
Computational Complexity Theory

 Lecture 17: Switching lemma; PTMs

 Class BPP

Department of Computer Science,

Indian Institute of Science

Recap: The Parity function

 PARITY(x1, x2, …, xn) = x1 ⊕ x2 ⊕ … ⊕ xn .

 Fact. PARITY(x1, x2, …, xn) can be computed by a
circuit of size O(n) and a formula of size O(n2).

 Theorem. (Khrapchenko 1971) Any formula computing
PARITY(x1, x2, …, xn) has size 𝛀(n2).

 Can poly-size constant depth circuits compute
PARITY? No!

Recap: Depth 2 & 3 circuits for Parity

 Without loss of generality, a depth 2 circuit is either a
DNF or a CNF.

 Obs. Any DNF computing PARITY has ≥ 2n-1 terms.

 Obs. There’s a 2O(√n) size depth 3 circuit for PARITY.

Recap: Depth d circuit for Parity

 Obs. There’s a exp(n1/(d-1)) size depth d circuit for
PARITY, where exp(x) = 2x. (Homework)

 Is the exp(n1/(d-1)) upper bound on the size of depth d
circuits computing PARITY tight? “Yes”

Recap: Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Furst, Saxe and Sipser showed a quasi-polynomial
lower bound.

 Ajtai showed an exponential lower bound, but the
bound wasn’t optimal.

 Hastad showed an exp(𝝮(n1/(d-1))) lower bound.

 Rossman (2015) showed an optimal exp(𝝮(dn1/(d-1)))
lower bound.

Recap: Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Gives a super-polynomial lower bound for depth d
circuits for d up to o(log n).

 A lower bound for circuits of depth d = O(log n)
implies a Boolean formula lower bound!

Recap: Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).
On the other hand, we cannot make PARITY evaluate
to a constant by setting less than n variables.

Recap: Lower bound for depth d circuits

 Theorem. (Furst, Saxe, Sipser ’81; Ajtai ’83; Hastad ’86)
Any depth d circuit computing PARITY has size
exp(𝝮d(n

1/(d-1))), where 𝝮d() is hiding a d-1 factor.

 Proof idea. A random assignment to a “large”
fraction of the variables makes a constant depth
circuit of polynomial size evaluate to a constant (i.e.,
the circuit stops depending on the unset variables).

 We’ll prove this fact using Hastad’s Switching
lemma. But first let us discuss some structural
simplifications of depth d circuits.

Recap: Random restrictions

 A restriction 𝝈 is a partial assignment to a subset of the
n variables.

 A random restriction 𝝈 that leaves m variables
alive/unset is obtained by picking a random subset S ⊆
[n] of size n-m and setting every variable in S to 0/1
uniformly and independently.

 Let f𝝈 denote the function obtained by applying the
restriction 𝝈 on f.

The Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

The Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

 We can interchange “CNF” and “DNF” in the above
statement by applying the lemma on ¬f.

The Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

 We can interchange “CNF” and “DNF” in the above
statement by applying the lemma on ¬f.

 We have used the lemma in the last lecture to prove
the lower bound for AC0 circuits computing parity.

Proof of the Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

 Proof. We’ll present a proof due to Razborov.

Proof of the Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

 Proof. Let A𝓁 be the set of restrictions that keeps 𝓁
variables alive. Then, |A𝓁| = ().2n-𝓁. n 𝓁

Proof of the Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

 Proof. Let A𝓁 be the set of restrictions that keeps 𝓁
variables alive. Then, |A𝓁| = ().2n-𝓁. Let Bm,k ⊆ Am be
the set of “bad” restrictions, i.e., a 𝝈 ∈ Am is in Bm,k iff
f𝝈 can’t be represented as a k-DNF.

 We need to upper bound |Bm,k|.

n 𝓁

Proof of the Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

 Proof. Let A𝓁 be the set of restrictions that keeps 𝓁
variables alive. Then, |A𝓁| = ().2n-𝓁. Let Bm,k ⊆ Am be
the set of “bad” restrictions, i.e., a 𝝈 ∈ Am is in Bm,k iff
f𝝈 can’t be represented as a k-DNF.

 We need to upper bound |Bm,k|.

 This is done by giving an injective map from Bm,k to
Am-k x U, where U = {0,1}k(log t + 2). |U| = (4t)k.

n 𝓁

Proof of the Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

 Proof. Then, |Bm,k| ≤ ().2n-m+k.(4t)k. and so

 |Bm,k|/|Am| ≤ [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)].2k.(4t)k

n
m-k

Proof of the Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

 Proof. Then, |Bm,k| ≤ ().2n-m+k.(4t)k. and so

 |Bm,k|/|Am| ≤ [(m! . (n-m)!) / ((m-k)! . (n-m+k)!)].2k.(4t)k

 ≤ (m/(n-m))k . 2k . (4t)k

 = (p/(1-p))k . 2k . (4t)k (as m = pn)

 ≤ pk . 2k . 2k . (4t)k (as p < ½)

 = (16pt)k .

n
m-k

Proof of the Switching Lemma

 Switching lemma. Let f be a t-CNF on n variables and 𝝈 a random restriction that leaves m = pn variables
alive, where p < ½. Then,

 Pr𝝈 [f𝝈 can’t be represented as a k-DNF] ≤ (16pt)k.

 Proof. Next, we show an injection from Bm,k to Am-k x
U, where U = {0,1}k(log t + 2).

A definition and a notation

 Definition. A min-term of a function g is a restriction 𝜋
such that g𝜋 = 1, but no proper sub-restriction of 𝜋
makes g evaluate to 1.

 Obs. If g can’t be expressed as a k-DNF, then g has a
min-term 𝜋 of width > k (i.e., 𝜋 assigns 0/1 values to
more than k variables). (Homework)

A definition and a notation

 Definition. A min-term of a function g is a restriction 𝜋
such that g𝜋 = 1, but no proper sub-restriction of 𝜋
makes g evaluate to 1.

 Obs. If g can’t be expressed as a k-DNF, then g has a
min-term 𝜋 of width > k (i.e., 𝜋 assigns 0/1 values to
more than k variables). (Homework)

 Notation. If 𝝈 is a restriction that assigns 0/1 values to
variables in S1 ⊆ [n] and 𝜋 is a restriction that assigns
0/1 values to variables in S2 ⊆ [n]\S1, then 𝝈∘𝜋 is the
“composed” restriction that assigns 0/1 values to S1 ⨃S2 consistent with 𝝈 and 𝜋. |𝜋| := width of 𝜋.

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U : (Overview)

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest
min-term of f𝝈 of width > k. We’ll carefully define a sub-
restriction 𝜋’ of 𝜋 of width k.

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U : (Overview)

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest
min-term of f𝝈 of width > k. We’ll carefully define a sub-
restriction 𝜋’ of 𝜋 of width k.

 Step 2: Using 𝜋’, we’ll carefully define a restriction 𝜌 that
assigns 0/1 values to the same set of variables as 𝜋’.

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U : (Overview)

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest
min-term of f𝝈 of width > k. We’ll carefully define a sub-
restriction 𝜋’ of 𝜋 of width k.

 Step 2: Using 𝜋’, we’ll carefully define a restriction 𝜌 that
assigns 0/1 values to the same set of variables as 𝜋’.

 Step 3: Using 𝜋’, define a u ∈ U. Finally, 𝜒(𝝈) := (𝝈∘𝜌 , u).

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U :

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest
min-term of f𝝈 of width > k. Order the clauses of f, and order
the ≤ t variables appearing within such a clause.

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U :

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest
min-term of f𝝈 of width > k. Order the clauses of f, and order
the ≤ t variables appearing within such a clause. C1 be the
first surviving clause in f𝝈 and 𝜋(1) the assignment to its
surviving variables made by 𝜋.

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U :

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest
min-term of f𝝈 of width > k. Order the clauses of f, and order
the ≤ t variables appearing within such a clause. C1 be the
first surviving clause in f𝝈 and 𝜋(1) the assignment to its
surviving variables made by 𝜋. C2 be the first surviving clause
in f𝝈∘𝜋(1) and 𝜋(2) the assignment to its surviving variables
made by 𝜋.

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U :

 Step 1: For 𝝈 ∈ Bm,k, let 𝜋 be the lexicographically smallest
min-term of f𝝈 of width > k. Order the clauses of f, and order
the ≤ t variables appearing within such a clause. C1 be the
first surviving clause in f𝝈 and 𝜋(1) the assignment to its
surviving variables made by 𝜋. C2 be the first surviving clause
in f𝝈∘𝜋(1) and 𝜋(2) the assignment to its surviving variables
made by 𝜋. Continue like this.. Stop if |𝜋(1)∘…∘𝜋(r)| ≥ k .

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U :

 Step 1: If |𝜋(1)∘…∘𝜋(r)| > k, then “prune” 𝜋(r) by restricting
it to the set of “smallest” variables in Cr so that |𝜋(1)∘…∘𝜋
(r)| = k. Define 𝜋’ := 𝜋(1)∘…∘𝜋(r); |𝜋’| = k.

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U :

 Step 2: For i∈[r], let Si be the set of variables in the clause Ci
that are assigned 0/1 values by 𝜋(i). |Si| = |𝜋(i)|. Let 𝜌(i) be the
unique assignment to the variables in Si that makes the
corresponding literals in Ci zero. Define 𝜌 := 𝜌(1)∘…∘𝜌(r).

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U :

 Step 2: For i∈[r], let Si be the set of variables in the clause Ci
that are assigned 0/1 values by 𝜋(i). |Si| = |𝜋(i)|. Let 𝜌(i) be the
unique assignment to the variables in Si that makes the
corresponding literals in Ci zero. Define 𝜌 := 𝜌(1)∘…∘𝜌(r).

 Remark*. 𝜋(i) and 𝜌(i) are assignments to the same set of
variables Si. Ci remains unsatisfied under 𝜌(i).

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U :

 Step 3: For i∈[r], let u(i) be the string obtained by listing the
indices (within the clause Ci) of the variables assigned by 𝜌(i)
along with the values assigned to them by 𝜋(i).

… u(i)

log t bit index of a variable in Ci that is assigned by 𝜌(i)

cell

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U :

 Step 3: For i∈[r], let u(i) be the string obtained by listing the
indices (within the clause Ci) of the variables assigned by 𝜌(i)
along with the values assigned to them by 𝜋(i).

… u(i)

0/1 value of the variable assigned by 𝜋(i)

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U :

 Step 3: For i∈[r], let u(i) be the string obtained by listing the
indices (within the clause Ci) of the variables assigned by 𝜌(i)
along with the values assigned to them by 𝜋(i).

… u(i)

Delimiter bit = 1 for the first cell; 0 otherwise.

Injection from Bm,k to Am-k x U

 f is a t-CNF on n variables. U = {0,1}k(log t + 2).

 A𝓁 = set of restrictions that keeps 𝓁 variables alive.

 Bm,k = {𝝈 ∈ Am : f𝝈 can’t be represented as a k-DNF}.

 Obs. If 𝝈 ∈ Bm,k then f𝝈 has a min-term of width > k.

 A map 𝜒 from Bm,k to Am-k x U :

 Step 3: For i∈[r], let u(i) be the string obtained by listing the
indices (within the clause Ci) of the variables assigned by 𝜌(i)
along with the values assigned to them by 𝜋(i). Define u by
concatenating u(1), …, u(r) in order. Observe that |u| = k(log
t + 2). Finally, 𝜒(𝝈) := (𝝈∘𝜌 , u). (Remark. The delimiter bits
make it possible to extract u(i) from u.)

Injection from Bm,k to Am-k x U

 We’ll now show that it is possible to recover 𝝈 from
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection.

Injection from Bm,k to Am-k x U

 We’ll now show that it is possible to recover 𝝈 from
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection.

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r) is Ci .

 Proof. Fix an i ∈ [r]. By construction, Ci is the first
surviving clause in f𝝈∘𝜋(1)∘…∘𝜋(i-1).

Injection from Bm,k to Am-k x U

 We’ll now show that it is possible to recover 𝝈 from
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection.

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r) is Ci .

 Proof. Fix an i ∈ [r]. By construction, Ci is the first
surviving clause in f𝝈∘𝜋(1)∘…∘𝜋(i-1). Ci remains unsatisfied
under 𝜌(i) (Remark*). Further, 𝜌(i+1),…, 𝜌(r) do not
touch any variable of Ci. Hence, Ci is the first
unsatisfied clause in f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r).

Injection from Bm,k to Am-k x U

 We’ll now show that it is possible to recover 𝝈 from
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection.

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r) is Ci .

 Recovering 𝝈 from (𝝈∘𝜌 , u) :

 Pick the first unsatisfied clause in f𝝈∘𝜌(1)∘…∘𝜌(r). This
clause is C1 (Obs*). Now by looking at u(1), we can
derive 𝜋(1).

Injection from Bm,k to Am-k x U

 We’ll now show that it is possible to recover 𝝈 from
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection.

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r) is Ci .

 Recovering 𝝈 from (𝝈∘𝜌 , u) :

 Pick the first unsatisfied clause in f𝝈∘𝜌(1)∘…∘𝜌(r). This
clause is C1 (Obs*). Now by looking at u(1), we can
derive 𝜋(1). Construct 𝝈∘𝜋(1)∘𝜌(2)∘…∘𝜌(r) from 𝝈∘𝜌(1)∘…∘𝜌(r) and 𝜋(1).

Injection from Bm,k to Am-k x U

 We’ll now show that it is possible to recover 𝝈 from
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection.

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r) is Ci .

 Recovering 𝝈 from (𝝈∘𝜌 , u) :

 Pick the first unsatisfied clause in f𝝈∘𝜋(1)∘𝜌(2)∘…∘𝜌(r). This
clause is C2 (Obs*). Now by looking at u(2), we can
derive 𝜋(2). Construct 𝝈∘𝜋(1)∘𝜋(2)∘𝜌(3)∘…∘𝜌(r)
from 𝝈∘𝜋(1)∘𝜌(2)∘…∘𝜌(r) and 𝜋(2).

Injection from Bm,k to Am-k x U

 We’ll now show that it is possible to recover 𝝈 from
(𝝈∘𝜌 , u) which will then imply 𝜒 is an injection.

 Obs*. For every i ∈ [r], the first “unsatisfied” clause in
f𝝈∘𝜋(1)∘…∘𝜋(i-1)∘𝜌(i)∘…∘𝜌(r) is Ci .

 Recovering 𝝈 from (𝝈∘𝜌 , u) :

 Continuing like this we can construct 𝝈∘𝜋(1)∘…∘𝜋
(r) and also find 𝜋(1), …, 𝜋(r) in the process. From
here, recovering 𝝈 is straightforward.

 Ref.
https://sites.math.rutgers.edu/~sk1233/courses/topics-
S13/lec3.pdf

Probabilistic Turing Machines

Randomized computation

 So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

 The usefulness of randomness in computation was
realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

Randomized computation

 So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

 The usefulness of randomness in computation was
realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

The use of statistical methods in a computational
model of a thermonuclear reaction for the ENIAC led
to the invention of the Monte Carlo methods.

Randomized computation

 So far, we have used deterministic TMs to model
“real-world” computation. But, DTMs don’t have the
ability to make random choices during a computation.

 The usefulness of randomness in computation was
realized as early as the 1940s when the first
electronic computer, ENIAC, was developed.

 To study randomized computation, we need to give
TMs the power of generating random numbers.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

1 with probability ½
0 with probability ½

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

Xi+1 = aXi + c (mod m)

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

Square an n bit number to get a 2n bit
number and take the middle n bits.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

 To what extent a PRG is adequate is studied under
the topic `Pseudorandomness’ in complexity theory.

Randomized computation

 How realistic such a randomized TM model would be
depends on our ability to generate bits that are
“close” to being truly random.

 Many programming languages have built-in random
number generator functions.

 Examples of pseudo-random number generators are
linear congruential generators and von Neumann’s
middle-square method.

 We’ll assume that a TM can generate, or has access
to, truly random bits/coins. (We’ll touch upon “truly
vs biased random bits” at end of the lecture.)

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject).

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

 Note. PTMs and NTMs are syntatically similar – both
have two transition functions.

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

 Note. But, semantically, they are quite different –
unlike NTMs, PTMs are meant to model realistic
computation devices.

Probabilistic Turing Machines

 Definition. A probabilistic Turing machine (PTM) M has
two transition functions 𝛿0 and 𝛿1. At each step of
computation on input x∈{0,1}*, M applies one of 𝛿0
and 𝛿1 uniformly at random (independent of the
previous steps). M outputs either 1 (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

 Note. The above definition allows a PTM M to not
halt on some computation paths defined by its
random choices (unless we explicitly say that M runs
in T(n) time). More on this later when we define ZPP.

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Success probability

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Remark. The defn of
class BPP is robust. The
class remains unaltered if
we replace 2/3 by any
constant strictly greater
than (i.e., bounded
away from) ½. We’ll
discuss this next.

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Remark. The defn of
class BPP is robust. The
class remains unaltered if
we replace 2/3 by any
constant strictly greater
than (i.e., bounded
away from) ½. We’ll
discuss this next.

Bounded-error Probabilistic Polynomial-time

Class BPP

 Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x∈{0,1}*,

 Pr[M(x) = L(x)] ≥ 2/3.

 Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

 Definition. BPP = ∪ BPTIME (nc).

 Clearly, P ⊆ BPP.

c > 0

Remark. Achieving
success probability ½ is
trivial for any language. If
we replace ≥ 2/3 by > ½
then the corresponding
class is called PP, which is
(presumably) larger than
BPP. More on PP later.

