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Recap: BPP is in PH 

 We saw that  P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP ? Not 
known!  (Yes, people still believe BPP = P.) 

 

 Sipser showed BPP ⊆ PH, Gacs strengthened it to 
BPP ⊆ ∑2∩∏2 , Lautemann gave a simpler proof. 

 

 Theorem. (Sipser-Gacs-Lautemann ‘83) BPP ⊆ ∑2∩∏2.  

 

 



Recap: Derandomization of BPP ? 

 Can the Sipser-Gacs-Lautemann theorem be 
strengthened? How low in the PH does BPP lie ? 

 

 Theorem. (Nisan & Wigderson 1988,…, Umans 2003)   
If there’s a L ∈ DTIME(2O(n)) and a constant 𝜀 > 0 
such that any circuit Cn that decides L∩{0,1}n requires 
size 2𝜀n, then BPP = P . 

 

 Lower bounds           Derandomization ! 

 Caution: Shouldn’t interpret this result as 
“randomness is useless”. 



Recap: Class RP 

 Class RP is the one-sided error version of BPP. 

 

 Definition. A language L is in RTIME(T(n)) if there’s a 
PTM M that decides L in O(T(n)) time such that  

            x ∈  L            Pr[M(x) = 1] ≥ 2/3 

            x ∉  L            Pr[M(x) = 0] = 1. 

 

 Definition.  RP  = ∪ RTIME (nc). 

 

 Clearly, RP ⊆ BPP.    Obs. RP ⊆ NP.   

c > 0 



Recap: Class co-RP 

 Definition.  co-RP = {L :  L ∈ RP} . 

 

 Obs. A language L is in co-RP if there’s a PTM M that 
decides L in poly-time such that  

            x ∈  L            Pr[M(x) = 1] = 1 

            x ∉  L            Pr[M(x) = 0] ≥ 2/3. 

 

 Obs.  co-RP ⊆ BPP . 

 

 Is RP∩co-RP  in  P ? Not known! 

 



Recap: Class ZPP 

 Definition. A language L is in ZTIME(T(n)) if there’s a 
PTM M s.t. on every input x, M(x) = L(x) whenever M 
halts, and M has expected running time O(T(n)).   

 Definition. ZPP  = ∪ ZTIME (nc). 

 Problems in ZPP are said to have poly-time Las Vegas 
algorithms, whereas those in BPP are said to have poly-
time Monte-Carlo algorithms. 

 

 Theorem.  ZPP = RP∩co-RP  ⊆  BPP.  (Assignment) 

 

 Note. If P = BPP then P = ZPP = BPP. 

 

c > 0 



Perfect Matching in RNC 



Randomness brings in simplicity 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 



Class RNC 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 Definition. A language L is in RNCi if there’s a 
randomized O((log n)i)-time parallel algorithm M that 
uses nO(1) parallel processors s.t. for every x ∈ {0,1}*,   

           x ∈ L         Pr[M(x) = 1] ≥ 2/3, 

           x ∉ L         Pr[M(x) = 0] = 1. 

   Here, n is the input length. 

 



Class RNC 

 The use of randomness helps in designing simple and 
efficient algorithms for many problems.  

 We’ll see one such algorithm in this lecture, namely 
an efficient randomized, parallel algorithm to check if 
a given bipartite graph has a perfect matching. 

 

 Definition.  RNC = ∪ RNCi . 

 

 RNC stands for Randomized NC. We can 
alternatively define RNC using (uniform) circuits. 

i > 0 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 

 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 

 

 
aij = 1 if there’s an edge from 
the i-th vertex in L to the j-th 
vertex in R, otherwise aij = 0. 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 Algorithm. 

1. Construct B = (bij)i,j∈n  as follows: If aij=0, then bij=0. 
Else, pick bij independently and uniformly at random 
from [2n].     

2. Compute det(B).   

3. If det(B) ≠ 0 output “yes”, else output “no”. 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 The input G = (L⨃R, E) is given as a n x n  
biadjacency matrix A = (aij)i,j∈n , where n = |L| = |R|. 

 Algorithm.    (RNC2 algorithm) 

1. Construct B = (bij)i,j∈n  as follows: If aij=0, then bij=0. 
Else, pick bij independently and uniformly at random 
from [2n].       (This can be done using n2 processors.) 

2. Compute det(B).   (determinant is in NC2, Csanky ’76) 

3. If det(B) ≠ 0 output “yes”, else output “no”. 

 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Sn is the set of all permutations on [n]. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

𝞂∈Sn i∈[n] 

Polynomial in the xij variables. 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 In the algorithm, we set xij = bij, where bij is picked 
randomly from [2n] if xij ≠ 0, otherwise bij = 0. 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) = 0 then det(B) = 0. (So, the algorithm has 
one-sided error.) 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) ≠ 0, what is the probability that det(B) ≠ 0 ?  

𝞂∈Sn i∈[n] 

The answer is given by the Schwartz-Zippel lemma 



Schwartz-Zippel lemma 

 Lemma. (Schwartz 1980, Zippel 1979) Let f(x1, …, xn) 
≠ 0 be a multivariate polynomial of (total) degree at 
most d over a field F. Let S ⊆ F be finite, and (a1, …, 
an) ∈ Sn such that each ai is chosen independently 
and uniformly at random from S. Then, 

                 Pr      [f(a1, …, an) = 0]  ≤  d/|S|. 

 

 Proof idea. Roots are far fewer than non-roots. Use 
induction on the number of variables.  

                                (Homework / reading exercise) 

(a1, …, an) ∈r S
n 



Perfect matching in RNC 

 Let PerfectMatching = {Bipartite graph G : G has a 
perfect matching}. 

 Theorem. (Lovasz 1979)  PerfectMatching ∈ RNC2. 

 Correctness of the Algorithm.     

1. Define X = (xij)i,j∈n  as follows: If aij=0, then xij=0. Else, xij 
is a formal variable.  

2. det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) .    

 

 Obs.  det(X) ≠ 0           G has a perfect matching. 

 If det(X) ≠ 0, then Pr[det(B) ≠ 0] ≥ ½ as degree of 
det(X) = n   (by the Schwartz-Zippel lemma). 

𝞂∈Sn i∈[n] 



Perfect matching in RNC 

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a 
maximum matching in a general graph is in RNC2.  

 

 Is finding maximum matching in NC ? Open! 



Perfect matching in RNC 

 Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a 
maximum matching in a general graph is in RNC2.  

 

 Is finding maximum matching in NC ? Open! 

 Theorem. (Fenner, Gurjar, Thierauf 2016; Svensson, 
Tarnawski 2017) Finding a maximum matching in a 
general graph is in quasi-NC. 

In O((log n)3) time using exp( O((log n)3) ) processors,   



Randomized space bounded 
computation 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in BPL if there’s a PTM M 
such that M uses O(log n)-space and for every x ∈ 
{0,1}*,  Pr[M(x) = L(x)] ≥ 2/3. 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in BPL if there’s a PTM M 
such that M uses O(log n)-space and for every x ∈ 
{0,1}*,  Pr[M(x) = L(x)] ≥ 2/3. 

 

 The success probability can be amplied as before as 
the BPP error reduction trick can be implemented 
using log-space.     (Homework) 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Definition. A language L is in RL if there’s a PTM M 
s.t. M uses O(log n)-space and for every x ∈ {0,1}*, 

               x ∈ L           Pr[M(x) = 1] ≥ 2/3 

               x ∉ L             Pr[M(x) = 0] = 1. 

 

 Clearly,  RL ⊆ NL ⊆ P  and  BPL ⊆ BPP. 

 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Claim.  BPL ⊆ P . 

 Proof idea. Think of the adjancency matrix A of the 
configuration graph of the O(log n)-space PTM. 
Compute the probability of acceptance by taking 
powers of A.     (Assignment problem) 



Space bounded PTMs 

 We say a PTM M uses S(n) space if on a length-n 
input, M halts using at most S(n) cells of it work-tape 
regardless of its random choices.  

 

 Claim.  BPL ⊆ P . 

 Proof idea. Think of the adjancency matrix A of the 
configuration graph of the O(log n)-space PTM. 
Compute the probability of acceptance by taking 
powers of A.     (Assignment problem) 

 

 Is BPL = L ? Many believe that the answer is “Yes” ! 



Space bounded PTMs 

 Theorem. (Nisan ’92, ’94)  If L ∈ BPL then there’s a 
poly-time, O((log n)2)-space TM that decides L. 

 

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a 
nO(√log n)-time, O((log n)1.5)-space TM that decides L. 

 

 Theorem. (Hoza ’21) If L ∈ BPL then there’s a O((log 
n)1.5(√loglog n)-1)-space TM that decides L. 

 

 The last two results extend Nisan’s techniques on 
read-once branching programs. 

 



Space bounded PTMs 

 Theorem. (Nisan ’92, ’94)  If L ∈ BPL then there’s a 
poly-time, O((log n)2)-space TM that decides L. 

 

 Theorem. (Saks, Zhou ’99) If L ∈ BPL then there’s a 
nO(√log n)-time, O((log n)1.5)-space TM that decides L. 

 

 Theorem. (Hoza ’21) If L ∈ BPL then there’s a O((log 
n)1.5(√loglog n)-1)-space TM that decides L. 

 

 “Recent Progress on Derandomizing Space-Bounded 
Computation”  survey by Hoza (2022). 

 



Randomized reductions 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 For arbitrary L1 and L2, we may not be able to boost 
the success probability 2/3, and so, the above kind of 
reductions needn’t be transitive. 

Success 
probability 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 For arbitrary L1 and L2, we may not be able to boost 
the success probability 2/3, and so, the above kind of 
reductions needn’t be transitive. However, 

 Obs.  If L1 ≤r L2 and L2 ∈ BPP, then L1 ∈ BPP. 

                                           (Easy homework) 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Proof idea.  BPP error reduction trick + Cook-Levin. 

                                               (homework) 



Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 

 Recall, NP = {L : L ≤p SAT}. It makes sense to define a 
similar class using randomized poly-time reduction. 

                                               



Class BP.NP 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Class BP.NP is also known as AM (Arthur-Merlin 
protocol) in the literature.  



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ?  



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 Theorem. If certain reasonable circuit lower bounds 
hold, then BP.NP = NP. 

 Proof idea. Similar to Nisan & Wigderson’s conditional 
BPP = P result. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 We may further ask: 

1. Is BP.NP in PH? Recall, BPP is in PH. 

 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 We may further ask: 

1. Is BP.NP in PH? Recall, BPP is in PH. 

 

2. Is SAT ∈ BP.NP? Recall, if SAT ∈ BPP then PH 
collapses. (SAT ∈ BP.NP as NP ⊆ BP.NP .) 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem.  BP.NP is in ∑3.  (In fact, BP.NP is in ∏2.) 

 Proof idea. Similar to the Sipser-Gacs-Lautemann 
theorem.       (Assignment problem) 

 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem.  BP.NP is in ∑3.  (In fact, BP.NP is in ∏2.) 

 Proof idea. Similar to the Sipser-Gacs-Lautemann 
theorem.       (Assignment problem) 

 

 Wondering if BP.NP ⊆ ∏2 implies BP.NP ⊆ ∑2 ? Is 
BP.NP = co-BP.NP ? (Recall, BPP = co-BPP).  

 If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next 
theorem shows that this would lead to PH collapse. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑3 (in fact, PH = 
∑2). 

 Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem.     (Assignment problem) 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Thus, even without designing an efficient algorithm 
for GI, we know GI is unlikely to be NP-complete! 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad, 
Zachos ‘87)  GNI ∈ BP.NP. 

 Proof.  We’ll prove it. 



Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad, 
Zachos ‘87)  GNI ∈ BP.NP. 

 If GI is NP-complete then GNI is co-NP-complete. If 
so, then the above two theorems imply PH = ∑2. 



Graph Isomorphism in Quasi-P 

 

 

 

 Theorem. (Babai 2015) There’s a deterministic 
exp(O((log n)3)) time algorithm to solve the graph 
isomorphism problem. 


