
Computational Complexity Theory

Lecture 2: Turing machines (contd.); Class P

Department of Computer Science,

Indian Institute of Science

Recap: Turing Machines

 An algorithm is a set of instructions or rules.

 To understand the performance of an algorithm we
need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

 A TM consists of:

 Turing machines A mathematical way to

 describe algorithms.

• Memory tape(s)
• A finite set of rules

Recap: Turing Machines

 Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

 M has k memory tapes (input/work/output tapes)
with heads;

 Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

 Q is a finite set of states. (special states: qstart , qhalt)

 δ is a function from Q x Γ to Q x Γ x {L,S,R}

k k k

known as transition function; it captures the
dynamics of M

Recap: TM Computation

 Start configuration.

 All tapes other than the input tape contain blank symbols.

 The input tape contains the input string.

 All the head positions are at the start of the tapes.

 The machine is in the start state qstart .

 Computation.

 A step of computation is performed by applying δ.

 Halting.

 Once the machine enters qhalt it stops computation.

Recap: TM Running time

 Let f: {0,1}* {0,1}* and T: and M be a
Turing machine.

 Definition. We say M computes f if on every x in
{0,1}*, M halts with f(x) on its output tape beginning
from the start configuration with x on its input tape.

 Definition. M computes f in T(|x|) time, if for every x
in {0,1}*, M halts within T(|x|) steps of computation
and outputs f(x).

Recap: Turing Machines that halt

 In this course, we would be dealing with

 Turing machines that halt on every input.

 Computational problems that can be solved by Turing
machines.

 Can every computational problem be solved using
Turing machines?

Recap: Uncomputability

 There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

 Input: A system of polynomial equations in many variables with
integer coefficients.

 Output: Check if the system has integer solutions .

 Question: Is there an algorithm to solve this problem?

 Theorem. There doesn’t exist any algorithm (realizable by a
TM) to solve this problem. (Davis, Putnam, Robinson, Matiyasevich 1970)

Recap: Why Turing Machines?

 TMs are natural and intuitive.

 Church-Turing thesis: “Every physically realizable
computation device – whether it’s based on silicon, DNA,
neurons or some other alien technology – can be
simulated by a Turing machine”.

 --- [quoted from Arora-Barak’s book]

 Several other computational models can be
simulated by TMs.

Recap: Why Turing Machines?

 TMs are natural and intuitive.

 Strong Church-Turing thesis: “Every physically
realizable computation device – whether it’s based on
silicon, DNA, neurons or some other alien technology –
can be simulated efficiently by a Turing machine”.

Possible exception: Quantum machines!

Basic facts about TMs

Turing Machines

 Time constructible functions. A function T:
is time constructible if T(n) ≥ n and there’s a TM that
computes the function that maps x to T(|x|) in
O(T(|x|)) time.

 Examples: T(n) = n2, or 2n, or n log n

in binary

Turing Machines: Robustness

 Let f: {0,1}* {0,1}* and T: be a time
constructible function.

 Binary alphabets suffice.

 If a TM M computes f in T(n) time using Γ as the alphabet
set, then there’s another TM M’ that computes f in time
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set.

Turing Machines: Robustness

 Let f: {0,1}* {0,1}* and T: be a time
constructible function.

 Binary alphabets suffice.

 If a TM M computes f in T(n) time using Γ as the alphabet
set, then there’s another TM M’ that computes f in time
4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set.

 A single tape suffices.

 If a TM M computes f in T(n) time using k tapes then
there’s another TM M’ that computes f in time 5k . T(n)2
using a single tape that is used for input, work and output.

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 …simply encode the description of the TM.

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 …invalid strings map to a fixed, trivial TM.

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 Every TM has infinitely many string representations.

 … allow padding with arbitrary number of 0’s

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 Every TM has infinitely many string representations.

 α Mα

{0,1} string TM corresponding to α

Turing Machines: As strings

 Every TM can be represented by a finite string over
{0,1}.

 Every string over {0,1} represents some TM.

 Every TM has infinitely many string representations.

 A TM (i.e., its string representation) can be given as
an input to another TM !!

Universal Turing Machines

 Theorem. There exists a TM U that on every input x,
α in {0,1}* outputs Mα(x).

 Further, if Mα halts within T steps then U halts within
C. T. log T steps, where C is a constant that depends
only on Mα ’s alphabet size, number of states and
number of tapes.

Universal Turing Machines

 Theorem. There exists a TM U that on every input x,
α in {0,1}* outputs Mα(x).

 Further, if Mα halts within T steps then U halts within
C. T. log T steps, where C is a constant that depends
only on Mα ’s alphabet size, number of states and
number of tapes.

 Physical realization of UTMs are modern day
electronic computers.

Complexity class P

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

 Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0,1}* to {0,1}.

Decision Problems

 In the initial part of this course, we’ll focus primarily
on decision problems.

 Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0,1}* to {0,1}.

 Boolean functions can be naturally identified with
sets of {0,1} strings, also called languages.

Decision Problems

Decision problems Boolean functions Languages

 Definition. We say a TM M decides a language L ⊆ {0,1}*
if M computes fL, where fL(x) = 1 if and only if x ∈ L.

The characteristic function of L .

Complexity Class P

 Let T: be some function.

 Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

 Defintion: Class P = ∪ DTIME (nc).
c > 0

Complexity Class P

 Let T: be some function.

 Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

 Defintion: Class P = ∪ DTIME (nc).
c > 0

Deterministic polynomial-time

