N Computational Complexity Theory

Lecture |8: Class BPP (contd.);
Sipser-Gacs-Lautemann theorem;
Classes RP and ZPP

Department of Computer Science,
Indian Institute of Science

Recap: Probabilistic Turing Machines

A probabilistic Turing machine (PTM) M has
two transition functions 6, and 0,. At each step of
computation on input x€{0,1}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

PTMs and NTMs are syntatically similar — both
have two transition functions.

Recap: Probabilistic Turing Machines

° A probabilistic Turing machine (PTM) M has
two transition functions 6, and 0,. At each step of
computation on input x€{0,1}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

° But, semantically, they are quite different —
unlike NTMs, PTMs are meant to model realistic
computation devices.

Recap: Probabilistic Turing Machines

° A probabilistic Turing machine (PTM) M has
two transition functions 6, and 0,. At each step of
computation on input x€{0,1}*, M applies one of §,
and 0, uniformly at random (independent of the
previous steps). M outputs either | (accept) or 0
(reject). M runs in T(n) time if M always halts within
T(|x|) steps regardless of its random choices.

° The above definition allows a PTM M to not
halt on some computation paths defined by its
random choices (unless we explicitly say that M runs
in T(n) time). More on this later when we define ZPP.

Recap: Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x€{0, | }*

PrM(x) = L(x)] = 2/3.

Success probability

e Definition. A language L is in BPTIME(T(n)) if there’s
PTM that decides L in O(T(n)) time.

e Definition. BPP = U BPTIME (n°).

c>0

e Clearly, P < BPP.

Recap: Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x€{0, | }*,

Pr[M(x) = L(x)] 2

o Definition. A language L is in BPTIME(™Nn)) if there’s

PTM that decides L in O(T(n)) time.

Remark. The defn of
class BPP is robust. The

e Definition. BPP = U BPTIME (nc). class remains unaltered if

‘l' c>0 we replace 2/3 by any

constant strictly greater
than (i.e, bounded
e Clearly, P < BPF. away from) "2 We'll

discuss this next.

Bounded-error Probabilistic Polynomial-time

Recap: Class BPP

o Definition. A PTM M decides a language L in time T(n)
if M runs in T(n) time, and for every x€{0, | }*,

Pr[M(x) = L(x)] 2

e Definition. A language L is in BPTIME
PTM that decides L in O(T(n)) time.

e Definition. BPP = U BPTIME (n°).

e Clearly, P < BPP.

c>0

)) if there’s

Remark. Achieving
success probability 2 is
trivial for any language. If
we replace = 2/3 by > '/
then the corresponding
class is called PF, which is
(presumably) larger than
BPP. More on PP later.

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| ™~
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| ™~
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

 Proof. Let x| = n. Think of M’ that runs M on input x
for m = 4n?¢*d times independently. Let b, ...,.b_ be
the outputs of these independent executions of M. M’
outputs Majority(b, ...,b).

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| ™~
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

* Proof. Let |x| = n & m = 4n?**9 Let y, = | if b, is
correct (i.e., b. = L(x)), otherwise y. = 0. Then M’
outputs incorrectly only if Y =y +...+y = m/2

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t| Pr[M(x) = L(x)] =2 2 + |x|4
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

* Proof. Let |[x| = n & m = 4n**d, Let y, = | if b, is
correct (i.e., b. = L(x)), otherwise y. = 0. Then M’
outputs incorrectly only if Y =y +...+y = m/2

° E[y.] = Pr[y, = I] = Pr[M(x) = L(x)] = p (say). It’s given
thatp = 2+ nc. So, i = E[Y] = mp 2 m/2.(|1+2nc).

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| ™~
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

* Proof. Let |[x| = n & m = 4n**d, Let y, = | if b, is
correct (i.e., b. = L(x)), otherwise y. = 0. Then M’
outputs incorrectly only if Y =y +...+y = m/2

° E[y.] = Pr[y, = I] = Pr[M(x) = L(x)] = p (say). It’s given
thatp = 2+ nc. So, i = E[Y] = mp 2 m/2.(|1+2nc).

e By Chernoff bound, Pr[Y < (1-8)u] < exp(-(6?n)/2),
forany 6 € [0,1]. WEe'll now fix the value of 6.

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| ™~
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

e Proof. m = 4n%*d p = "5+ n, w=mp = m/2.(1+2n).

o Pr[Y < (I-8)u] < exp(-(6%w)/2), for any & € [0,1].

e M’ outputs incorrectly only if Y = m/2.

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| ™~
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

e Proof. m = 4n%*d p = "5+ n, w=mp = m/2.(1+2n).

o Pr[Y < (I-8)u] < exp(-(6%w)/2), for any & € [0,1].

» M’ outputs incorrectly only if Y < m/2.If we choose 6
s.t. m/2 < (1-6)u then Pr[Y < m/2] < Pr[Y < (1-8)p].

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| ™~
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

e Proof. m = 4n?*d @ = "5 + n¢, u=mp 3 m/2.(1+2n).
e Pr[Y = (1-8)n] = exp(-(6“p)72), for any & € [0, 1].
» M’ outputs incorrectly only if Y < m/2.If we choose 6

s.t.m/2 < (1-8)pfthen Pr[Y < m/2] < Pr[Y < (1-8)p].
 Picking 6 = 2/(n°+2) is sufficient. Set & = n.

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| ™~
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

e Proof. m = 4n%*d p = "5+ n, w=mp = m/2.(1+2n).

o Pr[Y < (1-8)u] < exp(-(86%w)/2), and & = n=<.

» Therefore, Pr[M’(x) # L(x)] < exp(-(6%n)/2),

Error reduction for BPP

e Lemma. Let ¢ > 0 be a constant. Suppose L is decided
by a poly-time PTM M s.t. Pr[M(x) = L(x)] =2 2 + |x| ™~
Then, for every constant d > 0, L is decided by a poly-
time PTM M’ s.t. Pr[M’(x) = L(x)] = | — exp(-|x|9).

+ Proof, @ = 4 p 2 4 + n@; m/2.(1+2n7
12), a

e Pr[Y < (1-8)u] < exp(-(62p) nd 8 =n* .

» Therefore, Pr[M’(x) # L(x)] < exp(-(6%n)/2),
< exp(-n9).

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, |}

Pr o [M(x, r) = L(x)] 2 2/3.

r ER {O, | }q(|x|

 2/3 can be replaced by | — exp(-|x|) as before.

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, |}

Pr [M(x,r) = L(x)] 2 2/3.

r €, {0, 1}l

e Hence, P € BPP € EXP.

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, |}

Pr « M r) = L(x)] 2 2/3.

r €g {0, }a¢

* Hence, P € BPP € EXP.
e Sipser-Gacs-Lautemann. BPP €, . (We'll prove this)

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, |}

Pr « M r) = L(x)] 2 2/3.

r €g {0, }a¢

* Hence, P € BPP € EXP.
e Sipser-Gacs-Lautemann. BPP €, . (We'll prove this)
* How large is BPP? Is NP < BPP? i.e., is SAT € BPP?

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, |}

Pr « M r) = L(x)] 2 2/3.

r €g {0, }a¢

* Hence, P € BPP € EXP.
e Sipser-Gacs-Lautemann. BPP €, . (We'll prove this)
* How large is BPP? Is NP < BPP? i.e., is SAT € BPP?

* Next we show that BPP © P/poly. So, if NP © BPP
then PH =) ,.

Alternative definition of BPP

o Definition. A language L in BPP if there’s a poly-time
DTM M(., .) and a polynomial function q(.) s.t. for
every x&{0, |}

Pr « M r) = L(x)] 2 2/3.

r €g {0, }a¢

* Hence, P € BPP € EXP.
e Sipser-Gacs-Lautemann. BPP € , . (We'll prove this)

* Most complexity theorist believe that P = BPP!
(More on this later.)

BPP is in P/poly

e Theorem. (Adleman 1978) BPP < P/poly .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Pree. 1000 [M(X, 1) =L(x)] 2 I- 2-(|x|+1)

BPP is in P/poly

e Theorem. (Adleman 1978) BPP < P/poly .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Pree. 1000 [M(X, 1) =L(x)] 2 I- 2-(|x|+1)

» For every x€{0,1}", at most 2-"*) fraction of the r’s
are “bad”. (r_is bad for x if M(x,r) # L(x)).

BPP is in P/poly

e Theorem. (Adleman 1978) BPP < P/poly .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Prec, 0.0 [M(X,r) = L(x)] 2 [-2-(x*D),

» For every x€{0,1}", at most 2-"*) fraction of the r’s
are “bad”. (r is bad for x if M(x,r) # L(x)).

e Summing over all x€{0,1}", at most 2".2-"*) = 1}
fraction of the r’s are “bad” for some n-bit string x.

BPP is in P/poly

e Theorem. (Adleman 1978) BPP < P/poly .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Pree. 1000 [M(X, 1) =L(x)] 2 I- 2-(|x|+1)

» For every x€{0,1}", at most 2-"*) fraction of the r’s
are “bad”. (r is bad for x if M(x,r) # L(x)).

» There’s an r,€{0,1}9M™ that is “good” for all x€{0,I}",
i.e., M(x, ry) = L(x) for all x€{0,[}".

BPP is in P/poly

e Theorem. (Adleman 1978) BPP < P/poly .

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Pree. 1000 [M(X, 1) =L(x)] 2 I- 2-(|x|+1)

» For every x€{0,1}", at most 2-"*) fraction of the r’s
are “bad”. (r is bad for x if M(x,r) # L(x)).

» There’s an r,€{0,1}9M™ that is “good” for all x€{0,I}",
i.e., M(x, ry) = L(x) for all x€{0,[}".

* By hardwiring this r,, the computation of M(., ry) can
be viewed as a poly(n)-size circuit C. 0

Why truly random bits!?

e A PTM is defined using truly random bits. Is the
definition sufficiently powerful? Do biased random bits
give any additional computational power?

Why truly random bits!?

e A PTM is defined using truly random bits. Is the
definition sufficiently powerful? Do biased random bits
give any additional computational power?

° A random bit with Pr[|] = p can be simulated
by a PTM in expected O(|) time if the i-th bit of p can
be computed in poly(i) time.

Why truly random bits!?

e A PTM is defined using truly random bits. Is the
definition sufficiently powerful? Do biased random bits
give any additional computational power?

° A random bit with Pr[|] = p can be simulated
by a PTM in expected O(|) time if the i-th bit of p can
be computed in poly(i) time.

e There’s a p and a PTM M with access to p-biased
random bits s.t. M decides an undecidable language!

Why truly random bits!?

* On the other hand, we can obtain truly random bits
from biased random bits.

° (von-Neumann [951) A truly random bit can be
simulated by a PTM with access to p-biased random
bits in expected O(p'(I-p)’') time.

Sipser-Gacs-Lautemann theorem

BPP is in PH

e We saw that P € BPP € EXP But, is BPP € NP ? Not
known!

e Sipser showed BPP < PH, Gacs strengthened it to
BPP € > ,M[],, Lautemann gave a simpler proof.

e Theorem. BPP € >,MN[],.

BPP is in PH

e We saw that P € BPP € EXP But, is BPP € NP ? Not
known!

e Sipser showed BPP < PH, Gacs strengthened it to
BPP € > ,M[],, Lautemann gave a simpler proof.

e Theorem. BPP € >,MN[],.

* Proof. Observe that BPP = co-BPP .So, it is
sufficient to show BPP C) ..

BPP is in PH

e Theorem. BPP C ..

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Pree. 0,300 [M(x,r) =L(x)] 2 I- 2-Ix|

e Let n = |x| and m = q(n).

BPP is in PH

e Theorem. BPP C ..

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Pree. one00 [M(x,r) =L(x)] 2 I- 2-x
e Let n = |x| and m = q(n).Let A, € {0,1}™ such that r €
A, iff M(x,r) = |. Observe that

xel wmp |Al=(l—-2").2™m (A, is large)
xgL == |A|<202m (A is small).

BPP is in PH

e Theorem. BPP C ..

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Pree. one00 [M(x,r) =L(x)] 2 I- 2-x
e Let n = |x| and m = q(n).Let A, € {0,1}™ such that r €
A, iff M(x,r) = |. Observe that

xel wmp |Al=(l—-2").2™m (A, is large)
xgL == |A|<202m (A, is small).

o |dea. If A_is large then there exists a “small” collection
Up,...,u €{0,11Ms.t. U (A, EB\, u) = {0, 1}™.

i€[k]

bit-wise Xor

BPP is in PH

e Theorem. BPP C ..

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Pree. 0,300 [M(x,r) =L(x)] 2 I- 2-Ix|

e Let n = |x| and m = q(n).Let A, € {0,1}™ such that r €
A, iff M(x,r) = |. Observe that

xel wmp |Al=(l—-2").2™m (A, is large)
xgL == |A|<202m (A, is small).
o |dea. If A is large then there exists a “small” collection
up, .. ukE{O ljm st U (A @ u) = {0,1}™. No such
coIIectlon exists if |A | is small.

BPP is in PH

e Theorem. BPP C ..

* Proof. Let L € BPP. Then, there’s a poly-time DTM M
and a polynomial function q(.) s.t. for every x&{0, | }*,

Pree. one00 [M(x,r) =L(x)] 2 I- 2-x
e Let n = |x| and m = q(n).Let A, € {0,1}™ such that r €
A, iff M(x,r) = |. Observe that
xel wmp |Al=(l—-2").2™m (A, is large)
xgL == |A|<202m (A, is small).
o |dea. If A_is large then there exists a “small” collection
Uy, ..., u€{0,1}mst. U (A, D u) = {0,1}M Capture

i€[k]

this property with a) , statement.

BPP is in PH

e Theorem.
* Proof. r € A iff M(x,r) = |.Then
xelL wmp |Al2(l—-27).2" (A, is large)

e Set

o Obs. If |A | = 2".2™ then for every collection u, ..
u &0, 11 U (A, D u) & 10,11™

xgL wm |A|<202m

k=m/n+ ||

i€[k]

BPPC ..

(A, is small).

°)9

BPP is in PH

e Theorem. BPP C ..
* Proof. r € A iff M(x,r) = |.Then
xeL wmp |AlZ(l—-2").2™m (A, is large)
xgL wmp |A|=s202M (A, is small).
e Set k=m/n + I.
o Obs. If |A | = 2".2™ then for every collection u, ...,
uEOIm U (A B u) & {01
* Proof. As |A | =2"2™, [U (A @D u)| = k2™ <2 for
sufficiently large n. o

BPP is in PH

e Theorem. BPP C ..
* Proof. r € A iff M(x,r) = |.Then
xelL wmmp [AlZ(l—-2").2m (A, is large)

xgL wmp |A|=s202M (A, is small).
e Set k=m/n + I.
o Claim. If |A,| =2 (I = 27).2™ then there exists a
collection u, ..., u, {0, |} s.t. E[k](A @ u) = {01}

e Let us complete the proof of the theorem assuming
the claim — we’ll proof it shortly.

BPP is in PH

e Theorem. BPP C ..
* Proof. r € A iff M(x,r) = |.Then
xelL wmp |Al2(l—-27).2" (A, is large)

xgL wmp |A|=s202M (A, is small).
e Set k =m/n + |.
o Claim. If |A,| =2 (I = 27).2™ then there exists a
collection u, ..., u, {0, |} s.t. Ek](A @ u) = {01}

* The observation and the claim imply the following:
x€e€L =3u,...,u€c{0,I}™ U(A Du)={0Il}m

i€[k]

x¢&L =»vu,...,u€{0,l}m U (A, @ u) < {0,1}™.

i€[k]

BPP is in PH

e Theorem. BPP C ..
* Proof. r € A iff M(x,r) = |.Then
xelL wmp |Al2(l—-27).2" (A, is large)

xgL wmp |A|=s202M (A, is small).
e Set k=m/n + I.
e Claim. If |A | 2 (I = 2™). 2m then there exists a
collection u, ...,u €{0,I}"s.t. U (A D u) = {0,1}™.

i€[k]
* The observation and the claim imply the following:

x€L®Ju,...,u€c{0,l}™ U (A D u)={0I}m.

i€[k]

BPP is in PH

e Theorem. BPP C ..
e Proof. r e A iff M(x,r) =1.Set k=m/n + I.
x€EL & Ju,...,u {0, 1} ngAXGB u) = {0,1}m

e[

BPP is in PH

e Theorem. BPP C ..
e Proof. r e A iff M(x,r) = [.Set k=m/n + |.
x€EL & Ju,...,u {0, 1} Lié[kgAx @D u) ={0,1}m
xeL® Ju,...,u €{0,1}" Vre{0,I1}™ re U (A D u)

i€[k]

BPP is in PH

e Theorem. BPP C ..
e Proof. r e A iff M(x,r) = [.Set k=m/n + |.
xEL & Ju,...,u {0, 1} Lié[kgAX @D u) ={0,1}m
xeL® Ju,...,u €{0,1}" Vre{0,I}™ re U (A D u)

i€[k]

xEL & Ju,...,u €{0,1}" Vre{0,1}™ V [rPu €A]

i€[k]

BPP is in PH

e Theorem. BPP C ..
e Proof.|r € A iff M(x,r) = I.‘Set k=m/n+ I.

xEL & Ju,...,u {0, 1} gA @D u) ={0,1}m
xeEL® Ju,...,u {0, 1} VrE{O 1} re U (A D u)

i€[k]

xeEL e Ju,...,u €{0,1}" Vre{0,I}™ V [riDu €A]

i€[k]

xeL®3u ,...,u €{0,1}™ Vre{0,1}m V[kl]"l(x rdbu)=1

BPP is in PH

e Theorem. BPP C ..
e Proof.|r € A iff M(x,r) = I.‘Set k=m/n+ I.

xEL & Ju,...,u {0, 1} gA @D u) ={0,1}m
xeEL® Ju,...,u {0, 1} ‘v’rE{O 1} re U (A D u)

i€[k]

xeEL e Ju,...,u €{0,1}" Vre{0,I}™ V [riDu €A]

i€[k]

xeL®3u ,...,u €{0,1}™ Vre{0,1}m V[kl]"l(x rdbu)=1

e Think of a DTM N that takes input x, u,, ..., u_, r, and
outputs | iff M(x, rcQu)) = | for some i € [k]. Observe
that N is a poly-time DTM.

BPP is in PH

e Theorem. BPP C ..
e Proof.|r € A iff M(x,r) = I.‘Set k=m/n+ I.

xEL & Ju,...,u {0, 1} gA @D u) ={0,1}m
xeEL® Ju,...,u {0, 1} VrE{O 1} re U (A D u)

i€[k]

xeEL e Ju,...,u €{0,1}" Vre{0,I}™ V [riDu €A]

i€[k]

xeL®3u ,...,u €{0,1}™ Vre{0,1}m N(x u,r)=|I.

l

e Therefore, L€), . u=up s ud

Proof of the Claim

o Claim. If |[A] = (I — 27").2™ then there exists a

collection u, ..., u, €{0, |} s.t. e[I](A @ u) = {01}
* Proof. The proof of this uses the probabilistic method.

Proof of the Claim

o Claim. If |A,| =2 (I — 27).2™ then there exists a
collection u, ..., u, €{0, |} s.t. e[k](A @ u) = {01}
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Vre{0,I}™ reu (AD u)] > 0.

i€[k]

Proof of the Claim

o Claim. If |A,| =2 (I — 27).2™ then there exists a
collection u, ..., u, €{0, |} s.t. e[k](A @ u) = {01}
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [3r€{0,1}™ r ¢ U ?A Du)] < I.

€[k

Proof of the Claim

o Claim. If |[A] = (I — 27").2™ then there exists a
collection u, ..., u, €{0, |} s.t. e[I](A @ u) = {01}
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r & (A D u) for every i€ [K]] < I.

Proof of the Claim

o Claim. If |[A] = (I — 27").2™ then there exists a
collection u, ..., u, €{0, |} s.t. e[I](A @ u) = {01}
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r D u, € A for every i€ [K]] < |.

Proof of the Claim

o Claim. If [[A | = (I — 27).2™|then there exists a
collection u, ..., u €{0,I}"s.t. U (A D u) = {0,1}™.

i€[k]
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r D u, € A for every i€ [K]] < |.

e Fix an re{0,1}™ (we’ll apply a union bound later). Fix
an i€ [k].Then,Pr, [r @ u, €A] =2".
—

Distributed uniformly inside {0, | }™
as r is fixed and u, is picked
uniformly at random from {0, | }™.

Proof of the Claim

o Claim. If |[A] = (I — 27").2™ then there exists a
collection u, ..., u, €{0, |} s.t. e[I](A @ u) = {01}
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r D u, € A for every i€ [K]] < |.

e Fix an re{0,1}™ (we’ll apply a union bound later). Fix
an i€ [k]. Then,Pr, [r @ uy € A] =27 Asu,...,u are
independent, Pr, [r ©© u; &€ A for every i€ [k]] < 27

Proof of the Claim

o Claim. If |A,| =2 (I — 27).2™ then there exists a
collection u, ..., u, €{0, |} s.t. e[k](A @ u) = {01}
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r D u, € A for every i€ [K]] < |.

e Fix an re{0,1}™ (we’ll apply a union bound later). Fix
an i€ [k]. Then,Pr, [r @ uy € A] =27 Asu,...,u are
independent, Pr, [r & u; € A for every i€ [k]] <2™.

k=m/n+ |

Proof of the Claim

o Claim. If |[A] = (I — 27").2™ then there exists a
collection u, ..., u, €{0, |} s.t. e[I](A @ u) = {01}
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r D u, € A for every i€ [K]] < |.

e Fix an re{0,1}™ (we’ll apply a union bound later). Fix
an i€ [k]. Then,Pr, [r @ uy € A] =27 Asu,...,u are
independent, Pr, [r & u; € A for every i€ [k]] <2™.

e Applying union bound,

Pr, [Ar€{0,1}™ r @D u, € A for every i€ [k]] <2m2™

Proof of the Claim

o Claim. If |[A] = (I — 27").2™ then there exists a
collection u, ..., u, €{0, |} s.t. e[I](A @ u) = {01}
* Proof. We'll show if u, ..., u, are picked independently

and uniformly at random then
Pr, [Ar€{0,1}™ r D u, € A for every i€ [K]] < |.

e Fix an re{0,1}™ (we’ll apply a union bound later). Fix
an i€ [k]. Then,Pr, [r @ uy € A] =27 Asu,...,u are
independent, Pr, [r & u; € A for every i€ [k]] <2™.

e Applying union bound,

Pr, [3r€{0,1}™ r D u, € A, for every i€ [K]] < | .

Complete derandomization of BPP ?

e Can the Sipser-Gacs-Lautemann theorem be
strengthened? How low in the PH does BPP lie ?

e Theorem.
If there’s a L € DTIME(2°™) and a constant ¢ > 0

such that any circuit C_ that decides L(1{0,|}" requires
size 2¢", then BPP = P .

e Lower bounds = Derandomization !

Complete derandomization of BPP ?

e Can the Sipser-Gacs-Lautemann theorem be
strengthened? How low in the PH does BPP lie ?

If there’s a L € DTIME(2°™) and a constant ¢ > 0
such that any circuit C_ that decides L(1{0,|}" requires
size 2¢", then BPP = P .

e Lower bounds = Derandomization !

e Caution: Shouldn’t interpret this result as
“randomness is useless’’.

Classes RP co-RP and ZPP

Class RP

e Class RP is the one-sided error version of BPP.

e Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

x€ L == Pr[M(x)=1]22/3
x¢ L == Pr[M(x)=0]=1.
e Definition. RP = LgORTIME (n°).

e Clearly, RP < BPP.

Class RP

e Class RP is the one-sided error version of BPP.

e Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

x€ L == PriM(x)=1]=2
x¢& L == Pr[M(x)=0]=I.

Remark. The defn of class
RP is robust. The class

e Definition. RP = U RTIME (n°). remains unaltered if we
! c>0 replace 2/3 by |x|*< for any
Randomized Poly-time. constant ¢ > 0. The succ.

prob. can then be

e Clearly, RP < BPF. amplified to I-exp(-[x|9).

Class RP

e Class RP is the one-sided error version of BPP.

e Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

x€ L == Pr[M(x)=1]22/3
x¢& L == Pr[M(x)=0]=I.

e Definition. RP = UORTIME (n°).

e Clearly, RP € BPP. Obs.RP € NP.

Recall, we don’t know whether BPP € NP .

Class co-RP

o Definition. co-RP={L: L € RP}.

e Obs. A language L is in co-RP if there’s a PTM M that
decides L in poly-time such that

xe L == PriMx)=1]=1
x¢& L == Pr[M(x)=0]=2/3.

e Obs. co-RP € BPP.

Class co-RP

o Definition. co-RP={L: L € RP}.

e Obs. A language L is in co-RP if there’s a PTM M that
decides L in poly-time such that

xe L == PriMx)=1]=1
x¢& L == Pr[M(x)=0]=2/3.
e Obs. co-RP € BPP..

e Is RPMNco-RP in P ? Not known!

Class ZPP

e Recall that PTMs are allowed to not halt on some
computation paths defined by its random choices.

* We say that a PTM M has expected running time T(n) if
the expected running time of M on input x is at most

T(n) for all x € {0, }".

Class ZPP

e Recall that PTMs are allowed to not halt on some
computation paths defined by its random choices.

* We say that a PTM M has expected running time T(n) if

the expected running time of M on input x is at most
T(n) for all x € {0, }".

o A language L is in ZTIME(T(n)) if there’s a
PTM M s.t. on every input x, M(x) = L(x) whenever M
halts, and M has expected running time O(T(n)).

. ZfP = U ZTIME (n°).

Zero-error Probabilistic Poly-time.

Class ZPP

e Definition. A language L is in ZTIME(T(n)) if there’s a
PTM M s.t. on every input x, M(x) = L(x) whenever M
halts, and M has expected running time O(T(n)).

e Definition. ZPP = U ZTIME (n°).
e Problems in ZPP are said to have poly-time Las Vegas

algorithms, whereas those in BPP are said to have poly-
time Monte-Carlo algorithms.

e Theorem. ZPP = RPMNco-RP < BPP.

e Note.lf P = BPP then P = ZPP = BPP,

