
Computational Complexity Theory

Lecture 19: Perfect matching in RNC;

 Class BPL;

 Randomized reductions

Department of Computer Science,
Indian Institute of Science

Recap: BPP is in PH

 We saw that P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP ? Not
known! (Yes, people still believe BPP = P.)

 Sipser showed BPP ⊆ PH, Gacs strengthened it to
BPP ⊆ ∑2∩∏2 , Lautemann gave a simpler proof.

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2∩∏2.

Recap: Derandomization of BPP ?

 Can the Sipser-Gacs-Lautemann theorem be
strengthened? How low in the PH does BPP lie ?

 Theorem. (Nisan & Wigderson 1988,…, Umans 2003)
If there’s a L ∈ DTIME(2O(n)) and a constant 𝜀 > 0
such that any circuit Cn that decides L∩{0,1}n requires
size 2𝜀n, then BPP = P .

 Lower bounds Derandomization !

 Caution: Shouldn’t interpret this result as
“randomness is useless”.

Recap: Class RP

 Class RP is the one-sided error version of BPP.

 Definition. A language L is in RTIME(T(n)) if there’s a
PTM M that decides L in O(T(n)) time such that

 x ∈ L Pr[M(x) = 1] ≥ 2/3

 x ∉ L Pr[M(x) = 0] = 1.

 Definition. RP = ∪ RTIME (nc).

 Clearly, RP ⊆ BPP. Obs. RP ⊆ NP.

c > 0

Recap: Class co-RP

 Definition. co-RP = {L : L ∈ RP} .

 Obs. A language L is in co-RP if there’s a PTM M that
decides L in poly-time such that

 x ∈ L Pr[M(x) = 1] = 1

 x ∉ L Pr[M(x) = 0] ≥ 2/3.

 Obs. co-RP ⊆ BPP .

 Is RP∩co-RP in P ? Not known!

Recap: Class ZPP

 Definition. A language L is in ZTIME(T(n)) if there’s a
PTM M s.t. on every input x, M(x) = L(x) whenever M
halts, and M has expected running time O(T(n)).

 Definition. ZPP = ∪ ZTIME (nc).

 Problems in ZPP are said to have poly-time Las Vegas
algorithms, whereas those in BPP are said to have poly-
time Monte-Carlo algorithms.

 Theorem. ZPP = RP∩co-RP ⊆ BPP. (Assignment)

 Note. If P = BPP then P = ZPP = BPP.

c > 0

Perfect Matching in RNC

Randomness brings in simplicity

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

Class RNC

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

 Definition. A language L is in RNCi if there’s a
randomized O((log n)i)-time parallel algorithm M that
uses nO(1) parallel processors s.t. for every x ∈ {0,1}*,

 x ∈ L Pr[M(x) = 1] ≥ 2/3,

 x ∉ L Pr[M(x) = 0] = 1.

 Here, n is the input length.

Class RNC

 The use of randomness helps in designing simple and
efficient algorithms for many problems.

 We’ll see one such algorithm in this lecture, namely
an efficient randomized, parallel algorithm to check if
a given bipartite graph has a perfect matching.

 Definition. RNC = ∪ RNCi .

 RNC stands for Randomized NC. We can
alternatively define RNC using (uniform) circuits.

i > 0

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

aij = 1 if there’s an edge from
the i-th vertex in L to the j-th
vertex in R, otherwise aij = 0.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

 Algorithm.

1. Construct B = (bij)i,j∈n as follows: If aij=0, then bij=0.
Else, pick bij independently and uniformly at random
from [2n].

2. Compute det(B).

3. If det(B) ≠ 0 output “yes”, else output “no”.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 The input G = (L⨃R, E) is given as a n x n
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|.

 Algorithm. (RNC2 algorithm)

1. Construct B = (bij)i,j∈n as follows: If aij=0, then bij=0.
Else, pick bij independently and uniformly at random
from [2n]. (This can be done using n2 processors.)

2. Compute det(B). (determinant is in NC2, Csanky ’76)

3. If det(B) ≠ 0 output “yes”, else output “no”.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Sn is the set of all permutations on [n].

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

𝞂∈Sn i∈[n]

Polynomial in the xij variables.

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 In the algorithm, we set xij = bij, where bij is picked
randomly from [2n] if xij ≠ 0, otherwise bij = 0.

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) = 0 then det(B) = 0. (So, the algorithm has
one-sided error.)

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) ≠ 0, what is the probability that det(B) ≠ 0 ?

𝞂∈Sn i∈[n]

The answer is given by the Schwartz-Zippel lemma

Schwartz-Zippel lemma

 Lemma. (Schwartz 1980, Zippel 1979) Let f(x1, …, xn)
≠ 0 be a multivariate polynomial of (total) degree at
most d over a field F. Let S ⊆ F be finite, and (a1, …,
an) ∈ Sn such that each ai is chosen independently
and uniformly at random from S. Then,

 Pr [f(a1, …, an) = 0] ≤ d/|S|.

 Proof idea. Roots are far fewer than non-roots. Use
induction on the number of variables.

 (Homework / reading exercise)

(a1, …, an) ∈r S
n

Perfect matching in RNC

 Let PerfectMatching = {Bipartite graph G : G has a
perfect matching}.

 Theorem. (Lovasz 1979) PerfectMatching ∈ RNC2.

 Correctness of the Algorithm.

1. Define X = (xij)i,j∈n as follows: If aij=0, then xij=0. Else, xij
is a formal variable.

2. det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) .

 Obs. det(X) ≠ 0 G has a perfect matching.

 If det(X) ≠ 0, then Pr[det(B) ≠ 0] ≥ ½ as degree of
det(X) = n (by the Schwartz-Zippel lemma).

𝞂∈Sn i∈[n]

Perfect matching in RNC

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a
maximum matching in a general graph is in RNC2.

 Is finding maximum matching in NC ? Open!

Perfect matching in RNC

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a
maximum matching in a general graph is in RNC2.

 Is finding maximum matching in NC ? Open!

 Theorem. (Fenner, Gurjar, Thierauf 2016; Svensson,
Tarnawski 2017) Finding a maximum matching in a
general graph is in quasi-NC.

In O((log n)3) time using exp(O((log n)3)) processors,

Randomized space bounded
computation

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in BPL if there’s a PTM M
such that M uses O(log n)-space and for every x ∈
{0,1}*, Pr[M(x) = L(x)] ≥ 2/3.

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in BPL if there’s a PTM M
such that M uses O(log n)-space and for every x ∈
{0,1}*, Pr[M(x) = L(x)] ≥ 2/3.

 The success probability can be amplied as before as
the BPP error reduction trick can be implemented
using log-space. (Homework)

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Definition. A language L is in RL if there’s a PTM M
s.t. M uses O(log n)-space and for every x ∈ {0,1}*,

 x ∈ L Pr[M(x) = 1] ≥ 2/3

 x ∉ L Pr[M(x) = 0] = 1.

 Clearly, RL ⊆ NL ⊆ P and BPL ⊆ BPP.

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Claim. BPL ⊆ P .

 Proof idea. Think of the adjancency matrix A of the
configuration graph of the O(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A. (Assignment problem)

Space bounded PTMs

 We say a PTM M uses S(n) space if on a length-n
input, M halts using at most S(n) cells of it work-tape
regardless of its random choices.

 Claim. BPL ⊆ P .

 Proof idea. Think of the adjancency matrix A of the
configuration graph of the O(log n)-space PTM.
Compute the probability of acceptance by taking
powers of A. (Assignment problem)

 Is BPL = L ? Many believe that the answer is “Yes” !

Space bounded PTMs

 Theorem. (Nisan ’92, ’94) If L ∈ BPL then there’s a
poly-time, O((log n)2)-space TM that decides L.

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a
nO(√log n)-time, O((log n)1.5)-space TM that decides L.

 Theorem. (Hoza ’21) If L ∈ BPL then there’s a O((log
n)1.5(√loglog n)-1)-space TM that decides L.

 The last two results extend Nisan’s techniques on
read-once branching programs.

Space bounded PTMs

 Theorem. (Nisan ’92, ’94) If L ∈ BPL then there’s a
poly-time, O((log n)2)-space TM that decides L.

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a
nO(√log n)-time, O((log n)1.5)-space TM that decides L.

 Theorem. (Hoza ’21) If L ∈ BPL then there’s a O((log
n)1.5(√loglog n)-1)-space TM that decides L.

 “Recent Progress on Derandomizing Space-Bounded
Computation” survey by Hoza (2022).

Randomized reductions

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 For arbitrary L1 and L2, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive.

Success
probability

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 For arbitrary L1 and L2, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive. However,

 Obs. If L1 ≤r L2 and L2 ∈ BPP, then L1 ∈ BPP.

 (Easy homework)

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Proof idea. BPP error reduction trick + Cook-Levin.

 (homework)

Randomized reduction

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Recall, NP = {L : L ≤p SAT}. It makes sense to define a
similar class using randomized poly-time reduction.

Class BP.NP

 Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

 Pr [L1(x) = L2(M(x))] ≥ 2/3.

 Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

 Definition. BP.NP = {L : L ≤r SAT}.

 Class BP.NP is also known as AM (Arthur-Merlin
protocol) in the literature.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ?

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ? Many believe that the answer is “yes”.

 Theorem. If certain reasonable circuit lower bounds
hold, then BP.NP = NP.

 Proof idea. Similar to Nisan & Wigderson’s conditional
BPP = P result.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ? Many believe that the answer is “yes”.

 We may further ask:

1. Is BP.NP in PH? Recall, BPP is in PH.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
= NP ? Many believe that the answer is “yes”.

 We may further ask:

1. Is BP.NP in PH? Recall, BPP is in PH.

2. Is SAT ∈ BP.NP? Recall, if SAT ∈ BPP then PH
collapses. (SAT ∈ BP.NP as NP ⊆ BP.NP .)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. BP.NP is in ∑3. (In fact, BP.NP is in ∏2.)

 Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. BP.NP is in ∑3. (In fact, BP.NP is in ∏2.)

 Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

 Wondering if BP.NP ⊆ ∏2 implies BP.NP ⊆ ∑2 ? Is
BP.NP = co-BP.NP ? (Recall, BPP = co-BPP).

 If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next
theorem shows that this would lead to PH collapse.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑3 (in fact, PH =
∑2).

 Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem. (Assignment problem)

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Thus, even without designing an efficient algorithm
for GI, we know GI is unlikely to be NP-complete!

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad,
Zachos ‘87) GNI ∈ BP.NP.

 Proof. We’ll prove it.

Class BP.NP

 Definition. BP.NP = {L : L ≤r SAT}.

 Theorem. If SAT ∈ BP.NP then PH = ∑2.

 We would use the above theorem to show that if GI
is NP-complete then PH collapses.

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad,
Zachos ‘87) GNI ∈ BP.NP.

 If GI is NP-complete then GNI is co-NP-complete. If
so, then the above two theorems imply PH = ∑2.

Graph Isomorphism in Quasi-P

 Theorem. (Babai 2015) There’s a deterministic
exp(O((log n)3)) time algorithm to solve the graph
isomorphism problem.

