Computational Complexity Theory

Lecture 2: Turing machines (contd.); Class P

Department of Computer Science,
Indian Institute of Science

Recap: Turing Machines

* An algorithm is a set of instructions or rules.

e To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model

* ATM consists of:

* Memory tape(s)
* Afinite set of rules

e Turing machines <«—» A mathematical way to

describe algorithms.

Recap: Turing Machines

° A k-tape Turing Machine M is described
by a tuple (I, Q,) such that

* M has k memory tapes (input/work/output tapes)
with heads;

e ['is a finite set of alphabets. (Every memory cell
contains an element of ')

e Q is a finite set of states. (special states:q..... » G.i)

e O is a function from Q x ™ to Q x ' {L,S,R}k
N

known as transition function; it captures the
dynamics of M

Recap: TM Computation

e Start configuration.
» All tapes other than the input tape contain blank symbols.
» The input tape contains the input string.
» All the head positions are at the start of the tapes.

» The machine is in the start state q_,, . .

e Computation.
> A step of computation is performed by applying 0.

e Halting.

» Once the machine enters q, . it stops computation.

Recap: TM Running time

e Let f: {0,1}* — {0,I}*and T: N — N and M be a
Turing machine.

o We say M computes f if on every x in
{0,1}*, M halts with f(x) on its output tape beginning
from the start configuration with x on its input tape.

° M computes f in T(|x|) time, if for every x
in {0,1}*, M halts within T(|x|) steps of computation
and outputs f(x).

Recap: Turing Machines that halt

* In this course, we would be dealing with

» Turing machines that halt on every input.

» Computational problems that can be solved by Turing
machines.

e Can every computational problem be solved using
Turing machines!?

Recap: Uncomputability

e There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

» Input: A system of polynomial equations in many variables with
integer coefficients.

» Output: Check if the system has integer solutions .

» Question: Is there an algorithm to solve this problem?

° There doesn’t exist any algorithm (realizable by a
TM) to solve this problem.

Recap: Why Turing Machines!?

e TMs are natural and intuitive.

e Church-Turing thesis: “Every physically realizable
computation device — whether it's based on silicon, DNA,
neurons or some other alien technology — can be
simulated by a Turing machine”.

— [quoted from Arora-Barak’s book]

* Several other computational models can be
simulated by TMs.

Recap: Why Turing Machines!?
e TMs are natural and intuitive.

e Strong Church-Turing thesis: “Every physically
realizable computation device — whether it's based on
silicon, DNA, neurons or some other alien technology —
can be simulated efficiently by a Turing machine”.

Possible exception: Quantum machines!

Basic facts about TMs

Turing Machines

e Time constructible functions. A function T: N—= N
is time constructible if T(n) = n and there’s a TM that

computes the function that maps x to T(|x|) in
O(T(]x|)) time.

in binary

o Examples: T(n) = n%,or 2", 0r n log n

Turing Machines: Robustness

e Let f: {0,I}* — {0,I}*and T: N — N be a time
constructible function.

e Binary alphabets suffice.

» If a TM M computes f in T(n) time using [as the alphabet
set, then there’s another TM M’ that computes f in time
4.log |I'| .T(n) using {0, I, blank} as the alphabet set.

Turing Machines: Robustness

e Let f: {0,I}* — {0,I}*and T: N — N be a time
constructible function.

e Binary alphabets suffice.

» If a TM M computes f in T(n) time using [as the alphabet
set, then there’s another TM M’ that computes f in time
4.log |I'| .T(n) using {0, I, blank} as the alphabet set.

e A single tape suffices.

»If a TM M computes f in T(n) time using k tapes then
there’s another TM M’ that computes f in time 5k . T(n)?
using a single tape that is used for input, work and output.

Turing Machines: As strings

e Every TM can be represented by a finite string over

{0,1}.

...simply encode the description of the TM.

Turing Machines: As strings

e Every TM can be represented by a finite string over

{0,1}.

* Every string over {0,1} represents some TM.

...invalid strings map to a fixed, trivial TM.

Turing Machines: As strings

e Every TM can be represented by a finite string over

{0,1}.
* Every string over {0,1} represents some TM.

e Every TM has infinitely many string representations.

... allow padding with arbitrary number of 0’s

Turing Machines: As strings

e Every TM can be represented by a finite string over

{0,1}.
* Every string over {0,1} represents some TM.

e Every TM has infinitely many string representations.

a ¢ > M,

/ .

{0,1} string TM corresponding to O

Turing Machines: As strings

e Every TM can be represented by a finite string over

{0,1}.
* Every string over {0,1} represents some TM.

e Every TM has infinitely many string representations.

e ATM (i.e,, its string representation) can be given as
an input to another TM !!

Universal Turing Machines

° There exists a TM U that on every input Xx,
ain {0, 1 }* outputs M_(x).

 Further, if M halts within T steps then U halts within
C. T.log T steps, where C is a constant that depends
only on M, ’s alphabet size, number of states and
number of tapes.

Universal Turing Machines

° There exists a TM U that on every input Xx,
ain {0, 1 }* outputs M_(x).

 Further, if M halts within T steps then U halts within
C. T.log T steps, where C is a constant that depends
only on M, ’s alphabet size, number of states and
number of tapes.

e Physical realization of UTMs are modern day
electronic computers.

Complexity class P

Decision Problems

¢ In the initial part of this course, we’ll focus primarily
on decision problems.

Decision Problems

¢ In the initial part of this course, we’ll focus primarily
on decision problems.

* Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0, }* to {0,1}.

Decision Problems

¢ In the initial part of this course, we’ll focus primarily
on decision problems.

* Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0, }* to {0,1}.

e Boolean functions can be naturally identified with
sets of {0, |} strings, also called languages.

Decision Problems

Decision problems e Boolean functions e Languages

o Definition. We say aTM M decides a language L < {0, | }*
if M computes f, where f (x) = | if and only if x € L.

The characteristic function of L .

Complexity Class P

e LetT: N— N be some function.

e Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

e Defintion: Class P = U DTIME (n¢).

c>0

Complexity Class P

e LetT: N— N be some function.

e Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

e Defintion: Class P = U DTIME (n¢).

\ c>0

Deterministic polynomial-time

