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Recap:  Turing Machines 

 An algorithm is a set of instructions or rules. 

 To understand the performance of an algorithm we 
need a model of computation. Turing machine is one 
such natural model (introduced by Alan Turing in 1936).  

 A TM consists of: 

 

 

 Turing machines              A mathematical way to 

                                        describe algorithms. 
 

• Memory tape(s) 
• A finite set of rules 

 



Recap:  Turing Machines 

 Definition.  A k-tape Turing Machine M is described 
by a tuple (Γ, Q, δ) such that 

 M has k memory tapes (input/work/output tapes) 
with heads; 

 Γis a finite set of alphabets. (Every memory cell 
contains an element of Γ) 

 Q is a finite set of states.  (special states: qstart , qhalt) 

 δ is a function from Q x Γ  to Q x Γ x {L,S,R} 

 

k k k 

known as transition function; it captures the 
dynamics of M 



Recap:  TM Computation 

 Start configuration. 

 All tapes other than the input tape contain blank symbols. 

 The input tape contains the input string. 

 All the head positions are at the start of the tapes. 

 The machine is in the start state qstart . 
 

 Computation. 

 A step of computation is performed by applying δ. 
 

 Halting. 

 Once the machine enters qhalt it stops computation. 

 



Recap:  TM Running time 

 Let f:  {0,1}*      {0,1}* and T:  and M be a 
Turing machine. 
 

 Definition.  We say M computes f if on every x in 
{0,1}*, M halts with f(x) on its output tape beginning 
from the start configuration with x on its input tape. 
 

 Definition. M computes f in T(|x|) time, if for every x 
in {0,1}*, M halts within T(|x|) steps of computation 
and outputs f(x).  

 



Recap:  Turing Machines that halt 

 In this course, we would be dealing with 

 

 Turing machines that halt on every input. 

 Computational problems that can be solved by Turing 
machines.  

 

 Can every computational problem be solved using 
Turing machines? 

 
 



Recap:   Uncomputability 

 There are problems for which there exists no TM 
that halts on every input instances of the problem 
and outputs the correct answer.  
 

 Input:  A system of polynomial equations in many variables with 
integer coefficients.  

 Output:  Check if the system has integer solutions .  

 Question: Is there an algorithm to solve this problem?  

 

 Theorem. There doesn’t exist any algorithm (realizable by a 
TM) to solve this problem. (Davis, Putnam, Robinson, Matiyasevich 1970) 

  



Recap:  Why Turing Machines? 

 TMs are natural and intuitive. 

 

 Church-Turing thesis:  “Every physically realizable 
computation device – whether it’s based on silicon, DNA, 
neurons or some other alien technology – can be 
simulated by a Turing machine”.  

                          --- [quoted from Arora-Barak’s book] 

 Several other computational models can be 
simulated by TMs. 

 



Recap:  Why Turing Machines? 

 TMs are natural and intuitive. 

 

 Strong Church-Turing thesis:  “Every physically 
realizable computation device – whether it’s based on 
silicon, DNA, neurons or some other alien technology – 
can be simulated efficiently by a Turing machine”.  

Possible exception:  Quantum machines! 



Basic facts about TMs 



Turing Machines 

 Time constructible functions.  A function T:  
is time constructible if T(n) ≥ n and there’s a TM that 
computes the function that maps x to T(|x|) in 
O(T(|x|)) time.  

 

 Examples:  T(n) = n2, or 2n, or n log n 

in binary 



Turing Machines:  Robustness 

 Let f:  {0,1}*      {0,1}* and T:  be a time 
constructible function.  
 

  Binary alphabets suffice.  

 If a TM M computes f in T(n) time using Γ as the alphabet 
set, then there’s another TM M’ that computes f in time 
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set. 

 

 



Turing Machines:  Robustness 

 Let f:  {0,1}*      {0,1}* and T:  be a time 
constructible function.  
 

  Binary alphabets suffice.  

 If a TM M computes f in T(n) time using Γ as the alphabet 
set, then there’s another TM M’ that computes f in time 
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set. 

 

 A single tape suffices. 

 If a TM M computes f in T(n) time using k tapes then 
there’s another TM M’ that computes f in time 5k . T(n)2 
using a single tape that is used for input, work and output. 

 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

             …simply encode the description of the TM. 

 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

                  …invalid strings map to a fixed, trivial TM. 

 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

            … allow padding with arbitrary number of 0’s 

 

                                          



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

 

                        α                    Mα 

{0,1} string TM corresponding to α 



Turing Machines:  As strings 

 Every TM can be represented by a finite string over 
{0,1}. 

 

 Every string over {0,1} represents some TM. 

 

 Every TM has infinitely many string representations. 

 

 A TM (i.e., its string representation) can be given as 
an input to another TM !! 



Universal Turing Machines  

 Theorem.  There exists a TM U that on every input x, 
α in {0,1}* outputs Mα(x).  

 

 Further, if Mα halts within T steps then U halts within 
C. T. log T steps, where C is a constant that depends 
only on Mα ’s alphabet size, number of states and 
number of tapes.   

 



Universal Turing Machines  

 Theorem.  There exists a TM U that on every input x, 
α in {0,1}* outputs Mα(x).  

 

 Further, if Mα halts within T steps then U halts within 
C. T. log T steps, where C is a constant that depends 
only on Mα ’s alphabet size, number of states and 
number of tapes.   

 

 Physical realization of UTMs are modern day 
electronic computers.  



Complexity class P 



Decision Problems 

 In the initial part of this course, we’ll focus primarily 
on decision problems.  
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Boolean functions, i.e., functions from {0,1}* to {0,1}. 

 



Decision Problems 

 In the initial part of this course, we’ll focus primarily 
on decision problems.  

 

 Decision problems can be naturally identified with 
Boolean functions, i.e., functions from {0,1}* to {0,1}. 

 

 Boolean functions can be naturally identified with 
sets of {0,1} strings, also called languages. 



Decision Problems 

 

Decision problems       Boolean functions       Languages 

 

 Definition.  We say a TM M decides a language L ⊆ {0,1}* 
if M computes fL, where fL(x) = 1 if and only if x ∈ L. 
 

The characteristic function of L . 



Complexity Class P 

 Let T:  be some function. 

 

 Definition:  A language L is in DTIME(T(n)) if there’s a 
TM that decides L in time O(T(n)). 

 

 Defintion: Class P = ∪ DTIME (nc). 
c > 0 



Complexity Class P 

 Let T:  be some function. 

 

 Definition:  A language L is in DTIME(T(n)) if there’s a 
TM that decides L in time O(T(n)). 

 

 Defintion: Class P = ∪ DTIME (nc). 
c > 0 

Deterministic polynomial-time 


