \pi(r)$ in the process. From here, recovering σ is straightforward.

• Ref.

https://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec3.pdf

- So far, we have used deterministic TMs to model "real-world" computation. But, DTMs don't have the ability to make <u>random choices</u> during a computation.
- The usefulness of randomness in computation was realized as early as the 1940s when the first electronic computer, ENIAC, was developed.

- So far, we have used deterministic TMs to model "real-world" computation. But, DTMs don't have the ability to make <u>random choices</u> during a computation.
- The usefulness of randomness in computation was realized as early as the 1940s when the first electronic computer, ENIAC, was developed.
 - The use of statistical methods in a computational model of a thermonuclear reaction for the ENIAC led to the invention of the **Monte Carlo methods**.

- So far, we have used deterministic TMs to model "real-world" computation. But, DTMs don't have the ability to make <u>random choices</u> during a computation.
- The usefulness of randomness in computation was realized as early as the 1940s when the first electronic computer, ENIAC, was developed.
- To study randomized computation, we need to give TMs the power of generating random numbers.

 How realistic such a randomized TM model would be depends on our ability to generate bits that are "close" to being <u>truly</u> random.

> I with probability $\frac{1}{2}$ 0 with probability $\frac{1}{2}$

- How realistic such a randomized TM model would be depends on our ability to generate bits that are "close" to being truly random.
- Many programming languages have built-in random number generator functions.
- Examples of pseudo-random number generators are <u>linear congruential generators</u> and von Neumann's <u>middle-square method</u>.

- How realistic such a randomized TM model would be depends on our ability to generate bits that are "close" to being truly random.
- Many programming languages have built-in random number generator functions.
- Examples of pseudo-random number generators are <u>linear congruential generators</u> and von Neumann's <u>middle-square method</u>.

 $X_{i+1} = aX_i + c \pmod{m}$

- How realistic such a randomized TM model would be depends on our ability to generate bits that are "close" to being truly random.
- Many programming languages have built-in random number generator functions.
- Examples of pseudo-random number generators are <u>linear congruential generators</u> and von Neumann's <u>middle-square method</u>.

Square an n bit number to get a 2n bit number and take the middle n bits.

- How realistic such a randomized TM model would be depends on our ability to generate bits that are "close" to being truly random.
- Many programming languages have built-in random number generator functions.
- Examples of pseudo-random number generators are <u>linear congruential generators</u> and von Neumann's <u>middle-square method</u>.
- To what extent a PRG is adequate is studied under the topic `*Pseudorandomness*' in complexity theory.

- How realistic such a randomized TM model would be depends on our ability to generate bits that are "close" to being truly random.
- Many programming languages have built-in random number generator functions.
- Examples of pseudo-random number generators are <u>linear congruential generators</u> and von Neumann's <u>middle-square method</u>.
- We'll assume that a TM can generate, or has access to, truly random bits/coins. (We'll touch upon "truly vs biased random bits" at end of the lecture.)

Definition. A probabilistic Turing machine (PTM) M has two transition functions δ₀ and δ₁. At each step of computation on input x∈{0,1}*, M applies one of δ₀ and δ₁ uniformly at random (independent of the previous steps). M outputs either I (accept) or 0 (reject).

Definition. A probabilistic Turing machine (PTM) M has two transition functions δ₀ and δ₁. At each step of computation on input x∈{0,1}*, M applies one of δ₀ and δ₁ uniformly at random (independent of the previous steps). M outputs either I (accept) or 0 (reject). M runs in T(n) time if M always halts within T(|x|) steps <u>regardless of its random choices</u>.

- Definition. A probabilistic Turing machine (PTM) M has two transition functions δ₀ and δ₁. At each step of computation on input x∈{0,1}*, M applies one of δ₀ and δ₁ uniformly at random (independent of the previous steps). M outputs either I (accept) or 0 (reject). M runs in T(n) time if M always halts within T(|x|) steps regardless of its random choices.
- Note. PTMs and NTMs are syntatically similar both have two transition functions.

- Definition. A probabilistic Turing machine (PTM) M has two transition functions δ₀ and δ₁. At each step of computation on input x∈{0,1}*, M applies one of δ₀ and δ₁ uniformly at random (independent of the previous steps). M outputs either I (accept) or 0 (reject). M runs in T(n) time if M always halts within T(|x|) steps regardless of its random choices.
- Note. But, semantically, they are quite different unlike NTMs, PTMs are meant to model realistic computation devices.

- Definition. A probabilistic Turing machine (PTM) M has two transition functions δ₀ and δ₁. At each step of computation on input x∈{0,1}*, M applies one of δ₀ and δ₁ uniformly at random (independent of the previous steps). M outputs either I (accept) or 0 (reject). M runs in T(n) time if M always halts within T(|x|) steps regardless of its random choices.
- Note. The above definition allows a PTM M to not halt on some computation paths defined by its random choices (unless we explicitly say that M runs in T(n) time). More on this later when we define ZPP.

- Definition. A PTM M <u>decides</u> a language L in time T(n) if M runs in T(n) time, and for every x∈{0,1}*, Pr[M(x) = L(x)] ≥ 2/3.
- Definition. A language L is in BPTIME(T(n)) if there's PTM that decides L in O(T(n)) time.

- Definition. A PTM M <u>decides</u> a language L in time T(n) if M runs in T(n) time, and for every $x \in \{0, 1\}^*$, $\Pr[M(x) = L(x)] \ge 2/3$.
- Definition. A language L is in BPTIME(T(n)) if there's PTM that decides L in O(T(n)) time.
- Definition. BPP = $\bigcup_{c>0}$ BPTIME (n^c).
- Clearly, $P \subseteq BPP$.

Definition. A PTM M <u>decides</u> a language L in time T(n) if M runs in T(n) time, and for every x∈{0,1}*,

 $\Pr[M(x) = L(x)] \ge 2/3.$

Success probability

- Definition. A language L is in BPTIME(T(n)) if there's PTM that decides L in O(T(n)) time.
- Definition. BPP = $\bigcup_{c>0}$ BPTIME (n^c).
- Clearly, $P \subseteq BPP$.

- Definition. A PTM M <u>decides</u> a language L in time T(n) if M runs in T(n) time, and for every x∈{0,1}*,
 Pr[M(x) = L(x)] ≥ 2/3.
- Definition. A language L is in BPTIME(T(n)) if there's PTM that decides L in O(T(n)) time.
- Definition. BPP = $\bigcup_{c>0}$ BPTIME (n^c).
- Clearly, $P \subseteq BPP$.

Remark. The defn of class BPP is robust. The class remains unaltered if we replace 2/3 by any constant strictly greater than (i.e., <u>bounded</u> <u>away</u> from) ¹/₂. We'll discuss this next.

- Definition. A PTM M <u>decides</u> a language L in time T(n) if M runs in T(n) time, and for every x∈{0,1}*,
 Pr[M(x) = L(x)] ≥ 2/3.
- Definition. A language L is in BPTIME(T(n)) if there's PTM that decides L in O(T(n)) time.
- Definition. BPP = $\bigcup_{c > 0}$ BPTIME (n^c). Bounded-error Probabilistic Polynomial-time
- Clearly, $P \subseteq BPP$.

Remark. The defn of class BPP is robust. The class remains unaltered if we replace 2/3 by any constant strictly greater than (i.e., <u>bounded</u> <u>away</u> from) ¹/₂. We'll discuss this next.

- Definition. A PTM M <u>decides</u> a language L in time T(n) if M runs in T(n) time, and for every x∈{0,1}*,
 Pr[M(x) = L(x)] ≥ 2/3.
- Definition. A language L is in BPTIME(T(n)) if there's PTM that decides L in O(T(n)) time.
- Definition. BPP = $\bigcup_{c>0}$ BPTIME (n^c).
- Clearly, $P \subseteq BPP$.

Remark. Achieving success probability $\frac{1}{2}$ is trivial for any language. If we replace $\geq 2/3$ by $> \frac{1}{2}$ then the corresponding class is called PP, which is (presumably) larger than BPP. More on PP later.